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a b s t r a c t

Recently, a growing interest has emerged for examining the potential of Image Processing

tools to assist Art Investigation. Simultaneously, several research works showed the

interest of using multifractal analysis for the description of homogeneous textures in

images. In this context, the goal of the present contribution is to study the benefits of using

the wavelet leader based multifractal formalism to characterize paintings. After a brief

review of the underlying key theoretical concepts, methods and tools, two sets of digitized

paintings are analyzed. The first one, the Princeton Experiment, consists of a set of seven

paintings and their replicas, made by the same artist. It enables examination of the

potential of multifractal analysis in forgery detection. The second one is composed of

paintings by Van Gogh and contemporaries, made available by the Van Gogh and Kröller-

Müller Museums (Netherlands) in the framework of the Image processing for Art Investiga-

tion research program. It enables us to show various differences in the regularity of textures

of Van Gogh’s paintings from different periods, or between Van Gogh’s and contemporaries’

paintings. These preliminary results plead for the constitution of interdisciplinary research

teams consisting of experts in art, image processing, mathematics and computer sciences.

1. Introduction

1.1. Image processing for art investigation

The ever growing power of digital devices (faster pro-

cessors, better computers, higher resolution scanners, larger

storage facilities, etc.) naturally and unavoidably gave birth

to the desire of using such tools for Art Investigation. Yet, it

is only recently, at the turn of the 3rd millennium, that

conditions were met to transform this desire into some form

of reality. Various research groups started to apply standard

image processing tools to digitized painting, to develop new

procedures, or to customize existing ones to meet the

specificities of such an application (cf. [19] for an example

of early contribution, [17,20] for review notes, and [12,21,

22,8] for presentations of state-of-the-art and/or joint recent

research contributions). With the development of compu-

ter-assisted and statistical signal-image processing tools, it

is not the aim of scientists to supplant art historians, but

rather to provide them with additional attributes that can

be extracted automatically using objective and reproducible

criteria. This will allow progress by diversification of the

tools at hand. For paintings, it may for instance help to

assess quantitative measures related to stylometry, brush-

strokes, texture, etc. (cf. e.g., [24,13], where digital texture

and brushstroke features are used to characterize paintings

of Van Gogh). This may contribute to the formulation of

answers to questions, such as what period was a painting

created, is a painting authentic or a forgery, and has it been

correctly attributed to an artist.
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1.2. Wavelet and fractal for image processing

Over the last 15 years, elaborating on multiresolution

decomposition and filter banks, wavelet analysis has

become one of the inescapable image processing tools.

In essence, wavelet coefficients evaluate the content of an

image at a given space position x¼ ðx1,x2Þ and a given

analysis scale a. Wavelet coefficients usually take large

values when the corresponding wavelet is located on any

of the contours of the image, while they fluctuate around

small values when the wavelet is located inside smooth

textures. For an introduction, review and examples, the

reader is referred to e.g., [14]. The statistical properties of

wavelet coefficients have already been successfully used

in stylistic analysis of paintings and forgery detection,

cf. e.g., [9,12,15].

Fractal geometry refers to an analysis paradigm that

relies on the idea that the richest part of the information

to be extracted from an image lies in the way the statistics

of some space-scale dependent quantities vary as a func-

tion of the analysis scale a. In other words, instead of

basing the analysis on the search of specific features of

space-scales, it is preferred to postulate that all space-

scales are jointly and equally important and that the key

information lies in the mechanisms relating them to each

other. This dependence is usually postulated in the form of

power laws: az (with z referred to as the scaling exponent)

which explains why fractal is also termed scaling or scale

invariance. Wavelet analysis consists in decomposing an

image on elementary shapes (the wavelet basis) which are

all deduced from three fundamental functions, the mother

wavelets, by translation and dilation, see Eq. (1). Scaling

invariance properties of the image will imply power-law

behaviors of the wavelet coefficients. Therefore, in essence,

wavelets constitute a natural decomposition system for

characterizing fractal properties of images. Fractal tools

can be used both for the analysis of contours and textures.

There is a rich literature discussing the relevance of fractal

paradigms to analyze or model natural images, a recent and

interesting review can be consulted in [4]. In the context of

Art, it was used in [18] to characterize some of Jackson

Pollock’s masterpieces.

1.3. Goals, contributions and outline

Beyond fractal analysis, essentially aiming at character-

izing how irregular an object is globally by means of a single

scaling exponent, multifractal analysis consists of a signal/

image processing tool that concentrates on describing the

fluctuations along space of the local regularity of the object,

which requires the use of whole collections of scaling

exponents. While popular for the analysis of 1D signals,

multifractal analysis remained rarely used in image proces-

sing applications for both theoretical and practical reasons

(cf. a contrario [2]). However, this situation has recently

been changed when it was shown that a theoretically sound

and practically efficient formulation of multifractal analysis

could be obtained on the basis of wavelet leaders, a simple

construction elaborating on 2D discrete wavelet transform

coefficients, cf. [10,11,28,30,1]. This wavelet leader multi-

fractal analysis constitutes a powerful tool for the analysis of

textures in images, as detailed theoretically in [30] and

explored practically in [29].

The present contribution aims at exploring the poten-

tial of the wavelet leader multifractal analysis for art

painting texture classification. First (cf. Section 2), the

principles and practical procedures underlying the wave-

let leader multifractal analysis will be presented in a

manner geared towards practitioners (hence avoiding

theoretical developments and proofs, for which the reader

will be referred to earlier publications). These procedures

will be illustrated on several paintings. Then (cf. Section

3), it will be shown when and how the wavelet leader

multifractal analysis enables to discriminate between

original paintings and replicas. This will be embedded in

the context of an original experiment conducted by the

Machine Learning and Image Processing for Art Investigation

Research Group at Princeton University (cf. www.math.

princeton.edu/ipai/index.html). Finally (cf. Section 4), the

wavelet leader multifractal analysis will be applied to a

set of Van Gogh’s and contemporaries’ paintings, made

available by the Van Gogh and Kröller-Müller Museums

(The Netherlands) within the Image Processing for Art

Investigation research project (cf. www.digitalpaintingana

lysis.org/).

2. Multifractal analysis

2.1. Wavelet coefficients and global regularity

2.1.1. 2D discrete wavelet transform

An orthonormal wavelet basis in two dimensions is

constructed from three smooth, compactly supported func-

tions cð1Þ
,c

ð2Þ
,c

ð3Þ, which are chosen such that the system

c
ðmÞ

j,ðk1 ,k2Þ
ðx1,x2Þ ¼ 2ÿjc

ðmÞ
ð2ÿjx1ÿk1,2

ÿjx2ÿk2Þ,

j,k1,k2 2 Z, m¼ 1;2,3 ð1Þ

constitutes an orthonormal basis of L2ðR2
Þ. This system is

called a wavelet basis, and the three functions c
ð1Þ
,c

ð2Þ
,c

ð3Þ

its mother wavelets. Let XðxÞ (with x¼ ðx1,x2Þ) denote a

gray level image. We denote by DðmÞ
X ðj,kÞ (with k¼ ðk1,k2Þ,

m¼1, 2, 3) the coefficients of the image X on this wavelet

basis, which are given by the inner product with the basis

functions, DðmÞ
X ðj,kÞ ¼/X9ci

j,kS. Note that in practice these

wavelet coefficients are not computed as integrals, but using

the classical pyramidal recursive algorithm supplied by the

fast wavelet transform. Qualitatively, the coefficient DðmÞ
X ðj,kÞ

measures the amount of energy of the image X that is

contained, in the spatial neighborhood of width � 2j located

at position ð2jk1,2
jk2Þ, in the frequency bands localized

around 72ÿj. For an introduction to the 2D discrete wavelet

transform (2D DWT), the reader is referred to e.g., [14].

In the present contribution, it has been chosen to work

with mother wavelets obtained as tensor products of the

minimal compact support Daubechies wavelet families,

which are parametrized by their number of vanishing

moments Nc [5]. It has been discussed elsewhere that this

family has ideal theoretical and practical properties with

respect to scaling and fractal analysis (cf. e.g., [26]).



While the standard 2D DWT naturally outputs L2 nor-

malized wavelet coefficients, for scaling or fractal analysis,

the L1 normalization d
ðmÞ
X ðj,k1,k2Þ ¼ 2ÿjDðmÞ

X ðj,k1,k2Þ is better

suited and will hence be used from now on: Indeed, this

normalization implies that scale invariance and pointwise

regularity properties in data are reflected by scale invariance

properties in wavelet coefficients with same scaling expo-

nents (cf. e.g., [2,28]). More technically, pointwise Hölder

regularity is defined by a local L1 decay condition; the

wavelet normalization should therefore be of L1-type for

the function considered and, by duality, of L1 type for its

wavelet coefficients. Using the correct normalization plays a

key-role in the definition of wavelet leaders (cf. Section

2.2.1) [10].

2.1.2. Global regularity

The wavelet coefficients d
ðmÞ

X ðj,kÞ enable to define and

measure a property of X which plays a key role for fractal

analysis: its global regularity hm, defined as

hm ¼ supfE : X 2 CEg, ð2Þ

where XðxÞ is said to belong to CE, E 2 R, iff:

(C40 : 8j,k1,k2,m 9dðmÞ
X ðj,k1,k2Þ9rC2jE: ð3Þ

An intuitive interpretation of hm is postponed to Section 2.3.

It follows from (3) that

hm ¼ lim inf
2j
-0

logðsupm,k1 ,k2
9dðmÞ

X ðj,k1,k2Þ9Þ

logð2jÞ
: ð4Þ

Practically, this implies that hm can be measured by

performing linear regressions of the log of the magnitudes

of the largest wavelet coefficients at scales 2j vs. the log of

the scales a¼ 2j [28,30].

2.2. Wavelet leader multifractal formalism

The purpose of multifractal analysis is to enable image

classification based on exponents characterizing the power-

law behaviors of (space-averaged) space-scale quantities

with respect to scale. Various such quantities were proposed

in the past; however, a natural interpretation of multifractal

analysis (in terms of a multifractal spectrum, see Section 2.3)

requires it to be based on wavelet leaders, which we define

now.

2.2.1. Wavelet leaders

Let lj,k1 ,k2 denote the dyadic square

lj,k1 ,k2 ¼ ½k12
j
,ðk1þ1Þ2j

Þ � ½k22
j
,ðk2þ1Þ2j

Þ,

and denote by 3lj,k1 ,k2 the union of lj,k1 ,k2 and its eight

closest neighbors,

3lj,k1 ,k2 ¼ ½ðk1ÿ1Þ2j
,ðk1þ2Þ2j

Þ � ½ðk2ÿ1Þ2j
,ðk2þ2Þ2j

Þ:

Let gZ0 be defined as, with E40,

g¼
0 if hm40,

ÿhmþE if hmr0:

(

ð5Þ

The wavelet leaders L
ðgÞ
X are defined as [10,11,28]

L
ðgÞ
X ðj,k1,k2Þ ¼ sup

m,l0�3lj,k1 ,k2

92gjdðmÞ

X ðl
0
Þ9: ð6Þ

In other words, this means that for each node ðj,k1,k2Þ of the

dyadic grid, the corresponding wavelet leader L
ðgÞ
X ðj, k1,k2Þ is

obtained by replacing the wavelet coefficient dðmÞ
X ðj,k1,k2Þ by

the largest of all the 92gjdðmÞ
X ðl

0
Þ9 that are located at scales

finer or equal to 2j within a small neighborhood around the

position ðx1 ¼ 2jk1,x2 ¼ 2jk2Þ. This construction is illustrated

in Fig. 1. Mathematically, the renormalization of the wavelet

coefficients by a pre-factor 2gj in Eq. (6) is equivalent to

replacing the initial image by its fractional integral of order

g and amounts to increasing its global regularity exponent

hm by g. This renormalization ensures that wavelet Leaders,

as defined in Eq. (6) above, are mathematically well defined

(cf. [28,30,1]). The precise practical selection of parameter g
is detailed in Section 2.5.

2.2.2. Multifractal formalism

Multifractal analysis consists in measuring the exponents

of power-laws of the space averages of wavelet leaders across

the scales available in the data. One introduces an additional

parameter q and computes space averages of the q-th order

of the wavelet leaders at a given scale a¼ 2j,

Sð2j
,q,gÞ ¼

1

nj

X

k1 ,k2

L
ðgÞ
X ðj,k1,k2Þ

q
, ð7Þ

where nj is the number of wavelet leaders actually computed

at scale a¼ 2j. The scaling function of the image is then

defined as

zðq,gÞ ¼ lim inf
2j
-0

logðSð2j
,q,gÞÞ

logð2j
Þ

: ð8Þ

Note that, by construction, the scaling function is concave

with respect to q [11]. Hence, it is assumed that the Sð2j
,q,gÞ

behave as power laws with respect to the analysis scale

a¼ 2j, in the limit of fine scales 2j
-0:

Sð2j
,q,gÞ � lq2

jzðq,gÞ when j-ÿ1: ð9Þ

From a practical perspective, it is expected that this power

law behavior is not limited to fine scales only, but holds over

a broad range of scales. Therefore, the quantities zðq,gÞ are
also referred to as the scaling exponents. These power law

Fig. 1. Wavelet leaders. The wavelet leader LX ðj,k1 ,k2Þ, located at scale 2j

and position ð2jx1 ,2
jx2Þ, is obtained as the largest of all wavelet

coefficients located in a narrow spatial neighborhood and at any finer

scale 2j0
r2j.



behaviors constitute the founding relation connecting the

concepts of (multi)fractal and scale invariance. Moreover, it

is fundamental to note that multifractal analysis requires the

use of both positive and negative values of q to fully

characterize the fractal properties of X. This will be further

discussed in Section 2.3 (cf. e.g., [10,11,28]).

The scaling function zðq,gÞ characterizes the fractal prop-

erties of the image X [28] and can be involved in any of
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the usual image processing tasks, such as characterization,

model selection, classification, detection, etc. This fractal

characterization has been successfully adopted in image

classification procedures (cf. e.g., [30]). Scaling functions

obtained from one of the Princeton paintings and one of

the Van Gogh’s paintings are illustrated in Figs. 2 and 3,

bottom row.

Because the practical measure of the function zðq,gÞ for
all q can be tedious and its use for hypothesis testing

intricate, it has been proposed to use a polynomial expansion
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in the neighborhood of q¼0 by [3,6]

zðq,gÞ ¼
X

pZ1

c
ðgÞ
p

qp

p!
: ð10Þ

Though this expansion may not be valid in certain specific

cases, its power still lies in the fact that, when well-defined,

the coefficients c
ðgÞ
p can be estimated directly (without the

burden of estimating the zðq,gÞ themselves), as they relate to

the scale dependence of the cumulant of order p of the

quantities ln L
ðgÞ
X ðj,k1,k2Þ (cf. [3,6]). Therefore, in practice, it is

often preferred to directly estimate the first values of the

c
ðgÞ
p ’s and work with a truncated version of the expansion

equation (10) as an approximation of zðq,gÞ. (By concavity of

the scaling function, note that c
ðgÞ
2 r0.)

2.3. Hölder exponents and multifractal spectrum

The wavelet leader based multifractal formalism

described in the previous section constitutes one of the

most powerful tools for estimating the multifractal spec-

trum of an image. It is this theoretical connection, which is

now detailed, that motivates the use of wavelet leaders.

However, the theoretical material developed in this sec-

tion is not practically used for the analysis of the paint-

ings described in the forthcoming sections.

Let X : R
2
-R denote the function of interest. It is

assumed that the condition hm40 holds (and hence g is

set to g¼ 0 in this section).

The local regularity of X at location x0 can be measured

by comparing Xðx0Þ to a local power law behavior:

9XðxÞÿPx0 ðxÞ9rC9xÿx09
a
: Here, P is a polynomial such

that degðPÞoa, a40 and C40. The Hölder exponent hðx0Þ

is the largest a such that this inequality holds.

Though theoretically based on a measure of local

regularity, it is essential to point out that multifractal

analysis does not aim at providing the user with informa-

tion in the form of a space dependent function hðxÞ, but

instead with a global measure of the spatial geometry

underlying the fluctuations of hðxÞ along space. This is

achieved via the so-called multifractal spectrum. It consists

of the Hausdorff dimensions D of the sets of locations x

for which the Hölder exponents take the same value h:

DðhÞ ¼ dimHfx : hðxÞ ¼ hg. Because it is a dimension, the

multifractal spectrum is confined to 0rDðhÞrd. By

convention, DðhÞ ¼ÿ1 for the Hölder exponents that

are not present in X. In a nutshell, the key result under-

lying multifractal analysis is that theoretically, the Hölder

exponent at a given point x can be recovered by linear

regression (in log–log scale) of the wavelet leaders located

above x vs. scales 2j (see [10]). This explains why wavelet

leaders are natural candidates in the construction of

multifractal analysis. For theoretical introductions to

multifractal analysis, the reader is referred to e.g., [10,16].

It can be shown theoretically that the Legendre trans-

form of the scaling function zðq,0Þ provides an upper

bound for the multifractal spectrum DðhÞ:

DðhÞrLðhÞ :¼ inf
q2R

ðdþqhÿzðq,0ÞÞ: ð11Þ

Since experimental data are never available with an infinite

resolution, the spectrum DðhÞ can never be computed for

real-life images. Thus, in practice, LðhÞ is the only quantity

that can be estimated. Therefore, with slight abuse of

language, one often refers to LðhÞ as the multifractal

spectrum. Also, the polynomial expansion (10) can be recast

for LðhÞ. Its truncation to the first two expansion terms,

valid for h in the vicinity of c1, is given by (cf. [27] for a

complete formula)

LðhÞCdþ
c2
2

hÿc1
c2

� �2

: ð12Þ

This approximation shows that c1 corresponds to the value

of h where LðhÞ is maximal, hence to the most typical

regularity exponent h observed in X, and ÿc2 essentially

measures the dispersion of the values of h encountered in X

(explaining why it is sometimes referred to as the strength

of the multifractality). The Legendre transform used above

(cf. Eq. (11)) indicates that both positive q’s (capturing the

smallest h’s) and negative q’s (capturing the largest h’s)

must be used in order to obtain the full curve LðhÞ. More-

over, note that the global regularity exponent hm, when

positive, corresponds to the smallest value of h that exists in

X (i.e., the leftmost point of LðhÞ for which LðhÞaÿ1).

Multifractal spectra obtained from one of the Princeton

paintings and one of Van Gogh’s paintings are displayed in

Figs. 2 and 3 bottom row.

2.4. Estimation procedures

The procedures to estimate the zðq,gÞ, the c
ðgÞ
p and the

function LðhÞ from data have been presented and studied

in detail in [28–30], and are hence not further recalled

here. In essence, they rely on weighted linear regressions

in suited log–log diagrams, as illustrated in Figs. 2 and 3

(middle row) for one of the Princeton paintings and one of

Van Gogh’s paintings.

2.5. The role and selection of parameter g

Multifractal analysis makes sense in terms of fractal or

scaling properties only for functions for which hm40. This

limitation is alleviated by the introduction of the parameter

g in Eq. (6): Indeed, as mentioned in Section 2.2, when

analyzing an image for which hmo0, one could first per-

form a fractional integration of order larger than ÿhm
(which ensures that the global regularity exponent of the

integrated image is positive) and then apply the wavelet

leader multifractal formalism (with g¼ 0) to it. Alterna-

tively, one can avoid actual computation of the fractional

integral and instead apply the wavelet leader multifractal

formalismwith g4ÿhm directly to the original image. It has

been shown theoretically that both analyses yield the same

multifractal properties (cf. [28,29] for details).

In practice, the multifractal parameters associated

with X can be related to those computed using various

choices of g4hm as follows (cf. [30]):

zXðqÞ ¼ zðq,gÞÿgq, ð13Þ

cX,1 ¼ c
ðgÞ
1 ÿg, ð14Þ

cX,p ¼ c
ðgÞ
p , pZ2, ð15Þ



LXðhÞ ¼L
ðgÞðhÿgÞ: ð16Þ

Given that hm needs to be estimated, a rule of thumb

for comparison or classification of several images is to

choose g as the smallest semi-integer value ensuring

gþhm40 for all images under analysis.

3. Original vs. replica: the Princeton experiment

Appealing though it may be, applying multifractal

analysis immediately and blindly to masterpieces, such

as Van Gogh’s paintings, with the aim of, e.g., performing

forgery detection or classification according to given

artistic periods is difficult since the correct answers are

often still under debate among conservators and art

historians. Furthermore, the questions raised by conser-

vators and art historians must first find a relevant for-

mulation in an Image Processing language. Therefore, we

instead begin with testing multifractal analysis on the

Princeton experiment data.

3.1. The Princeton experiment

The Machine Learning and Image Processing for Art

Investigation Research Group at Princeton University

(cf. www.math.princeton.edu/ipai/index.html) had the bril-

liant idea of setting up a scientific art investigation experi-

ment. It is described in detail at www.math.princeton.edu/

ipai/datasets.html and in [9,15]: Charlotte Caspers, then an

art conservation student from Stichting Restauratie Atelier

Limburg specializing in art reconstruction, was proposed to

perform a series of seven paintings using different materials

(various brushes, canvas, paints). All of them are small

(C15� 15 cm2) and represent indoor environment still life

subjects. After a delay of two weeks, she was asked to

produce, under the same conditions and using the same

materials, replicas that were as close as possible to her

originals. Originals and replicas were scanned at very high

resolution (800 dpi) enabling to analyze the very fine

scales of the texture (as a pixel essentially represents

32� 32 mm2). The paintings are described in Table 1 and

plotted in Fig. 4. The Princeton group is gratefully acknowl-

edged for making the material of this experiment available

to other research teams.

3.2. Multifractal properties

To analyze and assess fractal properties in paintings,

small patches of homogeneous textures of N�N pixels are

manually selected. Then, the wavelet leader multifractal

formalism described in Section 2 is applied to each of

them. Structure functions Sðj,q,gÞ are depicted in Figs. 2

and 3 and display the power law behavior postulated in

Eq. (9) satisfactorily well for a range of values of q around

0 (here, q 2 ½ÿ5;5� and N¼1024). These power laws hold

for all seven paintings, for both originals and replicas, for

many different patches at various positions in the paint-

ing (bird, bag, upper background, lower background, etc.).

Their existence confirms that the fractal (or scaling)

properties in these paintings can be regarded as relevant

features to describe their textures. Other figures, in the

spirit of Fig. 5, are not reported here for the sake of space

and are available upon request.

An important aspect of (wavelet leader) multifractal

analysis lies in the fact that the range of scales a 2

½amin,amax� within which scaling behavior as in Eq. (9)

holds, is selected a posteriori from visual inspection of the

log–log diagrams, such as those in Fig. 2, by the expert

performing the analysis (assisted by statistical proce-

dures, cf. [25]). Therefore, the selection of the relevant

range of scales is not an a priori and arbitrary choice but

constitutes per se an important output of the analysis: it

provides information on the scales in actual units within

which fractal properties hold. For the Charlotte Casper

paintings, it can be estimated that scaling holds over a

decade, within scales ranging from 0.5�0.5 to 5�5 mm2.

This shows that the observed scaling properties are related

to fine details of the various textures in the paintings and

not to the (larger scale) shapes of the represented subjects.

Furthermore, patches of the same location on both

original and replica do not share the same scaling proper-

ties. This is illustrated in Fig. 5, where the scaling func-

tions and the multifractal spectra significantly differ.

Interestingly, it is found that the multifractal spectra

estimated from replicas tend to be systematically shifted

to the right on the Hölder exponent axis, as compared to

those measured on originals. Technically, this is effectively

measured on c1, which estimates the position of the max-

imum of the multifractal spectrum: It is often observed that

cðreplicaÞ1 4cðorigin:Þ1 . Consistently, it is observed that h
ðreplicaÞ
m 4

h
ðorigin:Þ
m . Both these observations clearly indicate that sys-

tematically, the textures of the replicas are globally more

regular and smoother than those of the original paintings.

3.3. Results

3.3.1. Test procedure set-up

This section aims at deciding, by means of statistical

procedures, whether the differences between the multi-

fractal parameters estimated on replicas and originals we

observed and discussed in the previous section are sta-

tistically significant or not.

A key point in the analysis underlying the above observa-

tions (cf. Section 3.2) resides in the fact that multifractal

parameters were estimated for well-chosen patches of

homogeneous textures (the bird, as in the example illustrated

Table 1

The Princeton experiment—discriminating original from replica. Soft

brushes (S) are sable or synthetic, hard brushes (H) are flat hog hair.

Replicas have textures which are globally more regular than those of

originals. For Paintings 1–3, this is well detected by both the PairWise

(PW) and the Non-PairWise (NPW) tests. While this is also the case for

Paintings 5 and 7, only the PairWise (PW) tests, comparing patches with

same locations on original and replica, are discriminative.

Pair Ground Paint Brushes Pixel Discr.

1 CP Canvas Oils S & H 6272�6528 PW/NPW

2 CP Canvas Acrylics S & H 6272�6528 PW/NPW

3 Smooth CP Board Oils S & H 6272�6528 PW/NPW

4 Bare Linen Canvas Oils S 3200�6144 –

5 Chalk and Glue Oils S 3328�4608 PW

6 CP Canvas Acrylics S 3456�5504 –

7 Smooth CP Board Oils S 6400�6528 PW



in Fig. 2, the bag, the backgrounds, etc.). This manual

selection of patches requires a human/expert decision and

cannot be easily automated. Here, we chose instead to split

each painting blindly into adjacent non-overlapping patches

of N�N pixels. Then, the wavelet leader based multifractal

formalism is applied to each patch independently. Following

the preliminary analysis described above, the scaling range is

fixed to scales ranging from 0.5�0.5 to 5�5mm2. In the

results reported below, patch sizes N¼ 29
,210

,211 have been

used and yield consistent conclusions. Tables are given for

N¼ 210.

Along another line, the digitized paintings are provided

in the form of three 8 bit matrices, which correspond to the

RGB channel outputs supplied by the scanner, respectively.

Systematically, these three channels have been transformed

into a single Intensity gray-level image I, and into three

channels corresponding to the classical HSL (Hue, Satura-

tion, Lightness) representation system for colors (cf. e.g., en.

wikipedia.org/wiki/HSLandHSV for the exact definitions of

the transformation RGB-I and RGB2HSL). For each patch

of each original and replica, these seven instances (RGB, I,

HSL) were analyzed independently.

Three characteristic multifractal parameters have been

systematically retained for the test procedures: hm, c1 and

c2. The results shown here are obtained using the minimal

compact support orthonormal Daubechies wavelet c with

Nc ¼ 2 vanishing moments [5]. It has been checked that

results are consistent when Nc is increased. A value g¼ 1

is found to be sufficiently large to ensure positive global

regularity for all paintings and patches.

To test whether changes between multifractal para-

meter estimates for original and replica are significant, a

set of classical non-parametric hypothesis tests is applied

and p-values are computed for the null hypothesis that no

change is observed between original and replica. Two

categories of tests were used. PairWise tests (SignTest and

SignRank) compare estimates obtained for patches of the

same locations on original and replica. Non-PairWise tests

(Wilcoxon RankSum) compare globally the vectors con-

taining multifractal attribute estimates for all patches of

the original and replica, respectively, without taking the

locations of the patches into account. They are hence far

more demanding, since they could be used to compare

two sets of paintings which are not originals and copies or

replicas thereof. This setting is much more likely to be of

interest in practice. It corresponds, for instance, to the

situation where a reference set of paintings that are

indisputably attributed to a master (or a period of crea-

tion) is used to test a set of paintings that are question-

ably attributed to this master (or a period of creation).

The level of significance of the tests is, as is classi-

cally done, set to 0.05 (i.e., differences are regarded as

5

7

64

1 2 3

Fig. 4. The Princeton experiment. The seven originals, numbered 1–7 hereafter.
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statistically significant whenever pr0:05, and the test

has a 5% level of chances of incorrectly deciding so). Tests

are applied to both the multifractal parameters estimated

from all seven channels, and to those of the L channel only

(hence to those of a single gray-level image).

3.3.2. Results

In Fig. 6, multifractal parameter estimates of originals

and replicas are compared by means of box-plots. The

p-values resulting from the different tests are reported in

Table 2. Careful reading of this table and figure enables to
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Fig. 6. Differences in multifractal parameters for the seven paintings. Top: hm , middle: c1, bottom: c2; Left: All seven channels, right: Luminance L

channel only.



make the following observations:

� When significant, changes in c1 and hm are observed to

systematically occur jointly and with larger values for

replicas as compared to originals.

� Parameter c2 is rarely found discriminant and when it

is, changes in c2 are not systematical in the same

direction.

� For Paintings 1–3, both PairWise and Non-PairWise

tests detect significant changes, be they applied to All-

Channels or to Luminance only.

� For Paintings 5 and 7, discrimination is only achieved

for PairWise tests applied to All-Channels.

� For Paintings 4 and 6, no change between original and

replica is detected.

Such observations induce the following conclusions,

which are summarized in Table 1:

� Multifractal properties. When significant changes are

found, the multifractal spectra computed from the tex-

tures of the replicas appear globally shifted to the right,

with quasi no deformation: the change in hm (the left-

most point of the spectrum) is comparable to the change

in c1 (the location of its maximum) and c2 (related to its

width) is not changed. Therefore, the textures in replicas

systematically are globally more regular than those of

the originals, but they show neither a larger nor a

smaller variability around this global regularity. Let us

also recall the important fact that fractal properties are

observed for scales ranging from 0.5�0.5 to 5�5 mm2.

Hence, the fractal properties observed in this data set

may be tentatively related to brushstrokes, though there

is no objective consensus on which scales relate to which

characteristics of paintings (cf. [7,23] for discussions on

these issues).

� Painting properties. While discriminations between repli-

cas and originals are clear and obvious for the three first

paintings whose common feature is the use of Soft and

Hard brushes, discrimination is not or barely achieved

for paintings for which only Soft brushes were used.

Consequently, a natural conclusion is to attribute this

difference to the brushes actually used. The fact that the

PairWise tests yield detection for paintings 5 and 7

remain to be interpreted. Furthermore, the reasons

why no discrimination is achieved for paintings 4 and

6 remain to be understood. For these paintings, scaling

and fractal properties are observed which are qualita-

tively similar to those of the other paintings (as illu-

strated in Fig. 7) yet are not discriminant. Note that for

paintings 4 and 6 a strong canvas structure is present

and may constitute the dominant feature of the texture

(cf. Fig. 7). Because it exists for both the original and the

replica, it may prevent discrimination.1

4. Van Gogh’s paintings multifractal properties

4.1. The Image Processing for Art Investigation research

project

Let us now turn to the analysis of Van Gogh’s paintings.

In the framework of the Image Processing for Art Investigation

research project initiated by R. Johnson (Cornell University)

and I. Daubechies (Princeton University; cf. digitalpaintin-

ganalysis.org) the Van GoghMuseum and the Kröller-Müller

Museum (The Netherlands) made available a set of digitized

versions of Van Gogh’s paintings and of his contemporaries.

These copies were obtained using a scanning resolution of

200 dpi and are checkerboarded on their right-half side, so

that only the left-half is actually available for analysis. In

order to investigate the potential of image processing tools

for art investigation, a series of stylometry challenges was

set up under the supervision of R. Johnson, J. Coddington

Table 2

p-Values. For each seven sub-tables (corresponding to the seven images),

the p-values correspond to the PairWise SignTest (left), PairWise

RankTest (centerleft), Non-PairWise Wilcoxon RankSum (centerright:).

The Right pair of columns reproduces the mean value of the difference

between original and replica. In each pair of columns, the left column

corresponds to the test applied to all seven channels, while the right

column shows results for the test applied to the Luminance channel

only.

All Lum. All Lum. All Lum. All Lum.

1-Channel

hm 0.00 0.00 0.00 0.00 0.00 0.03 ÿ0.14 ÿ0.15

c1 0.00 0.03 0.00 0.01 0.00 0.14 ÿ0.07 ÿ0.06

c2 0.15 0.62 0.01 0.20 0.02 0.28 ÿ0.01 0.01

2-Channel

hm 0.00 0.24 0.00 0.00 0.00 0.00 ÿ0.20 ÿ0.23

c1 0.00 0.00 0.00 0.00 0.00 0.02 ÿ0.11 ÿ0.12

c2 0.00 0.41 0.00 0.10 0.00 0.03 ÿ0.02 0.02

3-Channel

hm 0.00 0.00 0.00 0.00 0.01 0.08 ÿ0.07 ÿ0.10

c1 0.00 0.03 0.00 0.00 0.03 0.21 ÿ0.06 ÿ0.08

c2 0.73 1.00 0.58 0.74 0.53 0.54 ÿ0.00 0.00

4-Channel

hm 0.21 0.48 0.44 0.31 0.58 0.87 0.01 0.02

c1 0.39 0.48 0.47 0.40 0.90 1.00 0.01 0.01

c2 0.00 0.48 0.06 0.81 0.21 0.87 ÿ0.01 0.01

5-Channel

hm 0.01 0.39 0.02 0.38 0.38 0.72 ÿ0.05 ÿ0.01

c1 0.00 0.15 0.00 0.06 0.24 0.87 ÿ0.05 ÿ0.02

c2 0.08 0.77 0.02 0.62 0.49 0.98 ÿ0.02 0.00

6-Channel

hm 0.60 1.00 0.32 0.33 0.39 0.94 0.03 0.02

c1 0.60 0.60 0.07 0.39 0.79 0.94 ÿ0.02 ÿ0.01

c2 0.04 0.04 0.01 0.11 0.37 0.61 0.15 0.01

7-Channel

hm 0.00 0.87 0.01 0.50 0.29 0.75 ÿ0.03 ÿ0.02

c1 0.01 0.24 0.00 0.31 0.13 0.77 ÿ0.05 ÿ0.03

c2 0.54 0.24 0.98 0.57 0.26 0.90 0.00 ÿ0.00

1 During the revision process, experts of the field kindly pointed to

us that for paintings 1–3, the artist had first painted the whole canvas,

while this turns out not to be the case for paintings 4–7. Moreover,

colors used in paintings 4–7 are much lighter and clearer than those in

paintings 1–3. These suggest that for paintings 1–3 the analyzed

textures correspond to the hand of the artist, while for paintings 4–7,

they rather result from a mixture on canvas textures and artist hand

style, hence explaining less satisfactory results. Analysis that removing

the canvas effect is currently under investigations. These spontaneous

expert readers are gratefully acknowledged.



(MoMA, New York) and L. van Tilborgh (Van Gogh Museum,

Amsterdam). These challenges are described in detail at

www.digitalpaintinganalysis.org/Challenges.htm. In the pre-

sent contribution, we chose to illustrate the results obtained

on the dating and authenticity challenges, which are sum-

marized below.

4.2. Methodology

Because paintings naturally consist of different tex-

tures, they are not analyzed globally. Instead, fractal

property analysis is based on the manual selection of

small patches of N � N¼ 512� 512 pixels for each
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Fig. 7. Multifractal analysis. Three first lines: original (left) and replica (right). Last line: estimated multifractal attributes, original (black) and replica
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painting (roughly 5�5 cm2). The wavelet leader multi-

fractal formalism, described in Section 2, is applied to

each of the seven channels of the patches (RGB, HSL,

Intensity, cf. Section 3.3.1) and the corresponding multi-

fractal attributes zðqÞ,DðhÞ,hm,c1,c2 are computed. Results

shown here are obtained using the Daubechies wavelet

with Nc ¼ 2 and are consistent with those obtained when

Nc is increased. From preliminary analysis, we conclude

that g¼ 0:5 is sufficient to guarantee positive global

regularity for each painting (cf. Sections 2.1.2 and 2.5).

The choice of a patch for each single painting is based

on the following criteria:

� Homogeneity of texture: Patches are manually located

on pieces of texture that appear homogeneous for all

seven channels in order to limit the presence of large-

scale coherent structures and heterogeneity (such as

the arms of the windmill in f503, or a combination of

background and subject) which could potentially

obstruct the analysis. Note that different channels of

the same patch may reveal very different textures and

structures (cf. e.g., the Red Channel of painting f452 in

Fig. 9, and its Saturation Channel in Fig. 10). Moreover,

care has been taken to locate the patches on regions of

the painting which may be assumed to have been

subject to similar techniques, combinations of brushes,

etc. (e.g., the heads of flowers in a bouquet, or a part of

the background).

� Scaling and multifractal properties: The choice of patch

locations is guided by the quality of the observed

scaling properties, involving careful inspection of the

wavelet coefficient analog of Eq. (7) prior to fractional

integration and monitoring theoretical constraints on

parameter estimates (for instance, c2r0). Further-

more, estimates are required to be stable with respect

to small changes in the patch location.

The lower scanning resolution (as compared to that in

the Princeton Experiment) makes it more difficult to decide

accurately on the range of scales to be involved in estima-

tion. Nevertheless, scaling properties are overall found to

systematically hold for scales ranging from 0.5�0.5 mm2 to

5�5 mm2, for all paintings in both challenges, and may

hence again be tentatively related to brushstrokes.

While some of the paintings do not leave much free-

dom for locating a patch because of their limited size (e.g.,

f441 and s448, cf. Figs. 8 and 12, respectively), others do

(e.g., f297, f392 or f411). For these, different patches could

be selected for analysis. A careful inspection suggests that

the multifractal attributes obtained on different patches

from a single painting are consistent and remain within

the natural statistical fluctuation of the estimation proce-

dures. This is illustrated in Fig. 9, where analysis results

for three patches of painting f452 are compared.

4.3. Dating challenge

4.3.1. Description

Van Gogh, while in France, had two major periods of

creation: one in Paris (ending early 1888) and one later on

in the Provence. While a number of his paintings are

unambiguously attributed to the Paris or to the Provence

periods, the decision for other paintings of the master is still

under debate amongst experts and art historians. Investiga-

tions by art experts often rely on a number of material and

stylometric features (density of brush strokes, size or scale

of the brush strokes, thickness of contour lines, layers,

colors, etc.). In an attempt to investigate the potential

benefits of computer-based image processing procedures

for assisting art experts in painting analysis, two sets of

height paintings each from the Paris and Provence period

are given as benchmark references, together with three

paintings whose dates of creation are unknown. The low

resolution digitized copies of Van Gogh’s masterpieces in

Fig. 8. Dating challenge: Provence vs. Paris periods. Eight paintings from

the Paris period (top), eight paintings from the Provence period (mid-

dle), three paintings to be classified.



these three sets are shown in Fig. 8 (nomenclature corre-

sponds to the Van Gogh Museum catalog).

4.3.2. Results

In Fig. 10, logscale diagrams, scaling functions and multi-

fractal spectra are illustrated for the Saturation Channel of

one (arbitrarily selected) painting per class (Paris, Provence

and Unknown). They indicate that the painting from the

Provence period may show globally less regularity than the

Paris period.

In an attempt to further quantify this preliminary obser-

vation, we chose to analyze the reduced set c1,c2,hm of

wavelet leader basedmultifractal attribute estimates in more

detail. Because recourse to machine learning techniques

f452

700 1400 2100 2800

280

560

840

120

400

680

960

100 200 300 400 500

100

200

300

400

500

0.25 0.5 1 2 4 8
5

10

15

20

scale [mm]

0 5 10

0

5

10

q

(q)

0 0.5 1 1.5 2

0

0.5

1

1.5

2

h

D(h)

f452

700 1400 2100 2800

280

560

840

120

400

680

960

100 200 300 400 500

100

200

300

400

500

0.25 0.5 1 2 4 8
5

10

15

20

scale [mm]

0 5 10

0

5

10

q

(q)

0 0.5 1 1.5 2

0

0.5

1

1.5

2

h

D(h)

f452

700 1400 2100 2800

280

560

840

120

400

680

960

100 200 300 400 500

100

200

300

400

500

0.25 0.5 1 2 4 8
5

10

15

20

scale [mm]

0 5 10

0

5

10

q

(q)

0 0.5 1 1.5 2

0

0.5

1

1.5

2

h

D(h)

Fig. 9. Multiple patches from one single painting. The multifractal spectra computed on three different patches extracted from the Red Channel of Van

Gogh’s Painting f452 from the Paris period suggest that estimates from the three patches of visually different textures are consistent. The precise values

for the multifractal attribute triple ðc1 ,c2 ,hmÞ are (from left to right): ð0:93,ÿ0:051,0:050Þ, ð0:93,ÿ0:081,ÿ0:051Þ, ð0:96,ÿ0:076,ÿ0:007Þ.



(such as support vector machines) does not make any sense

for the 19(¼8þ8þ3) subjects living in a 42(¼7n3n2)

dimensional space, we instead manually inspect a large

collection of 2D projections of this space. The most convin-

cing discrimination is obtained with parameter hm computed

from the Red-Channel and c1 from the Saturation-Channel,

the latter being particularly discriminant (cf. Fig. 11). Inter-

estingly, art historians use saturation in colors one of the

features to discriminate the Paris and Provence periods

(cf. www.digitalpaintinganalysis.org/Challenges.htm). Note,

however, that multifractal analysis does not discriminate

levels of saturation but instead the regularity of the texture

in the Saturation-Channel. This projection supports the above

observation: textures in Van Gogh’s during the Paris period

appear to be more regular, which may indicate more

regularity in the brushstrokes themselves. These results are
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Fig. 10. Dating challenge: Paris vs. Provence periods. Multifractal spectra computed on patches extracted from the Saturation Channel of Van Gogh’s

Paintings: Paris period (f452, left), Provence period (f475, right), to be classified (f605, middle).



consistent with findings in [12], where larger wavelet

coefficients at fine scales (hence more irregularity) are

observed for non-Van Gogh’s than for Van Gogh’s paintings.

Also, the results obtained here suggest that paintings f386

and f605 are closer to the Provence period cluster (red), while

f572 is closer to the Paris period cluster (blue). However, it

must be noted that when relying on fractal properties,

painting f411 from the Provence period would be incorrectly

attributed to the Paris period.

4.4. Authenticity challenge

4.4.1. Description

In this challenge, digitized copies of four paintings by

Van Gogh and four paintings by his contemporaries are

provided, along with one painting that is labelled

unknown and proposed for classification. The latter paint-

ing is a known contemporary copy of an original Van

Gogh painting. However, the original Van Gogh is not in

the available data set, hence preventing us from perform-

ing comparisons similar to those conducted on the Prin-

ceton experiment data. Experts state that the colors of the

copy have remained closer to the original colors than

those of the painting by the master. Essentially, their

distinction between true Van Gogh’s and non-Van Gogh’s

is based on a careful analysis of Van Gogh’s brushstroke

referred to as vigourous, with non-overlapping and neatly

defined strokes, as opposed to those of his contemporaries

which are found to be either too academic and regular, or

too messy and irregular (cf. www.digitalpaintinganalysis.

org/Challenges.htm see also [13,24], where brushwork

texture and numerical brushstroke features are employed

for authentificating Van Gogh’s paintings).

The challenge consists in devising numerical features

which distinguish the two test sets and which enable to

associate the test painting with one or the other group.

The nine paintings are shown in Fig. 12.

4.4.2. Results

Fig. 13 plots logscale diagrams, scaling functions and

multifractal spectra obtained on the Red Channel of one

arbitrarily selected painting for each of the reference classes,

and of the painting whose label is to be determined.

A careful inspection of the multifractal spectra leads us

to suggest that Van Gogh’s paintings tend to be globally

more regular. Systematic estimation of the hm,c1,c2 para-

meters on the seven channels of the nine paintings and

manual analysis and 2D projections, as described for the

dating challenge, reveal that the Saturation and Red

Channels are most discriminant between the two sets.

This analysis indicates that the non-Van Gogh paintings

have smaller values for hm and c1 and hence appear to be

overall more irregular (cf. Fig. 14). These 2D projections

also suggest, however, that the painting s506 under

investigation is closer to the authentic Van Gogh paintings

cluster than to the Non-Van Gogh cluster. This incorrectly

contradicts the experts’ decision, but may indicate that

the copyist was successful here in reproducing Van Gogh’s

brushstroke regularity.

5. Conclusions and perspectives

This contribution illustrates the potential and possibi-

lities of wavelet leader based multifractal analysis of

digitized paintings for assisting art investigation.

At the technical level, this work shows that for well

assessing the relevance of fractal properties, as well as the

range of scales where they can be regarded as relevant,

classical wavelet coefficients must be used to comple-

ment the wavelet leader multifractal formalism. Also,

multifractal analysis cannot be applied blindly to arbi-

trary pieces of images or paintings since they usually

−0.4 −0.2 0 0.2 0.4 0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

f297

f360

f374

f469

f524

f358 f371

f452

f392

f415

f451

f607

f411

f441

f475
f538

f572

f386

f605

hmin R

c
1
 S

Fig. 11. Dating challenge: Paris vs. Provence periods. Plot of hm com-

puted from the Red Channel vs. c1 from the Saturation Channel,

suggesting that paintings f386 and f605 are closer to the Provence

period cluster (red), while painting f572 is closer to the Paris period

cluster (blue). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Fig. 12. Authenticity challenge: Van Gogh’s vs. non-Van Gogh’s paint-
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consist of collections of different textures and/or of different

objects and subjects. Instead, a meaningful analysis requires

the careful selection of patches consisting of homogeneous

textures. This is where interventions of art experts could

prove useful: they may be able to identify specific patches

which are of particular interest with respect to the techni-

ques used, the status of the colors, the specificity of a

particular part of a painting, etc.

At the painting level, it is worth mentioning that the

range of scales where fractal properties were found to

hold (from 0.5�0.5 mm2 to 5�5 mm2) are identical for

the Princeton experiment and for Van Gogh’s paintings

(despite being scanned at different resolutions). This

result has been obtained independently for the two data

sets by different authors of this work. Again, interpreta-

tion of why this range of scales carries fractal properties
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in painting would benefit significantly from close inter-

action with art experts. Also, given a specific interest or

question, art experts could contribute considerably to the

type of analysis proposed here by suggesting which patch

of a painting should be analyzed in priority.

The results obtained in this contribution encouragingly

demonstrating that multifractal analysis enables the mea-

surement of features which fruitfully characterize painting

texture. These first results could be further complemented

and improved, by incorporating a larger number and

different types of attribute estimates in the analysis. In this

perspective, measures of anisotropy are currently being

investigated.

Again, the analysis tools put forward here in no way

intend to replace the art historian of expert in an attribution

decision or else. Instead, it aims at providing themwith a set

of attributes computed in an automated, controlled and

reproducible manner that will contribute as one of the

pieces in the puzzle leading to an attribution decision.

Hopefully, results such as those obtained here will help to

promote existing close interactions between image proces-

sing researchers and art experts and encourage new ones.

Such exchanges could enable the creation of further data sets

for which both art expertise and technical issues (such as

scanning resolution and techniques) are well documented,

as well as the constitution of real interdisciplinary teams

within which art experts would propose questions for which

image processing could help to formulate answers.
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