

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.sigpro.2012.03.007

http://hdl.handle.net/10251/44996

Elsevier

Ferrer Contreras, M.; Gonzalez, A.; Diego Antón, MD.; Piñero Sipán, MG. (2012). Fast
exact variable order affine projection algorithm. Signal Processing. 92(9):2308-2314.
doi:10.1016/j.sigpro.2012.03.007.

Fast exact variable order affine projection algorithm

Miguel Ferrer∗, Alberto Gonzalez, Maria de Diego, Gema Piñero

Audio and Communications Signal Processing Group (GTAC)
Institute of Telecommunications and Multimedia Applications (iTEAM)

Universitat Politècnica de València

Abstract

Variable order affine projection algorithms have been recently presented to

be used when not only the convergence speed of the algorithm has to be

adjusted but also its computational cost and its final residual error. These

kind of affine projection (AP) algorithms improve the standard AP algorithm

performance at steady state by reducing the residual mean square error.

Furthermore these algorithms optimize computational cost by dynamically

adjusting their projection order to convergence speed requirements.

The main cost of the standard AP algorithm is due to the matrix inver-

sion that appears in the coefficient update equation. Most efforts to decrease

the computational cost of these algorithms have focused on the optimization

of this matrix inversion. This paper deals with optimization of the compu-

tational cost of variable order AP algorithms by recursive calculation of the

inverse signal matrix. Thus, a fast exact variable order AP algorithm is pro-

posed. Exact iterative expressions to calculate the inverse matrix when the

algorithm projection order either increases or decreases are incorporated into

✩Partially supported by TEC2009-13741, PROMETEO 2009/0013, GV/2010/027,
ACOMP/2010/006 and UPV PAID-06-09.

∗e-mail: mferrer@dcom.upv.es, Tel.: +34-96-3877007-88272, Fax: +34-96-3877309

Preprint submitted to Signal Processing December 13, 2011

a variable order AP algorithm leading to a reduced complexity implementa-

tion. The simulation results show the proposed algorithm performs similarly

to the variable order AP algorithms and it has a lower computational com-

plexity.

Keywords: Adaptive filters, Affine projection algorithm, Fast algorithm,

Computational complexity, Efficient matrix inversion.

1. Introduction

The affine projection (AP) algorithm [1][2] shows better convergence

speed than the least mean square (LMS) algorithm [3] and it is simple, robust

and stable. The efficiency of AP algorithms has been reported in a variety

of applications, such as active noise control [4], acoustic equalization [5] and

echo cancellation [6]. The behavior of the AP is mainly determined by a

parameter called projection order, N . The AP algorithm behaves similarly

to the normalized LMS algorithm [3] when N = 1 and to the recursive least

squares (RLS) adaptive algorithm [7] when N increases. Therefore the AP

shows slow convergence and little residual error when N is small, and fast

convergence and higher residual error for large values of N . Variable step-size

affine projection algorithms have already been proposed [8]-[11] to overcome

this duality and achieve better performance in steady state without penal-

izing the speed of adaptation of the algorithm. Although these strategies

achieve better final error in steady state, their computational cost remains

invariant throughout algorithm execution and depends mainly on its pro-

jection order. A possible improvement to overcome these drawbacks is the

adaptation of the projection order in response to algorithm performance.

2

Thus, some variable order AP algorithms [12]-[14], have been developed re-

cently in order to dynamically adjust their projection order to convergence

speed needs, and decrease the computational cost of the algorithm and its

residual error. However this promising improvement of the AP algorithm has

still some performance points to be analyzed such as its computational cost,

which involves developing its fast versions.

Despite its computational cost, the AP algorithm can be considered good

enough [15] in comparison with other algorithms that exhibit similar perfor-

mance like the RLS algorithm. Many efforts have been made to decrease its

computational cost as described in [16]-[21]. However the strategies based

on approximations or models used to decrease the computational cost of

the algorithm can slightly worsen the algorithm performance in some cases.

Therefore, this paper avoids these methods and focuses on the efficient calcu-

lation of the inverse signal matrix that appears within the algorithm update

equations of all the variable order AP algorithms. By using this method, ef-

ficient approaches are obtained that behave exactly like the original non fast

versions when an accurate initial value of the inverse matrix is provided and

show a significant reduction of their computational cost. Variable order AP

algorithms can eventually change their projection order between iterations,

therefore a recursive method to calculate the inverse matrix has to consider

the inverse matrix updates from a previous inverse matrix of different size.

Among the different variable order AP algorithms available and to illustrate

the performance of the efficient method introduced, the authors have used

the variable order AP (VAP) algorithm. The application of the fast recursive

method to the VAP provides the fast exact variable order AP (FExVAP).

3

On the other hand, the efficient computation of the matrix inversion can be

applied to other variable order AP algorithms such as the evolving order AP

(E-AP) algorithm [13]. Thus, some simulation results of the E-AP and of

its fast exact approach, the FExE-AP, which uses the proposed fast exact

inversion method, have been also carried out.

Section 2 briefly describes the AP algorithm and the foundation of its

variable order versions, and a recursive method to calculate the inverse sig-

nal matrix from its previous values for the VAP algorithm is developed in

Section 3. The simulation results are presented in Section 4, comparing the

VAP, the E-AP, their fast exact approaches (FExVAP and FExE-AP, respec-

tively) and the original AP algorithm. The reduction of the computational

cost in terms of number of multiplications is also presented in Section 4.

Finally conclusions are summarized in Section 5.

2. The variable order affine projection algorithm

The AP algorithm attempts to generate a version of an unknown sig-

nal, d(n), by filtering a reference signal, x(n), correlated with d(n). Fig. 1

illustrates an example of system identification where x(n) and d(n) are re-

lated through a transversal adaptive filter. The adaptive filter coefficients

are updated by the following equation [22] for a projection order N ,

wL(n) = wL(n− 1) + µAT (n)[A(n)AT (n) + δI]−1eN(n) (1)

where I represents the N × N identity matrix, wL(n) is a vector that com-

prises the L adaptive filter coefficients and matrix A(n) of N × L size is

defined as

AT (n) = [xL(n) xL(n− 1) ... xL(n−N + 1)], (2)

4

with xT
L(n) = [x(n) x(n− 1) ... x(n− L + 1)] and eN(n) is given by

eN(n) = dN(n)−A(n)wL(n− 1), (3)

with

dT
N(n) = [d(n) d(n− 1) ... d(n−N + 1)]. (4)

Constants µ and δ are called, respectively, the convergence and the regular-

ization parameters [22].

Variable order AP algorithms use the update equation (1) but their pro-

jection order can change between iterations. This projection order varies

in order to speed up convergence speed and minimize computational cost

and residual error depending on certain conditions that can differ slightly

between different variable order AP approaches. For instance, the evolving

order AP described in [13] uses the instantaneous value of the residual error

signal power to update the projection order and keep a single µ. Even though

this lead to improvement due to the change in projection order, as a general

rule, it does not achieve optimum residual error in the steady state since this

residual error depends on both µ and the projection order. Alternatively,

the AP approach used in this paper and named variable order AP (VAP),

changes the projection order when the, also variable, convergence parame-

ter µ exceeds given maximum or minimum values. Therefore, the algorithm

described (VAP) changes both the step-size parameter and the projection

order (a similar AP algorithm for echo cancellation that changes also both

5

parameters is presented in [23]). Thus,

N(n + 1) =





min {N(n) + 1, Nmax} , µ(n) > µmax · µNup

N(n), other

max {N(n)− 1, 1} , µ(n) < µmax · µNdown,

(5)

where Nmax is the higher projection order and µNup and µNdown the maxi-

mum and minimum thresholds relative to µmax. Due to the simplicity of the

algorithm, these parameters are selected depending on the objectives. In this

way, if the goal is to perform well at transient state we need a low µNdown

value, whereas a low µNup value provides good tracking capabilities. On the

other hand, high threshold values are required to obtain a good steady-state

behavior. The maximum step-size parameter µmax in (5) is chosen to guar-

antee both fast convergence speed and filter stability and ideally should be

less than 1 [24][25].

The variation rule for the convergence parameter can be chosen by at-

tempting to ensure that the mean square deviation of the filter weights under-

goes the largest decrease between algorithm iterations and it is given by [8]

µ(n) = µmax
‖p(n)‖2

‖p(n)‖2 + C
, (6)

where p(n) is an estimation of the mean value of AT (n)[A(n)AT (n)+δI]−1eN(n),

which is obtained from an exponential weighting of its instantaneous value

as

p(n) = αp(n− 1) + (1− α)AT (n)[A(n)AT (n) + δI]−1eN(n) (7)

with 0 < α < 1, and C is a positive parameter that depends on the algorithm

projection order. µ(n) is equivalent to the constant µ parameter in (1).

6

Moreover, inversion of the RN(n) matrix, being RN(n) = A(n)AT (n) +

δI, requires O(N3/2) multiplications, which can represent the costlier part

of the algorithm. The size of this matrix changes dynamically in variable

order AP algorithms. There are methods to recursively calculate this matrix

inversion with a much lower cost but they have to be extended to the variable

order approach, which means considering cases when the projection order

either increases or decreases between algorithm iterations.

3. Efficient matrix inversion

As noted above, the costlier computational cost of the AP algorithm

is initially due to the computation of the matrix RN(n) and its inversion,

which is given by LN2 +O(N3/2) multiplications. However, A(n)AT (n) can

be computed recursively as

A(n)AT (n) = M(n) = M(n−1)+xN(n)xT
N(n)−xN(n−L)xT

N(n−L), (8)

using 2N2 multiplications, thus this cost is reduced to 2N2 + O(N3/2) mul-

tiplications. In order to further reduce this computational cost, recursive

algorithms to calculate R−1
N (n) from the matrix in the previous iterations,

R−1
N (n− 1), can be used. Nevertheless, recursive algorithms to calculate ei-

ther R−1
N−1(n) or R−1

N+1(n) from the previous values with different projection

order, that is from R−1
N (n−1), also have to be developed in order to deal with

the recent variable order versions of the AP algorithm. In Algorithm 1 the

different cases discussed below for the FExVAP algorithm are summarized.

7

3.1. Iterative calculation of R−1
N (n) from R−1

N (n− 1)

The iterative calculation of R−1
N (n) from R−1

N (n − 1) is similar to the

matrix inversion used in the sliding window RLS algorithm [7]. An equivalent

method can be found in [26] or [27].

From (8) the following equations can be given

RN(n) = RN(n− 1) + xN(n)xT
N(n)− xN(n− L)xT

N(n− L)

= QN(n)− xN(n− L)xT
N(n− L)

(9)

with

QN(n) = RN(n− 1) + xN(n)xT
N(n), (10)

and xT
N(n) = [x(n) x(n− 1) ... x(n−N + 1)].

We can carry out the following matrix identification in (9)

1. Γ = RN(n)

2. Θ−1 = QN(n)

3. Φ = xN(n)

4. Ψ = −1

and then apply the matrix inversion lemma (see Appendix A) to calculate

R−1
N (n) as

R−1
N (n) = Q−1

N (n) + β(n)[1− xT
N(n− L)β(n)]−1βT (n), (11)

where β(n) = Q−1
N (n)xN(n− L).

The matrix inversion lemma can be used again to calculate Q−1
N (n), using

in (10)

1. Γ = QN(n)

8

2. Θ−1 = RN(n− 1)

3. Φ = xN(n)

4. Ψ = 1

Thus

Q−1
N (n) = R−1

N (n− 1)−α1(n)[1 + xT
N(n)α1(n)]−1αT

1 (n) (12)

where α1(n) = R−1
N (n− 1)xN(n). Therefore, a recursive algorithm to calcu-

late R−1
N (n) from R−1

N (n− 1) is finally summarized in Algorithm 1.

In this way 4(N2 +N) multiplications are needed to obtain R−1
N (n) using

the above fast exact strategy, thereby reducing the original cost mainly for

high projection orders.

3.2. Iterative calculation of R−1
N−1(n) from R−1

N (n− 1)

This calculation is made in two steps. First R−1
N (n) from R−1

N (n − 1)

is calculated by using the matrix inversion lemma described in Section 3.1.

Then, a simple relation allow to calculate R−1
N−1(n) from R−1

N (n). To achieve

this, matrix RN(n) can be rewritten as

RN(n) =




RN−1(n) rN−1(n)

rT
N−1(n) rN−1(n)


 , (13)

where rN−1(n) and rN−1(n) can be also recursively calculated by

rN−1(n) = rN−1(n−1)+xN−1(n)x(n−N +1)−xN−1(n−L)x(n−N−L+1),

(14)

and

rN−1(n) = rN−1(n− 1) + x2(n−N + 1)− x2(n−N − L + 1). (15)

9

From (B.1) in Appendix B and by using the following identification

statements,

1. A11 = RN−1(n)

2. A12 = rN−1(n)

3. A21 = rT
N−1(n)

4. A22 = rN−1(n)

5. F−1
11 = (R)−1

N (n), which comprises N − 1 × N − 1 upper left elements

of R−1
N (n),

we can rewrite the inverse of (13) as

R−1
N (n)

=




(R)−1
N (n) −(R)−1

N (n)rN−1(n)r−1
N−1(n)

−r−1
N−1(n)rT

N−1(n)(R)−1
N (n) r−1

N−1(n) + r−1
N−1(n)rT

N−1(n)(R)−1
N (n)rN−1(n)r−1

N−1(n)


 .

(16)

Note that R−1
N (n) has been previously calculated as in (11) by using the

matrix inversion lemma.

Finally, the matrix inversion lemma can be applied again to calculate

R−1
N−1(n) from (R)−1

N (n) and the previously calculated values of rN−1(n) and

rN−1(n). This method is described as follows:

1. α2(n) = (R)−1
N (n)rN−1(n)

2. R−1
N−1(n) = (R)−1

N (n)−α2(n)[rN−1(n) + rT
N−1(n)α2(n)]−1αT

2 (n).

The number of multiplications needed to calculate matrix R−1
N−1(n) from

R−1
N (n− 1) includes: the computation of R−1

N (n), which has a cost of 4(N +

N2) multiplications, the calculation of rN−1(n) from (14) and rN−1(n) from (15),

10

which requires 2N multiplications, and finally the application of the matrix

inversion lemma with a cost of 2N2 − 2N multiplications. Therefore, the

total number of multiplications required is 6N2 + 4N .

3.3. Iterative calculation of R−1
N+1(n) from R−1

N (n− 1)

We can consider in this case that

RN+1(n) =




rN(n) rT
N(n)

rN(n) RN(n− 1)


 (17)

where rN(n) and rN(n) can be recursively calculated as

rN(n) = rN(n− 1) + x2(n)− x2(n− L) (18)

and

rN(n) = rN(n− 1) + xN(n− 1)x(n)− xN(n− L− 1)x(n− L). (19)

Let us define α3(n) = R−1
N (n− 1)rN(n) and, making use again of expres-

sions (B.1) and (B.2), it follows that

a(n) = rN(n)−αT
3 (n)rN(n). (20)

Since R−1
N (n− 1) is a symmetric matrix, (17) can be rewritten as

R−1
N+1(n) =




1/a(n) −αT
3 (n)/a(n)

−α3(n)/a(n) R−1
N (n− 1) + α3(n)αT

3 (n)/a(n)




=




0 0T

0 R−1
N (n− 1)


 + α̂3(n)α̂T

3 (n)/a(n),

(21)

11

with α̂3(n) = [1,−αT
3 (n)]T and 0 is a zero column vector of size N .

Thus, it can be calculated R−1
N+1(n) from R−1

N (n− 1) as follows:

1. rN(n) = rN(n− 1) + xN(n− 1)x(n)− xN(n− L− 1)x(n− L)

2. α3(n) = R−1
N (n− 1)rN(n)

3. rN(n) = rN(n− 1) + x2(n)− x2(n− L)

4. a(n) = rN(n)−αT
3 (n)rN(n)

5. α̂3(n) = [1,−α3
T (n)]T

6. R−1
N+1(n) =




0 0T

0 R−1
N (n− 1)


 + α̂(n)α̂T (n)/a(n)

Finally, the total number of multiplications required reaches 2N2+6N+4.

4. Simulation Results

As previously described, the exact inverse matrices required by variable

order AP algorithms can be recursively calculated with a low computational

cost. These recursive calculations give an exact inverse when the initial values

of the inverses are accurate enough. For this reason, the algorithm must

start with a setup period of N · L iterations before beginning the recursive

calculations. Under these conditions the behavior of the FExVAP algorithm

is identical to the VAP algorithm apart from, obviously, its computational

cost.

In order to test the performance of the proposed FExVAP algorithm

compared to the VAP algorithm and the AP algorithm with N = 10, several

12

simulations have been carried out. In addition, simulation results of the E-

AP and its computationally efficient approach, the FExE-AP, have been also

carried out and compared with the algorithms previously mentioned. The

learning curves of the algorithms are calculated by 10log

[
e2(n)

d2(n)

]
. These

curves as well as the number of multiplications per iteration required have

been calculated and shown in Figs. 2 and 3. The maximum value of the pro-

jection order was N = 10, and µNup = 1/2 and µNdown = 1/4 for the variable

AP algorithms. Simulations were performed using the basic adaptive filter-

ing scheme shown in Fig. 1 where d(n) was chosen as x(n) filtered through a

finite impulse response filter (P) of 20 randomly chosen coefficients and the

input signal x(n) was a zero mean Gaussian random signal function. The size

of the adaptive filter was fixed to 19 coefficients thus a non zero residual error

was always assured. Fig. 2 illustrates the algorithm behavior when the filter

used to generate the desired signal, d(n), remains invariable. Learning curves

depicted in Fig. 2 have been obtained by averaging over 3, 000 independent

trials of 10, 000 iterations (but only the first 1, 000 iterations are shown).

On the other hand, performance of the algorithms when the filter changes

during the simulations is shown in Figs. 4 and 5. In this case, learning curves

in Fig. 4 have been obtained from 3, 000 independent realizations of 30, 000

iterations.

Figures 2-5 show that the VAP and its fast version exhibit the same

learning curves and both outperform the AP algorithm (N = 10) in terms of

multiplications required and final residual error. Furthermore, the FExVAP

algorithm requires less multiplications than the original VAP, mainly for

high projection orders. Regarding the E-AP, its efficient version (FExE-

13

AP) provides the same learning curve and it falls close to the VAP curve

with a slightly poorer performance in terms of convergence speed and final

residual error. It has to be noted that the AP algorithm used the maximum

allowed projection order in these simulations, N = 10, therefore the speed

of convergence of the AP algorithm was the maximum available. The VAP

algorithm behaves as fast as the AP algorithm during transient periods since

it is able to dynamically adjust its projection order. The comparative of the

total number of multiplications of the five algorithms is shown in Table 1.

These values comprises the multiplications needed to carry out the total

number of iterations of each algorithm (10, 000 iterations for stationary and

30, 000 for non stationary environments). It can be seen that the FExVAP

algorithm needs less multiplications than the VAP as well as the FExE-AP

needs less multiplications than the E-AP. The computational cost reduction

is more significant when the algorithm consumes more time using higher

orders.

5. Conclusions

An exact and computationally efficient method to calculate the inverse

signal matrices involved in the AP and variable order AP algorithms have

been described and validated by simulations. Thus a fast exact variable order

AP (FExVAP) algorithm has been developed. This algorithm outperforms

the AP algorithm in terms of computational complexity, convergence speed

and final residual error, and outperforms the VAP in number of multiplica-

tions mainly when the algorithm is working at high projection orders, which

is frequent in non stationary environments. The developed recursive calcu-

14

lation of the inverse matrices can be used when N → N , N → N + 1 or

N → N − 1 between successive algorithm iterations.

References

[1] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an

orthogonal projection to an affine subspace and its properties,” Proc.

of the Electron. and Communic. in Japan, vol. J67-A, pp. 126–132, Feb.

1984.

[2] A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley, New York,

2003.

[3] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood

Cliffs, N.J: Prentice-Hall, 1985.

[4] A. Carini, and G. Sicuranza, “Transient and steady-state analysis of

filtered-x affine projection algorithm,” IEEE Trans. on Signal Process.,

vol. 54, no. 2, pp. 665–678, Feb. 2006.

[5] M. Bouchard, “Multichannel affine and fast affine projection algorithms

for active noise control and acoustic equalization systems,” IEEE Trans.

on Speech and Audio Proces., vol. 11, no. 1, pp. 54–60, Jan. 2003.

[6] J. Benesty, P. Duhamel, and Y. Granier, “A multichannel affine pro-

jection algorithm with applications to multichannel acoustic echo can-

cellation,” IEEE Signal Process. Lett., vol. 3, no. 2, pp. 35–37, Feb.

1996.

15

[7] G. Carayannis, D. G. Manolakis, and N. Kalouptsidis, “A fast sequential

algorithm for least-squares filtering and prediction,” IEEE Trans. on

Acoustics, Speech and Signal Process., vol. 31, pp. 1394–1402, 1983.

[8] H. C.-Shin, A. H. Sayed and W.-J. Song “Variable step-size NLMS and

affine projection algorithms,” IEEE Signal Process. Lett., vol. 11, no. 2,

pp. 132–135, Feb. 2004.

[9] L. Liu, M. Fukumoto, S. Saiki, and S. Zhang, “A variable step-size

proportionate affine projection algorithm for identification of sparse im-

pulse response,” Eurasip J. on Advances in Signal Process., pp. 1–10,

2009.

[10] L. R. Vega, H. Rey, and J. Benesty, “A robust variable step-size affine

projection algorithm,” Signal Processing, vol. 90, no. 9, pp. 2806–2810,

Sep. 2010.

[11] K. Mayyas, “A variable step-size affine projection algorithm,” Digital

Signal Processing, vol. 20, no. 2, pp. 502–510, Mar. 2010.

[12] S. J. Kong, K. Y. Hwang and W. J. Song, “An affine projection algo-

rithm with dynamic selection of input vectors,” IEEE Signal Process.

Lett., vol. 14, no. 8, pp. 529–532, Aug. 2007.

[13] S.-E. Kim, S.-J. Kong and W.-J. Song, “An affine projection algorithm

with evolving order,” IEEE Signal Process. Lett., vol. 16, no. 11, pp.

937–940, Nov. 2009.

[14] N. W. Kong J. W. Shin and P. G. Park, “A two-stage affine projection

16

algorithm with mean square error matching step sizes,” Signal Process-

ing, vol. 91, no. 11, pp. 2639–2646, Nov. 2011.

[15] A. Gonzalez, M. Ferrer, M. de Diego, G. Piñero, and J. J. Lopez, “Prac-

tical implementation of multichannel adaptive filters based on FTF and

AP algorithms for active control,” Int. J. Adapt. Control Signal Process.,

vol. 19, pp. 89–105, 2005.

[16] S. L. Gay and S. Tavathia, “The fast affine projection algorithm,” Proc.

IEEE Int. Conf. Acoustics, Speech, Signal Process. (ICASSP), vol. 5,

pp. 3023–3026, May 1995, Detroit, MI.

[17] M. Tanaka, Y. Kaneda, S. Makino and J. Kojima, “Fast projection al-

gorithm and its step size control,” Proc. IEEE Int. Conf. Acoustics,

Speech, Signal Process.(ICASSP), vol. 2, pp. 945–948 May 1995.

[18] H. Ding, “A stable fast affine projection adaptation algorithm suitable

for low-cost processors,” Proc. IEEE Int. Conf. Acoustics, Speech, Signal

Process.(ICASSP), vol. 1, pp. 360–363 Aug. 2000.

[19] Y. Zakharov, “Low complexity implementation of the affine projection

algorithm,” IEEE Signal Process. Lett., vol. 15, pp. 557-560, 2008.

[20] F. Albu and H.K. Kwan, “Fast block exact Gauss-Seidel pseudo affine

projection algorithm”, IEE Elect. Lett., Vol. 40, Issue:22, pp. 1451-1453,

Oct. 2004.

[21] M. C. Tsakiris and P. A. Naylor, “Fast exact affine projection algorithm

using displacement structure theory”, in Proc. of DSP 2009, pp. 69-74,

Jul. 2009.

17

[22] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Ed., Upper Saddle

River, NJ, fourth edition, 2002.

[23] F. Albu, C. Paleologu and J. Benesty, “A Variable Step Size Evolu-

tionary Affine Projection Algorithm,” Proc. IEEE Int. Conf. Acoustics,

Speech, Signal Process.(ICASSP), pp. 429-432, May 2011, Prague, Czech

Republic.

[24] C. Paleologu, J. Benesty, and S. Ciochina, “A variable step-size affine

projection algorithm designed for acoustic echo cancellation,” IEEE

Trans. Audio, Speech and Language Process., vol. 16, no. 8, pp. 1466–

1478, Nov. 2008.

[25] S. G. Sankaran and A. A. Louis Beex, “Convergence behavior of affine

projection algorithms,” IEEE Tran. on Signal Process., vol. 45, no. 4,

pp. 1086–1096, Apr. 2000.

[26] M. Ferrer, M. de Diego, A. Gonzalez, and G. Piñero, “Efficient im-

plementation of the affine projection algorithms for active noise control

aplication,” Proc. 12th European Signal Process. Conf. (EUSIPCO),

Sep. 2004.

[27] Y. Kaneda, M. Tanaka and J. Kojima, “An adaptive algorithm with

fast convergence for multi-input sound control”, Proc. Active 95, pp.

993-1004, Jul. 6-8, 1995.

18

Algorithm 1 FExVAP algorithm.
Input: Reference signal x(n), matrix R−1

N (n − 1), and vectors rN (n − 1) and

rN−1(n− 1)

Output: R−1
N (n) at time n

1: if N(n− 1) = N(n) then

2: Update the vectors xN (n) and xN (n− L)

3: α1(n) = R−1
N (n− 1)xN (n)

4: Q−1
N (n) = R−1

N (n− 1)−α1(n)αT
1 (n)/[1 + xT

N (n)α1(n)]

5: β(n) = Q−1
N (n)xN (n− L)

6: R−1
N (n) = Q−1

N (n) + β(n)βT (n)/[1− xT
N (n− L)β(n)]

7: else if N(n− 1) = N(n) + 1 then

8: Update the vectors xN−1(n) and xN−1(n− L)

9: Compute R−1
N (n) as in the case N(n− 1) = N(n)

10: Derive (R)−1
N (n) from R−1

N (n)

11: rN−1(n) = rN−1(n−1)+xN−1(n)x(n−N +1) −xN−1(n−L)x(n−N−L+1)

12: rN−1(n) = rN−1(n− 1) + x2(n−N + 1)− x2(n−N − L + 1)

13: α2(n) = (R)−1
N (n)rN−1(n)

14: R−1
N−1(n) = (R)−1

N (n)−α2(n)[rN−1(n) + rT
N−1(n)α2(n)]−1αT

2 (n)

15: else if N(n− 1) = N(n)− 1 then

16: Update the vectors xN (n) and xN (n− L− 1)

17: rN (n) = rN (n− 1) + xN (n− 1)x(n) −xN (n− L− 1)x(n− L)

18: α3(n) = R−1
N (n− 1)rN (n)

19: rN (n) = rN (n− 1) + x2(n)− x2(n− L)

20: a(n) = rN (n)−αT
3 (n)rN (n)

21: α̂3(n) = [1,−αT
3 (n)]T

22: R−1
N+1(n) =




0 0T

0 R−1
N (n− 1)


 + α̂3(n)α̂T

3 (n)/a(n)

23: end if
19

Algorithm Mult-1 Mult-2

AP (N=10) 29.47X1 5.12X2

VAP 1.30X1 1.88X2

FExVAP X1 X2

E-AP 1.64X1 1.93X2

FExE-AP 1.34X1 1.05X2

Table 1: Comparative total multiplications for stationary (Mult-1) and non stationary

(Mult-2) environments.

20

- P

-

"!

#Ã
+

+

−

?

6

d(n)

e(n)
-

¾

¢
¢

¢
¢̧

wL(n)

-

x(n)

AP

Algorithm

Figure 1: Basic adaptive system identification scheme.

21

0 200 400 600 800 1000
−25

−20

−15

−10

−5

0

5

Iteration number

dB

AP N=10

VAP & FExVAP

E−AP & FExE−AP

Figure 2: Learning curves for the AP (N=10), the VAP, the E-AP, and their fast exact

approaches (FExVAP and FExE-AP) for a stationary environment during the first 1000

iterations.

22

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

Iteration number

N
um

be
r

of
 m

ul
tip

lic
at

io
ns

VAP

AP N=10

FExVAP

(a)

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

Iteration number

N
um

be
r

of
 m

ul
tip

lic
at

io
ns

AP N=10

E−AP

FExE−AP

(b)

Figure 3: Number of multiplications per iteration for the AP (N=10), (a) the VAP and

the FExVAP, and (b) the E-AP and the FExE-AP in a stationary environment during the

first 1000 iterations.
23

0 0.5 1 1.5 2 2.5 3

x 10
4

−25

−20

−15

−10

−5

0

dB

 Iteration number

AP N=10 VAP & FExVAP

E−AP & FExE−AP

Figure 4: Learning curves for the AP (N=10), the VAP, the E-AP, and their fast exact

approaches (FExVAP and FExE-AP) in a non stationary environment.

24

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1000

2000

3000

4000

5000

6000

Iteration number

N
um

be
r

of
 m

ul
tip

lic
at

io
ns

VAP

FExVAP

AP N=10

(a)

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1000

2000

3000

4000

5000

6000

Iteration number

N
um

be
r

of
 m

ul
tip

lic
at

io
ns

AP N=10 E−AP

FExE−AP

(b)

Figure 5: Number of multiplications per iteration for the AP (N=10), (a) the VAP and

the FExVAP, and (b) the E-AP and the FExE-AP in a non stationary environment.25

Appendix A. Matrix inversion lemma

Let Γ and Θ be two positive definite N ×N matrices that fulfill, [22][27]

Γ = Θ−1 + ΦΨ−1ΦT , (A.1)

where Ψ is a M ×M positive definite matrix and Φ a N ×M matrix, then,

the inverse of Γ can be calculated as

Γ−1 = Θ−ΘΦ(Ψ + ΦTΘΦ)−1ΦTΘ. (A.2)

Appendix B. Matrix inversion in block form

It is known that an inverse matrix can be calculated from its parts by


 A11 A12

A21 A22



−1

=


 F−1

11 −F−1
11 A12A

−1
22

−A−1
22 A21F

−1
11 A−1

22 + A−1
22 A21F

−1
11 A12A

−1
22




(B.1)

with

F11 = A11 −A12A
−1
22 A21. (B.2)

26

