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Abstract
With the advent of high-throughput biotechnology capable of monitoring genomic signals, it
becomes increasingly promising to understand molecular cellular mechanisms through systems
biology approaches. One of the active research topics in systems biology is to infer gene
transcriptional regulatory networks using various genomic data; this inference problem can be
formulated as a linear model with latent signals associated with some regulatory proteins called
transcription factors (TFs). As common statistical assumptions may not hold for genomic signals,
typical latent variable algorithms such as independent component analysis (ICA) are incapable to
reveal underlying true regulatory signals. Liao et al. [1] proposed to perform inference using an
approach named network component analysis (NCA), the optimization of which is achieved by a
least-squares fitting approach with biological knowledge constraints. However, the incompleteness
of biological knowledge and its inconsistency with gene expression data are not considered in the
original NCA solution, which could greatly affect the inference accuracy. To overcome these
limitations, we propose a linear extraction scheme, namely regulatory component analysis (RCA),
to infer underlying regulatory signals even with partial biological knowledge. Numerical
simulations show a significant improvement of our proposed RCA over NCA, not only when
signal-to-noise-ratio (SNR) is low, but also when the given biological knowledge is incomplete
and inconsistent to gene expression data. Furthermore, real biological experiments on E. coli are
performed for regulatory network inference in comparison with several typical linear latent
variable methods, which again demonstrates the effectiveness and improved performance of the
proposed algorithm.
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1. Introduction
With advancement of biotechnologies, various types of genomic data provide researchers
with great opportunities to study cellular systems in a global perspective, facilitating the
understanding of biological functions and disease progression causes [2–4]. To fully exploit
the information from genomic data, numerous of machine learning and signal processing
techniques have been proposed and developed to model genetic systems in a quantitative
way [5, 6]. Among them, linear statistical latent variable algorithms such as principal
component analysis (PCA) and independent component analysis (ICA), which have been
applied successfully in many biomedical applications [7, 8], are also adopted to analyze
distinct multi-dimensional genomic signals, including metabolic data [9], DNA
polymorphism data [10], and gene expression data [11–15].

Specifically, for gene expression data describing the messenger RNA (mRNA) dynamics of
genes, PCA and ICA serve as useful computational tools in various applications. For
examples, in [13], both PCA and ICA were applied to perform dimension reduction of gene
expression data, and it was shown that statistical assumption based linear transformation can
lead to biologically meaningful components; Lee et al. [12] systemically compared PCA and
ICA for gene clustering applications on six different datasets, showing that ICA approaches
based on higher-order statistics are more capable for detecting functional enriched gene
groups than PCA; in [15], PCA and ICA were used to generate feature patterns from an
endometrial cancer dataset consisting of benign and malignant samples, and it was reported
that ICA was superior to PCA in characterizing expression signatures of malignant samples;
based on the features constructed by ICA, an improved tumor classification rate was also
achieved by a regularized regression scheme in [11].

Despite the initial success of applying statistical linear latent variable methods for gene
expression data analysis, several limitations of these totally “blind” approaches still exist:
firstly, the underlying true dimension is hard to determine computationally, and an over-/
under-estimation of the signal source number will lead to misinterpretation of gene
expression data; secondly, expression level measurements are acquired through
sophisticated microarray biotechnologies such as hybridization where large amounts of
errors and noises exist in data [16], pure data-driven approaches often suffer from the
problems of low reproducibility [17] and over-fitting [18]; finally and most importantly,
statistics-based “blind” approaches can only produce abstract components without concrete
biological implications. Although estimated source signals could be related to underlying
biological processes after some post-processing [13, 12], it remains unclear which
molecule(s) correspond to each source. This makes it difficult to design biological
experiments validating computational findings. A general requirement, worth noting for
next-generation computational approaches in the field of bioinformatics and systems
biology, is that computational approaches should lead to biologically testable hypotheses [4,
19].

Network component analysis (NCA) [1, 20, 21], which explicitly incorporates biological
knowledge into modeling, establishes a solid link between latent variables and underlying
biological regulatory signals. Through integration of biological knowledge, the linear model
in NCA has a clear biological implication by using a bipartite network for regulatory
network modeling. For the NCA model, if we denote gene expression matrix X as a linear
mixture model, X = AS, the mixing matrix A corresponds to hidden activities of regulatory
proteins (transcription factors (TFs)), and the source matrix S reflects the controlling weight
from TFs to their target genes. Therefore, computational results based on the NCA model
are biologically interpretable. This could lead to hypotheses that can be tested through
further experimental studies. Arguably, the statistical assumptions of un-correlatedness and
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independence are inappropriate in describing real hidden biological signals. Multiple TFs
could potentially work coordinately to control expressions of target genes, and therefore
dependence among them cannot be simply ignored [44]. With no such assumptions, the
NCA solution is simply achieved by minimizing the fitting error of matrix decomposition
following a structure constraint derived from biological knowledge.

Even with several algorithmic improvements [20, 21] and biological studies (e.g., yeast cell
cycle studies [1]) conducted based on the original NCA model, several major issues still
hinder wider NCA applications. The issues are mostly linked to the availability and quality
of biological knowledge1: 1) Knowledge incompleteness: biological knowledge is generally
incomplete, especially for organisms other than some simple model systems such as yeast
and E. coli, whereas NCA application usually assumes that full biological knowledge is
available. 2) Knowledge-data inconsistency: biological knowledge is accumulated through
scientific literature or experiments, thus it also contains a significant amount of noise and
errors. Moreover, biological systems largely behave in a condition-specific manner. The
knowledge generated from one experiment does not necessarily reflect the truth in other
experiments. Therefore, biological knowledge has been found inconsistent with gene
expression data when the NCA model is directly applied [22, 23].

With the awareness of imperfect biological knowledge, we propose and develop a semi-
blind extraction algorithm called regulatory component analysis (RCA). The algorithm aims
to estimate hidden regulatory components, or equivalently, infer quantitative configurations
of transcriptional regulatory networks. The proposed scheme differs from the matrix
decomposition optimization in NCA that requires full knowledge of all regulatory
components; it can be applied even with partial knowledge of one regulatory component.
The RCA criterion is designed to maximize the consistency of extracted components with
knowledge, rather than fully follow the given knowledge that may be inconsistent to gene
expression data. Thus, RCA is less affected by false-positives (FPs) and false-negatives
(FNs) within biological knowledge. With simulations, statistical assumption-based methods
(e.g., ICA and PCA) and knowledge guided methods (e.g., NCA and RCA) are fairly
compared, to the best of our knowledge, for the first time. In reality, the given biological
knowledge could be incomplete and inconsistent to gene expression data. Therefore, we
design our comparison experiments to reflect this reality. Furthermore, real biological
expression data with ground truth collected from knowledge database are also used to
compare performance of all the methods. Therefore, our comparison results would also
serve as a reference for other researchers in the field of signal processing and bioinformatics
to further develop other improved approaches.

2. Problem formulation and methodology
2.1. General linear latent model of genomic signals

First, we briefly review a general interpretation of linear latent model for genomic signals.
Given a high-dimensional data matrix X = [x[1], ···,x[N]] ∈ ℝM×N, which can be seen as N
realizations of random vector x ∈ ℝM, the purpose of statistical latent variable algorithms
such as PCA and ICA is to find a linear transformation W ∈ ℝL×M, through which the
transformed components of y = Wx = (y1, ···,yL)T are statistically uncorrelated (PCA) or
independent (ICA). When observed data can be assumed as linear mixtures of underlying
regulatory components or sources: x[n] = As[n], where components of sources s ∈ ℝL are
non-Gaussian distributed and independent, ICA can be used to perform blind separation of
sources; its estimates correspond to underlying sources up to some scale and order

1In the present study, biological knowledge mainly refers to the connectivity pattern between TFs and their target genes in the context
of regulatory network inference, while general biological knowledge is a much broader concept.
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ambiguities even without the exact distribution form of latent variables [24, 25]. ICA
algorithms have been applied to some biomedical problems where the assumption of source
independence holds [7, 8].

Recently, PCA and ICA models have also been found useful for linear representation of
genomic signals. A common biological interpretation of latent variable model is shown in
Fig. 1. X is a genomic signal matrix of M measurements by N ‘genomic instances’. These
instances could be transcripts of genes [12, 13], metabolisms [9], or genome loci [10].
Realizations of the l-th latent component [sl[1], ···,sl[N]]T are generally assumed to reflect
the genomic influence of some underlying biological processes to all the genomic instances.
Given that cellular systems are energy efficient, each biological process is further assumed
to only affect the activities of small portions of genomic instances. Therefore, a super-
Gaussian distribution of each component sl can be assumed approximately. This assumption
is supported by previous comparison studies between ICA and PCA for microarray analysis
[12, 13].

The applications of statistical latent variable algorithms are mainly limited in exploratory
analysis of genomic data. However, computational results are too general to be interpreted in
a specific biological context. Therefore, focus is given on gene expression analysis for
transcriptional regulatory network inference, where a clear generative model can be
formulated with biological implications. The details will be discussed in the following
sections.

2.2. Gene expression and NCA model
2.2.1. Gene expression and transcription model—Gene expression generally refers
to an information conversion process from DNA sequence of one gene to its mRNA, which
will be further translated to corresponding protein(s). Therefore, mRNA molecular
concentrations of genes are generally called gene expression levels or expression data.
Expression data are acquired through a series of biochemistry-photo transformation,
providing the parallel mRNA measurement of thousands of genes in a single microarray
chip. Gene expression is one of the genomic data types received the most intensive research
attention. This is not only due to its relatively low acquisition cost, but also attributed to its
ability in reflecting genetic dynamics of cellular systems [26].

Having M microarray measurements with N genes, gene expression data can be denoted as a
matrix E ∈ ℝ+M×N, where emn reflects the concentration of the n-th gene in the m-th

microarray measurement. We denote normal concentration of the n-th gene as , which is
usually generated in baseline condition as a reference signal. It is known that transcription
rate of genes are determined by concentrations of some special proteins called transcription
factors (TFs) [1]. The following transcription rate equation can be obtained through
approximation of a series of differential equations under equilibrium assumptions:

(1)

where pml and  are concentrations of the l-th TF in the m-th microarray measurement and
under baseline condition, respectively. The exponential item sln reflects how the l-th TF
regulates the transcription rate of the n-th gene, with snl = 0 as no regulation, snl > 0 as
transcription promotion (or up-regulation), and snl < 0 as transcription suppression (or

down-regulation). It should be noticed that only the expression concentration emn and  are

directly observable, whereas pml,  and snl are all hidden variables.
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By denoting

(2)

and

(3)

Equation (1) can be expressed as

(4)

or in a matrix multiplication form with an additive noise matrix Γ ∈ ℝM×N

(5)

Equation (5) can be further written in the form of latent variable model with respect to gene
index n:

(6)

where x[n] = [x1n, ···,xMn], s[n] = [s1n, ···,sLn], and γ[n] = [γ1n, ···,γMn] are the gene
expression profile, regulatory component, and noise vectors of the n-th gene, respectively.
Equation (5) is called log-linear model, considering the transformations in Equation (2) and
(3) [1]. The log-ratio transformation of gene expression data can be fit approximately with
Gaussian distribution [13]. Different from the general latent variable analysis, now
everything has a clear biological implication; latent factors of the linear model (6)
correspond to TFs. The l-th column of matrix A = [a1, ···,aL] is defined as the l-th
transcription factor activity (TFA), which reflects the hidden protein relative activity of the
l-th TF. The influence variable of the l-th TF sl is called the l-th regulatory component (RC).
In the present paper, the mixing matrix A and source matrix S are referred to as TFA matrix
and regulatory component matrix (or RC matrix) to highlight their biological implications.

2.2.2. NCA model—Before we discuss regulatory component estimation, we introduce
specific biological knowledge that facilitates the estimation. Each regulatory component sl
in Equation (6) corresponds to the regulatory effect of certain TF on gene transcription rates.
One TF has to bind to the DNA promoter region of a target gene to regulate gene
expression. Such physically-binding relationship can be measured through biological
experiments [27] or predicted through computational sequence analysis [28]. Based on the
potential binding relationship of TF to gene, the physical binding relationship from TFs to
genes is defined as network connectivity pattern B ∈ (0,1)L×N. This is a binary matrix with
element bln = 1 indicating potential regulatory relationship from the l-th TF to the n-th gene.

Genes regulated by TFs are typically called target genes. Assuming there is no feedback
from target genes to TFs, transcriptional regulatory network describing the relationship
between TFs and target genes is a bipartite network, where the nodes of latent layer and
observed layer are TFs and downstream genes, respectively. Regulatory component matrix S
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describes weights of bipartite network edges. Therefore, estimation of hidden regulatory
components is equivalent to the inference of underlying regulatory network (Fig. 2).

To solve Equation (5) based on available biological knowledge B, the original NCA
algorithm is designed to estimate A and S by minimizing the fitting error [1]:

(7)

(8)

In constraint (8), ℤ0 is a regulatory matrix set, derived from biological knowledge of
connectivity matrix:

(9)

Assuming the elements of noise matrix Γ is i.i.d Gaussian distributed, the NCA criterion is
equivalent to maximizing the likelihood with respect to noise distribution [21]. The NCA
criterion does not incorporate any statistical priori of A or S. This is motivated by
discussions in [1] that statistical assumptions may not fit to biological reality. Therefore, the
NCA criterion is simply a least-square fitting with structure constraint on S. In the original
NCA paper, TFA A is regarded as underlying regulatory signals, where regulatory
component matrix S is treated as a mixing matrix. Actually the definitions of mixing matrix
and source matrix are interchangeable for NCA through a matrix transposition, as no
statistical properties are assumed according to either matrix. Arguably, S is more
appropriately assumed as the underlying source than A for applying statistical latent variable
methods. This is because non-Gaussianity assumption of each component sl approximately
holds, considering the fact that one TF can only regulate a small portion of genes [1, 21, 20].

As the NCA optimization procedure involves biological knowledge B, the structure
characteristic of B is essential for NCA estimation. This is reflected from identifiability
conditions of NCA. In the noiseless case, the identifiability conditions for NCA are proved
when the following four assumptions are met [1]:

Identifiability conditions of NCA
Assumption 1: The number of microarray samples (M) should be greater than or equal to the
number of TFs (L).

Assumption 2: Different TFAs, al, l = 1, ···,L, are linearly independent.

Assumption 3: For connectivity pattern matrix B, if any TF and its associated genes are
taken out, the modified connectivity pattern matrix B̃ should have full row rank (rank = L −
1).

Assumption 4: The network connectivity pattern B is perfectly known (a priori).

Both Assumption 1 and 2 are almost universal presumptions for linear latent algorithms.
Assumption 1 is generally needed to ensure that the problem is not underdetermined.
Assumption 2 is also similar to the presumption for PCA/ICA models in that mixing matrix
A is non-singular.
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Assumption 3 indicates that if one TF is determined, the rest L − 1 TFAs can still be
uniquely determined. By explicitly exploiting the property of Assumption 3, Chang et al.
[29] proposed an alternative algorithm fastNCA, which can be several of tens times faster
than the original NCA algorithm. Assumption 3 is not always fulfilled for a given
connectivity, thus a condition check is usually performed and the connections violating this
assumption are pruned [1, 21].

However, effective condition check for Assumption 3 also relies on Assumption 4, assuming
that given B reflects the underlying true relationship B0. Therefore, the estimation accuracy
of both NCA and fastNCA are expected to heavily depend on the availability and quality of
given biological knowledge, which will be discussed in Section 2.2.3.

Ambiguities: Although prior biological knowledge eliminates the ordering ambiguity of
regulatory components, the scaling of underlying signals is still undetermined. Therefore,
even with the fulfillment of all identifiability conditions, the estimated regulatory
component ŝ by NCA could still differ from the underlying true signals s up to some scaling
ambiguity ŝ = Ds, where D is an arbitrary diagonal matrix with non-zero diagonal items.
Such ambiguity is usually acceptable in source separation applications as it is “waveform
preserved” [30], which means the waveforms of original signals are correctly captured.

2.2.3. Degeneration of biological knowledge—Assumption 4 assumes that the
complete biological knowledge-connectivity pattern matrix B is (a) complete (including all
TFs), and (b) accurate (consistent to expression data X). However, biological connection
knowledge is often incomplete in reality. This is especially true for species like humans,
where only a few transcription factors can be known in advance. Aside from knowledge
incompleteness, biological knowledge is also generally inconsistent with gene expression
data. Such knowledge-data inconsistency mainly stems from two situations: 1) part of given
knowledge is generated from other biological experiments, which may introduce errors; and
2) knowledge is very general and may not be specific to biological conditions under which
gene expression data are acquired. Thus, biological knowledge usually contains a
considerable amount of FPs and FNs, which should not be ignored for computational
modeling.

The incompleteness of biological knowledge and its inconsistency with expression data are

summarized as knowledge degeneration (Fig. 3). We denote , where 
represents the true connectivity pattern for the l-th TF. In Fig. 3, an extreme case is
illustrated when only knowledge of the third TF b3 is available. However, the given b3 is

still different from true  because of FPs and FNs in biological knowledge.

2.3. Regulatory component analysis
With the awareness of degeneration of given biological knowledge, we describe in this
section the motivation and criterion of the proposed RCA.

2.3.1. From decomposition to extraction—According to Assumption 2 of NCA,
different TFAs are linearly independent so that matrix A is invertible, a regulatory
component estimate ŝ can usually be achieved through a linear projection from expression
matrix X:

(10)
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where the projection matrix W is also called the de-mixing matrix in the blind source
separation problem. A perfect W should be the pseudo-inverse of mixing matrix up to a
scaling ambiguity

(11)

In Equation (11), † is the notation for pseudo-inverse operator. Whereas the goal of PCA or
ICA is to find a projection matrix W = [w1, ···,wL]T so that the resulting components are
statistically uncorrelated or independent, the purpose of NCA projection is to find the source
matrix exactly following the given connectivity knowledge and minimizing the fitting error.
Instead of using matrix decomposition, PCA and ICA solutions can also be achieved in an
extraction manner by maximizing the variance and non-Gaussianity of estimated
components, respectively. Extraction is usually implemented using a linear projection:

(12)

where a good extraction filter w ∈ ℝM should correspond to one row of the de-mixing
matrix in Equation (11). When only certain sources are of interest, blind extraction appears
to be a more efficient scheme than fully blind separation. Typical blind extraction
algorithms are designed to recover components of interest by maximizing certain desired
characteristics of extracted components:

(13)

where function forms of J(·) are generally designed according to some properties of
underlying source signals. These properties include non-Gaussianity, temporal continuity,
etc. [31]. The linear extraction scheme also avoids the dimension determination problem for
latent components if only a few of components are of interests.

Based on the discussions in Section 2.2.3, an extraction scheme is very attractive for gene
regulatory network inference, especially when only partial knowledge is available. However,
an extraction scheme is not immediately clear for the NCA scheme. The NCA criterion of
minimizing the fitting error requires all regulatory components to be estimated in parallel.
Given the limitations of NCA and inspired by the extraction framework originated from
ICA, we propose a linear extraction algorithm for regulatory network inference capable of
incorporating partial biological knowledge.

2.3.2. Regulatory component analysis formulation—Assuming only one column of
B is given, say the l-th column bl, we propose a scheme to extract the corresponding
regulatory component. First, according to bl, the column vectors of matrix X are divided into
two non-overlapped sets:

(14)

and

(15)

The number of members in  and  is denoted as N+ and N−, respectively (N+ + N− =
N). Regulatory component analysis is designed to find a linear projection maximizing the
following cost function:
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(16)

The function value of J0(X,bl,w) has intuitive explanation with data-knowledge consistency,
reflecting how well the estimated regulatory component is supported by given biological
knowledge. The interpretation is given as follows: the regulatory component y of the l-th TF
describes the regulation relationship from this TF to all the genes. Considering that one TF
could up- or down-regulate its target genes, we simply define regulatory influence from this

TF to the n-th gene as  to cancel the sign. If estimated component well corresponds to
biological knowledge of the l-th TF, the averaged regulatory influence on its target genes
defined by knowledge (bln = 1) should be much larger than the average regulatory influence
on the remaining genes (bln = 0). The numerator and denominator of Equation (16) are the
averaged regulatory influence of target genes and non-target genes of the l-th TF defined by
knowledge, respectively. Therefore, the larger function value of J0(·), the more consistent
estimated component y = wTX with given knowledge vector bl. In the noiseless case and
with perfectly given biological knowledge, the average regulatory influence on target genes
is non-zero and average influence on remaining non-target genes is zero: J0 → ∞. With
function value equals to 1, it suggests that estimated regulatory component is not consistent
with biological knowledge, as the averaged regulatory influence of potential target genes is
the same with of non-target genes.

We further stack the members of each set to form two matrices  and , which

correspond to  and , respectively. The criterion function is rewritten as

(17)

Equation (17) has a Rayleigh quotient form so that through some mathematical
manipulations (Appendix A), the following equation can be obtained by maximizing RCA
criterion function J0(·):

(18)

which can be effectively solved using generalized eigenvalue decomposition between

 and . The RCA estimated extraction filter ŵ will be the eigenvector
associated with the maximum generalized eigenvalue of Equation (18).

The proposed RCA criterion has several advantages over traditional NCA approaches [1, 20,
21, 29]:

1. Instead of requiring the complete prior knowledge of all TFs for pursuing a
constrained least-square solution, RCA can incorporate incomplete knowledge to
estimate individual regulatory component by maximizing a knowledge-data
consistency criterion.

2. Rather than strictly following given biological knowledge, the RCA criterion
function allows mismatch between estimated regulatory component and biological
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knowledge. As a result, estimated regulatory weight yn could be any value,
regardless if there is existing knowledge to support it or not (bln = 1 or 0).
According to estimated regulatory component of the l-th TF, if a large absolute
value of yn is observed with no existing biological support (bln = 0), the regulatory
relationship from the l-th TF to the n-th gene could be a false negative in given
knowledge. On the contrary, a small absolute value of yn associated with bln = 1
may reflect a false positive in given knowledge. Therefore, this feature enables the
detection of FPs and FNs of biological knowledge, with the information from
expression data.

3. The Rayleigh ratio function form of RCA criterion reduces computation burden
with an efficient optimization using generalized eigenvalue decomposition.
Moreover, incorporating other regularization items with the form of

 is more convenient if extra prior knowledge is known.
The extended criterion function J(w) = J0(w) + αJr(w) can be efficiently solved
using generalized eigenvalue decomposition, where α is some trade-off parameter.
Notice that generalized eigenvalue decomposition has been widely used in various
pattern recognition applications [32], as well as statistical criterion-based blind
separation problems [33]. This suggests that the proposed RCA has the potential to
be extended with other prior property function terms, which is a topic in our future
investigation. A priori property function can be designed to reflect the prior
information of underlying components, such as “non-Gaussianity”.

Identifiability condition of RCA: We accept Assumption 1 and 2, which are common
assumptions for linear latent model. In noiseless case with perfect given knowledge of the l-

th TF ( ), the estimated regulatory component by maximizing RCA criterion function
will only differ from true signal sl with some non-zero scaling factor c:

(19)

if remaining sources are linearly independent, i.e., rank(S(\l)) = L − 1, where S(\l) = [s1,
···,sl−1,sl+1, ···,sL]T.

The proof is presented in Appendix B. This condition is much more relaxed than original
NCA Assumption 3. It suggests that in ideal case the perfect recovery of one regulatory
component only requires the corresponding perfect knowledge, and the statistical
independence of sources is not required. For non-ideal cases with noises and contaminated
knowledge, we will investigate RCA performance through following simulations.

3. Simulation
3.1. Simulation description

Following the characteristics of true regulatory network, connectivity matrix B0 is generated
with sparse property. It is known that transcription regulation can be involved with
synergistic mechanism (one gene can be regulated through the collaboration of two or more
TFs) so that regulatory components are dependent with each other. Dependent regulatory
component with an average pair-wise correlation around 0.1 is generated. In evaluating the
impact of biological knowledge to estimation, two simulated scenarios are considered:

1. Perfect connectivity pattern is given (B = B0).
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2. Imperfect connectivity pattern is given (B ≠ B0). In simulating the real situation
where biological knowledge is incomplete and inconsistent, the given B input to
algorithms is generated in two steps. First, only some row vectors of true B0 are
given. Second, the given partial B0 is corrupted with FPs and FNs.

In each scenario, the estimation performance of multiple algorithms (PCA, fastICA, JADE,
NCA, fastNCA and proposed RCA) are tested under various signal-to-noise-ratio (SNR)
conditions. Based on Equation (5), SNR is defined as

(20)

As the regulatory component estimation problem is also equivalent to inference of
transcriptional regulatory network, we define two performance evaluation functions for ŝl
estimated by each algorithm:

The Averaged pair-wise absolute correlation (APAC)

(21)

and the Averaged Area Under precision-recall Curve (AAUC)

(22)

In Equation (22),  is the true biological knowledge of the l-th TF, which corresponds to
the l-th row of true connectivity pattern matrix B(0). AUC(·,·) is a function calculating the
value of area under precision-recall curve (see Appendix C), which describes how well the
estimated component can reveal the true target genes of corresponding TF. APAC has clear
implications for signal estimation accuracy, whereas AAUC is more suitable for evaluating
biological ground truth when quantitative regulatory component is usually not available.

3.2. Regulatory component estimation

PCA and ICA: After the components yl,l = 1, ···,L are estimated, correspondence relation-
ships need to be established with true components sl for performance evaluation. Given that
NCA, fastNCA, and RCA approaches are implicitly incorporated with biological
knowledge, the correspondence is simple: ŝl = yl. However, ordering ambiguities still exist
for PCA and ICA. Therefore, yl is designed to correspond to ŝl′, knowledge vector bl′ of
which has the highest similarity with yl in terms of absolute correlation value. Two popular
ICA algorithms were adopted in simulation studies: JADE [34, 35], which is based on
algebra criterion to jointly diagonalize a set of higher-order statistics matrices; and fastICA
[36], which is based on information theory-derived criterion to maximize negative-entropy
or the distance with Gaussian distribution.
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NCA and fastNCA: PCA, ICA, and RCA allow ŝln to be an arbitrary value even with no
biological support bln = 0, whereas NCA and fastNCA explicitly require ŝln = 0, ∀bln = 0.
As one of our purposes in simulation is to detect with false knowledge how well the
underlying true regulatory component can still be recovered, we develop a natural extension
for NCA and fastNCA. Assuming the non-singularity of mixing matrix A (based on
Assumption 2 in Section 2.2.2), ŝ = Â†x is used as the estimate for regulatory components,
in which Â is the estimate of TFA matrix from the NCA or fastNCA algorithm. Through this
simple transformation, ŝln can be of any value even for bln = 0. All methods can then be
fairly compared.

3.3. Simulation results
3.3.1. Biological knowledge is perfectly given (B = B0)—To obtain a full spectrum
of comparison, we tested all the methods under SNR conditions from −1 dB to 15 dB. For
each SNR condition, experiments were conducted 50 times to calculate the average
performance value. A transcriptional regulatory network consisting of 300 genes regulated
by 15 TFs was randomly constructed. Based on the generated network, simulated expression
data with 35 samples were produced according to Equation (5) (M = 35,N = 300,L = 15). As
shown in Fig. 4, two performance evaluations display quite consistent pictures. In general,
RCA and NCA exhibited better performance than the two ICA algorithms JADE and
fastICA. PCA remains the worst. This observation is understandable as the implicit
utilization of knowledge gives the advantages to NCA and RCA. However, fastNCA
showed similar performance with both NCA and RCA in high SNR region, but underwent a
dramatic degradation in low SNR region. This performance occurred because fastNCA is
derived differently from least-squares solution of NCA and is based on a signal sub-space
approach based on Assumption 3. Thus, the accurate estimation of sub-space is essential for
its estimation accuracy. While in the high SNR conditions the sub-space estimation was
generally reliable, fastNCA performance tended to degrade in low SNR conditions. In
contrast, although matrix decomposition-based NCA was more computationally costly than
fastNCA, its performance was more robust.

3.3.2. Biological knowledge is imperfectly given (B ≠ B0)—While keeping all the
other simulation configuration parameters unchanged, we modified the quality of input
biological knowledge B. This scenario was designed to evaluate the effect of imperfect
biological knowledge on regulatory component estimation by only providing 10 TFs
information out of underlying 15 TFs. Moreover, the given knowledge of these 10 TFs were
contaminated with moderate FP and FN (FP rate = 1% and FN rate = 10%) to simulate a real
biological study. Given that the estimation of regulatory component was equivalent to
regulatory network inference, two performance evaluations exhibited consistent comparison
orderings: RCA > NCA > (JADE and fastICA) > (fastNCA and PCA), shown in Fig. 5.
Noticeably, fastNCA performed miserably with performance sometimes even worse than
that of PCA. fastNCA depends heavily on Assumption 3 and 4, which were severely
violated in this simulation case. Moreover, although least-squares-based NCA maintained a
relatively robust performance, it is apparently inferior to the proposed RCA algorithm. In
both simulations, two ICA algorithms consistently outperformed PCA because the non-
Gaussianity property used by ICA is well matched with the sparse regulation relationship of
regulatory components, even when independence assumption was violated.

To illustrate the estimation difference, some regulatory component estimation results
produced in single simulation running when SNR= 3dB are presented in Fig. 6, with
corresponding precision-recall curves. It can be observed that RCA generated the most
similar waveform with underlying true regulatory component. As a result, its precision-
recall curve has larger area-under-curve(AUC) than AUC of all the other methods.
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4. Real biological experiments
In previous section, simulation data verified the effectiveness and illustrated the superior
performance of the proposed RCA algorithm. We were also willing to proceed to real
biological data analysis. However, the revealing of real transcriptional regulation network
for human beings is still ongoing, and many related mechanisms remain unclear. Hence, we
tested all the algorithms on inferring transcriptional regulatory network on E. coli, a simple
bacterium well studied as the model system for various biological studies. We extracted
biological knowledge of TFs from a knowledge database called RegulonDB
(http://regulondb.ccg.unam.mx) with recently updated version 7.0 [37]. The RegulonDB
database contains a collection of TF-target relationships that have been experimentally
verified in E. coli. Out of 169 TFs recorded in RegulonDB, 30 TFs with at least 15
experimental validated target genes were selected to form the initial connectivity pattern
matrix. This selection criterion was based on the considerations for reliable precision-recall
curve estimation and performance evaluation. The target genes of the 30 selected TFs
overlap with a huge expression compendium [38], which contains 445 E. coli microarray
samples under distinct biological conditions. Subsequently, a network connectivity pattern
matrix with 1193 target genes and 30 TFs was obtained. Moderate amounts of FPs and FNs
(FP rate = 1% and FN rate = 10%) were added to the connectivity pattern matrix to test how
well the regulatory components could be estimated with incomplete and inconsistent
knowledge.

As there is no quantitative ground truth for true regulatory component, the AAUC criterion
was used to evaluate the performance. In addition, we observed that AAUC is highly
correlated with APAC in our previous simulation studies, so AAUC should serve as a
reasonable performance evaluation here. Each time, 100 microarray samples were randomly
selected from 445 total microarray samples to estimate the regulatory components for all the
methods. We obtained 50 random selections to calculate the performance evaluation of
AAUC. As shown in Fig. 7, RCA significantly outperformed all the other methods in
retrieving the true target genes regulated by corresponding TFs. To illustrate further the
retrieval performance of different methods, we present the precision-recall curves for two
TFs ArgR and LexA as examples in Fig. 8. Comparing to the simulation studies, the
performance of all the methods dropped. It suggests that the estimation of regulatory
components in the real dataset would be more difficult. Nevertheless, RCA still achieved
very robust performance, much better than all the other methods.

5. Discussions and conclusions
Linear latent variable models are widely used in biomedical applications for identifying or
extracting underlying biological signals corrupted by artifacts or undesired signals.
Statistical assumptions such as un-correlatedness and independence are readily accepted in
many of these applications, such as analyses of ECG, EEG, and MEG data [7, 8]. However,
when these statistical tools are applied to analyze complicated genomic data, the results
become very difficult to interpret. Instead of enforcing strong statistical assumptions, NCA
incorporates biological knowledge into the optimization process of a linear latent model for
gene expression data analysis. This leads to biologically interpretable sources, which are
called regulatory components in the present paper. Noticeably, this linear model is also
equivalent to a bipartite regulatory network describing the regulatory relationship between
TFs and their target genes. However, optimization of NCA is performed based on a least-
squares fitting with biological knowledge constrained. Thus, NCA estimation is largely
dependent on available TF-gene binding knowledge, as well as the quality of given
knowledge. Unfortunately, real biological knowledge is generally incomplete and
inconsistent with gene expression data under study.
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Given the aforementioned pitfalls in biological knowledge, we have proposed a linear
extraction-based framework called RCA. RCA explicitly finds a linear projection that
maximizes the coincidence with given partial biological knowledge. The linear extraction
scheme also allows RCA to detect FPs and FNs of biological knowledge, which is
inconsistent with gene expression data. The contributions of our present study are multi-
folded. First, from the perspective of general linear latent model for genomic signals, the
equivalence of the network inference problem with linear latent variable model is reviewed,
which could serve as a useful reference for signal processing researchers interested in
genomic signal processing. Second, for the first time, a linear extraction scheme is
formulated to infer transcriptional regulatory networks, taking into account incomplete but
informative biological knowledge. The proposed scheme shows a significant performance
improvement over traditional NCA methods in both simulations and real biological
experiments (E. coli). Third, simulation studies show that it is not a trivial problem to
integrate biological knowledge effectively and efficiently, considering that given biological
knowledge is usually incomplete and inconsistent to available data. An inappropriate
incorporation of biological knowledge to the computational methods may result in worse
performances than those without using biological knowledge at all.

Notice that the RCA criterion defined in (17) has a similar Rayleigh quotient function form
with those of linear discriminate analysis (LDA) [39] and Locality Preserving Projections
(LPP) [40]. However, these two methods were designed with different implications and used
to achieve distinct goals. LDA, LPP and the proposed RCA are all linear dimension
reduction schemes by applying a projection won high-dimensional data X, and optimization

criterion functions all follow the same Rayleigh quotient form: . However, the
implication of each criterion function is different. LDA solves w by maximizing the

discrimination function , which is the ratio of between-class variance and
within-class variance. LPP computes w to preserve the local closeness of data-points on a
low dimensional manifold while keeping the scale of data point the same; the solution of

LPP is through minimization of criterion function , where C ∈ ℝM×M is a
symmetric matrix defining the adjacency of data points on manifold and D ∈ ℝM×M is a

diagonal matrix with . Guided by biological knowledge of TFs, RCA maximizes

the criterion function , where the numerator reflects average regulation
influence of target genes of the l-th TF defined by knowledge and denominator is the
average regulation influence of genes without knowledge support. To further understand the
difference between LDA, LPP and RCA, we can look into the implications of the
corresponding projection yn = wTxn for the n-th data vector xn. For LDA, yn is used for
classification decision by checking whether its value falls above or below some threshold; yn
in LPP is a coordinate of n-th data vector in low dimensional manifold; yn in RCA has
biological meaning to describe the regulation influence from the l-th TF to the n-th gene,
given bl as its knowledge guidance.

For the future research, it would be very meaningful to apply and extend RCA to analyze
different microarray datasets, such as time course dataset, to further understand its
usefulness and limitation in real biological studies. Since biological knowledge plays an
essential role in the proposed scheme, some consistency check between knowledge and data
could also be performed to ensure the quality of given knowledge. For example, a
qualitative way to filter out inconsistent biological knowledge with gene expression data has
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been proposed in [41], which could serve as a useful pre-processing step to refine initial
biological knowledge set of RCA. It is also worthy to notice that the currently proposed
scheme is mainly based on linear approximation. The computational modeling of nonlinear
interactions among genes has also been extensively studied, for examples, mutual
information has been employed to address pair-wise nonlinear gene-gene interactions [42];
tree-based ensemble regression has also been shown as an effective approach to reveal
combinatorial and nonlinear regulation relationships [43]. As one of future research
directions, it would be very important to incorporate certain nonlinearity into the modeling
of transcriptional regulation. With increasing accumulated biological knowledge, Bayesian
technique could be a promising alternative to incorporate prior information through a
probabilistic formulation [45], instead of enforcing biological knowledge directly in the
matrix decomposition. Therefore, another potential research direction would be how to
extend RCA approach by using Bayesian techniques.
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Appendix A. Optimization of RCA criterion function
To estimate the linear extraction filter according to RCA criterion, we have

(A.1)

which can be equivalently expressed as:

(A.2)

(A.3)

We convert (A.2) with constraint (A.3) using the Lagrange method as follows:

(A.4)
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The partial derivate of Lagrange function (A.4) with respect to w leads to following
equation:

(A.5)

or

(A.6)

which is a generalized eigenvalue equation between  and . ŵ is the
eigenvector associated with the maximum generalized eigenvalue of the above equation.

Appendix B. Proof of identifiability condition of RCA
To simplify discussions of extraction of the l-th component, we denote

(B.1)

so that RCA estimation is equivalently expressed as follows:

(B.2)

Denote perfect de-mixing matrix as the pseudo inverse of TFA matrix

. Since noiseless case is assumed, .
Additionally, since knowledge of the l-th TF is assumed to be perfectly given, we will have
following equation for any non-zero factor c:

(B.3)

Since the function domain of K(·) is [0,∞), apparently  are optimization
solutions for (B.2). This is because sl[n] = sln = 0, ∀bln = 0. Equation (B.3) is equivalent
with

(B.4)

Equation (B.4) suggests optimal extraction filter  is the null vector of  space. Now we

need to prove there are no any other equivalently good extraction filters  also
making K(ŵ′) = 0. We can prove this by contradiction:

Let us assume the rank(S(\l)) = L−1 and we have  with K(ŵ′) = 0. It suggests that

there is another null vector of  space different from , leading to the conclusion that

Wang et al. Page 18

Signal Processing. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the rank of  is less or equal to L−2, which contradicts our assumption since

.

Therefore,  are the only solutions so that estimated component will only differ from the
true signals upon some scaling ambiguity.

Appendix C. Calculation of precision and recall values
Having the estimated value of the l-th regulatory component [ŝl[1], ···,ŝl[N]], we define a
function Descend_Sort ([|ŝl[1]|, ···,|ŝl[N]|],K), output of which is a gene index set associated
with top K absolute regulatory component value. We are interested in evaluating its
capability to retrieve the genes truly affected by the l-th TF according to a gene index set

, which defines truly affected genes:

(C.1)

Precision and recall of top K genes sorted by estimated regulatory component are defined as
follows, respectively:

(C.2)

and

(C.3)

where #(.) is the operator to count number of members.
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Figure 1.
General linear latent variable model for genomic signals.
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Figure 2.
Equivalence relationship of regulatory component estimation and regulatory network
inference; Left side is the illustrative heatmap of gene expression data X; the network in the
center with dashed connections represents given biological knowledge - initial network
connectivity B; the network on the right side represents the inferred regulatory network
components S based on given expression data and biological knowledge, where the width of
edge is proportional to the absolute value of corresponding regulatory component elements,
and the arrow shape of edge indicates the sign of regulatory component elements
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Figure 3.
Illustration of biological knowledge degeneration. The left arrows indicate incompleteness
of biological knowledge, and the arrows in the center indicate that false positives and false
negatives could contaminate the final knowledge we obtained.
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Figure 4.
Estimation performance curves for all the methods in scenario 1, where biological
knowledge is perfectly given (B = B0). (a) corresponds to the performance evaluation in
averaged pair-wise absolute correlation (APAC) and (b) corresponds to the performance
evaluation in Averaged Area-Under-precision-recall-Curve (APAC).
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Figure 5.
Estimation performance curves for all the methods in scenario 2, where biological
knowledge is imperfectly given (B ≠ B0). (a) corresponds to the performance evaluation in
averaged pair-wise absolute correlation (APAC) and (b) corresponds to the performance
evaluation in Averaged Area-Under-precision-recall-Curve (APAC).
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Figure 6.
Estimated regulatory component profiles and associated precision-recalling curves for
retrieving the genes truly affected by corresponding TFs. (a) is the underlying true
regulatory component profile; (b), (d), (f) and (h) are estimated regulatory component
profiles according to RCA, NCA, JADE and PCA, respectively. (c), (e), (g), and (i) are
precision-recalling curves for retrieving the genes truly affected by corresponding TF,
according to RCA, NCA, JADE and PCA, respectively.
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Figure 7.
Boxplots for Averaged Area-Under precision-recall Curve (AAUC). Where the red-line of
each boxplot corresponds to median of all AAUC values, and top and bottom of boxplot
corresponds to 75% and 25% Quantile of all AAUC values.
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Figure 8.
Precision-recalling curves for retrieving the genes truly affected by corresponding TFs, in
E.coli experiments. (a), (c), (e) and (g) are curves according to TF ArgR, by using RCA,
NCA, JADE and PCA, respectively. (b), (d), (f) and (h) are curves according to TF LexA,
by using RCA, NCA, JADE and PCA, respectively.

Wang et al. Page 27

Signal Processing. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


