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Abstract

In this paper, the estimation of spatio-temporal patterns in the context of event-related potentials or evoked potentials studies in

neuroscience is addressed. The proposed framework (denoted xDAWN) has the advantage to require only the knowledge of the

time of stimuli onsets which are determined by the experimental setup. A theoretical analysis of the xDAWN framework shows that

it provides asymptotically optimal spatial filters under weak assumptions. The loss in signal to interference-plus-noise ratio due to

finite sample effect is calculated in a closed form at the first order of perturbation and is then validated by simulations. This last

result shows that the proposed method provides interesting performance and outperforms classical methods, such as independent

component analysis, in a wide range of situations. Moreover, the xDAWN algorithm has the property to be robust with respect to

the model parameter values. Finally, validations on real electro-encephalographic data confirm the good behavior of the proposed

xDAWN framework in the context of a P300 speller brain-computer interface.

Keywords: biomedical signal processing, spatial filtering, asymptotical performance analysis, brain-computer interface, P300

speller

1. Introduction

In cognitive neuroscience, it is useful to explore brain activ-

ity through evoked potentials (EP) or event-related potentials

(ERP) recorded by electro-encephalography (EEG), e.g. [1, 2].

For instance, ERPs allow to investigate i) the basic functional

pathways through early ERPs or EPs as auditory, visual or so-

matosensory networks, and ii) cognitive pathways through late

ERPs which are more related to memory tasks, execution of

attention and emotion. ERP experiments usually involve the

presentation of several kinds of stimuli and suppose that there

exists a typical spatio-temporal pattern which is time-locked to

each kind of stimuli (also called events).

In this context, EEG recorded signals do not only contain the

spatio-temporal patterns linked to the events but also ongoing

brain activity as well as muscular and/or ocular artifacts. As

a consequence, to ease the estimation of such spatio-temporal

patterns, one can repeat the experiments but this solution needs

to record more data. This method is based on the assumption

that the ERP waveforms are uncorrelated with the ongoing cere-

bral activity and with the artifacts: the ERP waveforms can thus

be estimated by a straightforward or a weighted average of the
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trials temporally aligned to the stimuli onsets [3]. The main

drawback of this approach is that it only exploits the temporal

aspect of the ERP. Another typical way to improve these esti-

mates is to enhance the ERPs by a spatial filtering of the chan-

nels. Several methods based on independent component analy-

sis (ICA) [4–8] have thus been proposed to enhance the signal-

to-noise ratio (SNR) or to remove the artifacts, e.g., [9–11]. In

addition, after the optimization stage, these methods need to

select the components (manually or using spatio-temporal prior

knowledge). However, these methods often fail to extract cor-

rectly the ERP component since in a real experiment, the ERP

components have a very small amplitude (about µV) compared

to ongoing cerebral activity (about mV) and to ocular artifacts

(about 100mV). These methods are mainly based on spatial

assumptions and do not exploit the temporal structures of the

ERPs.

To avoid such limitations, methods based on a spatio-

temporal model have been developed. For instance, common

spatial pattern (CSP) [12, 13] or Fisher’s linear discriminant

analysis (LDA) [14] are two classical methods to estimate spa-

tial filters. CSP aims at simultaneously maximizing the power

of one ERP and minimizing the power the other ERPs: it tries to

maximize the signal-to-interference ratio (SIR). LDA is based

on the maximization of the distance between two classes while

it minimizes the variance within each class. More recently, sev-

eral methods (e.g., [15–17]) investigate more complex spatio-

temporal models. For instance in [16], a regular parametric

waveform of the ERP is imposed to estimate the spatial fil-

ters. In [17], a direct estimation of the temporal waveform

and the related spatial distribution without parameter selection
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has been proposed. However, all these methods are not able

to deal with ERP waveforms that can temporally overlap each

others with correlation, within one kind of ERPs and/or be-

tween several kinds of ERPs. In our previous studies [18, 19],

the xDAWN algorithm has been introduced. It aims at esti-

mating jointly the temporal signature and the spatial distribu-

tion of the ERPs, as well as the spatial filters that provide the

largest signal-to-signal-plus-noise ratio (SSNR). The main ad-

vantage of this framework is its absence of assumptions either

on the temporal waveform and the spatial distribution. The only

prior knowledge is the onsets of the stimuli used in the exper-

iment. In this contribution, a theoretical analysis of xDAWN

framework is derived: it shows that the proposed method i) is

asymptotically optimal and ii) has a good behavior, at the first

order of perturbations, by substituting exact parameter values

by estimated ones from the data. In addition, since no particu-

lar assumptions is imposed, the proposed xDAWN framework

can be easily adopted for solving similar estimation problems if

the proposed model is verified.

The rest of this paper is organized as follows. Section 2 sum-

marizes the xDAWN framework. The theoretical analysis of its

optimality and the asymptotical performance analysis are de-

rived in Section 3. Section 4 investigates the links between

xDAWN algorithm and other classical methods to estimate spa-

tial filters in an ERP paradigm. Section 5 presents numerical

experiments and validation on real EEG data, and Section 6

concludes this paper.

2. xDAWN spatial filters

In this section, the proposed xDAWN framework is briefly

summarized.

2.1. Model

In the context of ERPs analysis, which supposes that there

exists a typical spatio-temporal pattern time-locked with the

stimuli, EEG signals x(k) ∈ RNs recorded from Ns sensors can

be modeled as the superposition of the Ne signals related to

each of the Ne classes of events (i.e. kinds of stimulations)

and ongoing brain activity as well as ocular and/or muscular

artifacts n(k) ∈ R
Ns . To take into account the variability of

each ERP in a particular class that can appear during the ex-

periment, one can assume that the j-th ERP of the i-th class,

denoted pi, j(k) ∈ R
Ns , is composed of a spatio-temporal pat-

tern, p
(c)

i
(k) ∈ RNs , common to all ERPs of the i-th class and of

a random spatio-temporal pattern p
(r)

i, j
(k) ∈ RNs different for all

ERPs of the i-th class:

pi, j(k) = p
(c)

i
(k) + p

(r)

i, j
(k).

As a consequence, one can model the raw EEG as

x(k) =

Ne
∑

i=1

Ki
∑

j=1

pi, j

(

k − τi( j)
)

+ n(k), (1)

where τi( j) is the index time of the j-th stimulus of the i-th

ERP class and Ki is the number of stimuli of the i-th ERP class.

Basic algebraic manipulations lead to rewrite the convolutional

model (1) in matrix notation as

X =

Ne
∑

i=1

Ki
∑

j=1

Di, jPi, j + N, (2)

where the k-th row of X ∈ R
Nt×Ns (resp. N) is x(k)T (resp.

n(k)T ) and Nt is the total number of time samples. ·T is the

transpose operator. Pi, j ∈ R
Mi×Ns is the j-th ERP spatio-

temporal pattern of the i-th class of stimuli whose k-th row

is pi, j(k)T . Di, j ∈ R
Nt×Mi is a Toeplitz matrix whose first col-

umn entries are null but Di, j(τi( j), 1) = 1. Mi is the num-

ber of time samples of the temporal pattern of i-th class of

ERPs. In (2),
∑

j Di, jPi, j thus models the signals related to the

i-th class of events. Since Pi, j is often a singular matrix (i.e.

of reduced rank), spatio-temporal patterns can be factorized as

Pi, j = Ai, jW
T
i, j

, where Ai, j ∈ R
Mi×Nsi is temporal pattern of re-

duced dimensions and Wi, j ∈ R
Ns×Nsi is its spatial distribution

over sensors, with Nsi
< Ns.

Moreover, one can assume that the differences between

spatio-temporal patterns Pi, j among the same class of ERP only

come from temporal differences and not from spatial ones1:

Pi, j =
(

A
(c)

i
+ A

(r)

i, j

)

WT
i ,

where A
(c)

i
∈ RMi×Nsi denotes the common temporal pattern and

A
(r)

i, j
∈ R

Mi×Nsi models the random temporal pattern. As a con-

sequence, model (2) can be expressed as

X =

Ne
∑

i=1

(

D
(c)

i
A

(c)

i
+ D

(r)

i
A

(r)

i

)

WT
i + N, (3)

where D
(c)

i
=

∑Ki

j=1
Di, j, D

(r)

i
= [Di,1, · · · ,Di,Ki

] and A
(r)

i
=

[A
(r)

i,1

T
, . . . , A

(r)

i,Ki

T
]T ∈ R

(MiKi)×Nsi are white centered Gaussian

random variables.

In ERP analysis, one is generally only interested in the com-

mon (averaged) temporal patterns A
(c)

i
.

2.2. xDAWN framework

xDAWN algorithm aims at estimating N fi spatial filters Ui ∈

R
Ns×N fi such that the SSNR of the i-th ERP after spatial filtering

is maximized

Ũi = arg max
U
ρ̃i(U), (4)

where the SSNR is defined by

ρ̃i(U) =
Tr

(

UT Σ̃iU
)

Tr
(

UT Σ̃XU
)
, (5)

with

Σ̃X =
E
[

XT X
]

Nt

, (6)

Σ̃i =
E
[

P
(c)T

i
D

(c)T

i
D

(c)

i
P

(c)

i

]

Nt

, (7)

1This is a reasonable assumption, since one can assume that the neurons

involved in a specific cognitive task remain the same during the experiment

while their temporal activity could be different.
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where P
(c)

i
= A

(c)

i
WT

i
. In practice since neither the actual

spatio-temporal patterns P
(c)

i
and nor the actual durations of

these patterns Mi are known, xDAWN algorithm maximizes the

estimated SSNR ρ̂i(U)

Ûi = arg max
U
ρ̂i(U), (8)

with

ρ̂i(U) =
Tr

(

UT Σ̂iU
)

Tr
(

UT Σ̂XU
)

, (9)

where the expectations in (6) and (7) are replaced by their

stochastic estimates

Σ̂X =
XT X

Nt

, (10)

Σ̂i =
P̂

(c)T

i
D̂

(c)T

i
D̂

(c)

i
P̂

(c)

i

Nt

. (11)

Moreover, in the latter expression, D̂
(c)

i
and P̂

(c)

i
are estimates

of these actual values. Like the actual matrix D
(c)

i
, D̂

(c)

i
is a

Toeplitz matrix defined from the set of stimuli onsets τi( j) and

the estimated durations of the ERP M̂i. P̂
(c)

i
is estimated in the

least mean square (LMS) sense by

P̂(c) △= arg min
P

∥

∥

∥X − D̂(c)P
∥

∥

∥

2

F
=

(

D̂(c)T

D̂(c))−1
D̂(c)T

X, (12)

where D̂(c) = [D̂
(c)

1
, · · · , D̂

(c)

Ne
] and P̂(c) = [P̂

(c)T

1
, · · · , P̂

(c)T

Ne
]T .

Consequently,

P̂
(c)

i
= B̂T

i X, (13)

with B̂T
i

the matrix of corresponding rows in (D̂(c)T

D̂(c))−1D̂(c)T

.

It is worth noting that B̂T
i

is different from (D̂
(c)T

i
D̂

(c)

i
)−1D̂

(c)T

i
as

soon as assumed ERPs of the i-th class overlap assumed ERPs

of at least one other class. The decomposition (A
(c)

i
,Wi) of

the spatio-temporal pattern P
(c)

i
and the associated spatial filters

which maximize the SSNR are given by the following theorem.

Theorem 1 (Estimations of A
(c)

i
, Wi and Ui). Let us define the

generalized eigenvalue decomposition (GEVD) [20] of the

pair
(

Σ̂i, Σ̂X

)

by

Σ̂iΘi = Σ̂XΘiΛi,

where Λi is the diagonal matrix of eigenvalues sorted in the

descending order λ
(i)

1
> · · · > λ

(i)

Ns
and related eigenvectors Θi =

[θ
(i)

1
, · · · , θ

(i)

Ns
] with ΘT

i
Σ̂XΘi = I, where I is the identity matrix.

The N f spatial filters Ûi which satisfy (8) are given through

the GEVD of the pair
(

Σ̂i, Σ̂X

)

by the N f eigenvectors associ-

ated with the N f largest eigenvalues

Ûi = [θ
(i)

1
, · · · , θ

(i)

N f
]. (14)

Moreover, the spatial distribution is given by

Ŵi = Σ̂X[θ
(i)

1
, · · · , θ

(i)

N f
] (15)

and the temporal pattern is obtained from

Â
(c)

i
= B̂T

i X[θ
(i)

1
, · · · , θ

(i)

N f
]. (16)

Algorithm 1 xDAWN algorithm.

1: Compute matrices B̂T
i

(13), Σ̂X (10) and Σ̂i (11)

2: Compute GEVD of (Σ̂i, Σ̂X)⇒ (Λi,Θi)

3: Select the N fi components associated with the N fi largest

generalized eigenvalues Λ
(s)

i

4: Finally
(

Ûi, Â
(c)

i
, Ŵi

)

=
(

Θ
(s)

i
, B̂T

i
XΘ

(s)

i
, Σ̂XΘ

(s)

i

)

5: Estimate enhanced signals (18): Ŝ i = XÛi

Proof Since (9) is a Rayleigh quotient of the pair
(

Σ̂i, Σ̂X

)

, it

is straightforward to obtain (14). To obtain (15) and (16), one

can rewrite criterion (8), using the QR decompositions [20] of

X and D
(c)

i
, as

V̂i = arg max
V

Tr
(

VT QT
X

B̂iR
T
i

RiB̂
T
i

QXV
)

Tr
(

VT V
) ,

with V = RXU, X = QXRX and D̂
(c)

i
= QiRi, where QX and

Qi are orthogonal matrices, and RX and Ri are upper triangu-

lar matrices, respectively. V̂i are thus obtained by maximizing

the Rayleigh quotient using the singular value decomposition

(SVD) of matrix RiB̂
T
i

QX:

RiB̂
T
i QX = Φi∆iΨ

T
i , (17)

where Φi and Ψi are two unitary matrices and ∆i is a diago-

nal matrix with nonnegative diagonal entries in decreasing or-

der. As a consequence, one can rewrite P̂
(c)

i
(13) as P̂

(c)

i
=

R−1
i
Φi∆iΨiRX . Consequently, from (13) and (3), Wi and Ai can

be estimated by

Ŵi = RT
XΨ

(s)

i
,

Â
(c)

i
= R−1

i Φ
(s)

i
∆

(s)

i
,

with Ûi = R−1
X
Ψ

(s)

i
. ∆

(s)

i
is the diagonal matrix of the N f largest

singular values of (17) and Φ
(s)

i
, Ψ

(s)

i
are the related left and

right singular vectors. �

Finally, from Theorem 1, enhanced signals are given by

Ŝ i = XÛi. (18)

It is worth noting that the GEVD of the pair of (spatial) covari-

ance matrices (Σ̂i, Σ̂X) allows to estimate the spatial pattern Ŵi

but also the temporal pattern Â
(c)

i
of ERPs since matrix Σ̂i not

only summarizes the spatial information about ERP, but also all

temporal model information about the shape of the ERPs. This

variant of xDAWN algorithm, which is definitively faster than

the computation of two QR and one SVD used to demonstrate

Theorem 1, is summarized in Algorithm 1. The choice of N fi

can be performed from the eigenvalues Λ
(s)

i
to select the signal

and noise subspaces.

3. Theoretical results and asymptotical performance

In this section, let us assume that
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(A1) all spatio-temporal patterns Pi, j are mono-dimensional, i.e.

∀(i, j), Pi, j = (a
(c)

i
+ a

(r)

i, j
)wT

i
, with a

(c)

i
∈ R

Mi , a
(r)

i
∈ R

Mi

and wi ∈ R
Ns . Model (3) can then be expressed as

X =

Ne
∑

i=1

(

D
(c)

i
a

(c)

i
+ D

(r)

i
a

(r)

i

)

wT
i + N,

= S WT + N, (19)

where a
(r)

i
∈ R

MiKi , with a
(r)

i
= [a

(r)T

i,1
, · · · , a

(r)T

i,Ki
]T . W =

[w1, · · · ,wNe
] ∈ RNs×Ne and S ∈ RNt×Ne whose i-th column

S i is equal to S i =
(

D
(c)

i
a

(c)

i
+ D

(r)

i
a

(r)

i

)

;

(A2) the additive noise n(k) is a temporally white centered

Gaussian vector with spatial covariance matrix Rn =

E[n(k)nT (k)] and is uncorrelated with a
(r)

i
;

(A3) the random parts of ERP, a
(r)

i
, are centered and pairwise

uncorrelated with E
[

a
(r)

i
a

(r)

i

T ]

= δ2
i
I, where I is the identity

matrix;

(A4) the common parts of ERP, a
(c)

i
, are pairwise orthogonal;

(A5) the estimated spatial filters are applied to data that haven’t

been used to estimate them.

Let us denote by Y(−i) the submatrix of Y such that its i-th

column is removed: Y(−i) = [Y:,1, · · · ,Y:,i−1,Y:,i+1, · · · ,Y:,N],

where Y:,k is the k-th column of Y . Moreover, let us define

the mean signal-to-interference-plus-noise ratio (SINR) ri(u)

achieved after applying the spatial filter u to enhance the i-th

class of ERP by

ri(u) =
σ(i)2E

[

(uT wi)
2
]

E
[

uT RH(−i)
u
] , (20)

where RH(−i)
is the covariance matrix of interferences and noise

H(−i) = S (−i)W
T
(−i)
+ N and σ(i)2 = E[S T

i
S i]/(KiMi)

Under assumption (A1), it is well known that the optimal

spatial filter (4) which maximizes the SSNR (or equivalently

the SINR) of the i-th ERP is given by [21]

ũi = R−1
H(−i)

wi. (21)

The aim of this section is first to investigate the conditions such

that the xDAWN framework leads to estimate the optimal spa-

tial filter (Section 3.1) and then to study the influence on the

SINR of a limited number of time samples to estimate covari-

ance matrices used to compute the spatial filter (Section 3.2).

3.1. Theoretical justifications: optimality of spatial filters

In this section, we investigate the behavior of proposed

xDAWN in the case of a perfect estimation of Σ̂i and Σ̂X de-

fined by the expectation of covariance matrices (11) and (10)

Σi
△
=

E
[

P̂
(c)T

i
D̂

(c)T

i
D̂

(c)

i
P̂

(c)

i

]

Nt

and ΣX
△
=

E
[

XT X
]

Nt

.

From assumptions (A1)–(A4), one can express these covariance

matrices as

Σi = WΓiW
T + ηiRn, (22)

ΣX = WΣWT + Rn, (23)

where

ηi =
Tr

(

B̂iD̂
(c)T

i
D̂

(c)

i
B̂T

i

)

Nt

, (24)

Σ and Γi are two diagonal matrices whose k-th diagonal entries

are equal to αkσ
2(k) and αkγ

2
i
(k), respectively, with σ(k)2 =

σ(c)(k)2 + σ(r)(k)2, where

σ(c)(k)2 =
a

(c)T

k
D

(c)T

k
D

(c)

k
a

(c)

k

Kk Mk

,

σ(r)(k)2 =
Tr

(

D
(c)T

k
D

(c)

k

)

Kk Mk

δ2k = δ
2
k

and γi(k)2 = γ
(c)

i
(k)2 + γ

(r)

i
(k)2, where

γ
(c)

i
(k)2 =

a
(c)T

k
D

(c)T

k
B̂iD̂

(c)T

i
D̂

(c)

i
B̂T

i
D

(c)

k
a

(c)

k

Kk Mk

,

γ
(r)

i
(k)2 =

Tr
(

D
(r)T

k
B̂iD̂

(c)T

i
D̂

(c)

i
B̂T

i
D

(r)

k

)

Kk Mk

δ2k .

Finally, αk = (Kk Mk)/Nt.

Consequently, expected spatial filter ui provided by xDAWN

algorithm maximizes the SSNR

ρi(u) =
uTΣiu

uTΣXu
(25)

through the GEVD of the pair (Σi,ΣX), whose decomposition

is given by Theorem 3 in Appendix A.

The following theorem provides the conditions on covari-

ance matrices Σi (22) and ΣX (23) such that maximization of

ρi(u) (25) leads to the optimal spatial filter (21).

Theorem 2 (Optimal configuration). Let Σi and ΣX be two

matrices defined by (22) and (23), with ηi ≥ 0.

The generalized eigenvector associated with the unique

largest generalized eigenvalue of the pair
(

Σi,ΣX

)

is propor-

tional to R−1
H(−i)

wi if and only if2 Γ(−i) = ηiΣ(−i) and γi(i)
2 >

ηiσ(i)2.

See Appendix B for the proof.

The main restrictive condition of theorem 2 is Γ(−i) = ηiΣ(−i),

since it imposes that the powers of all interfering sources and

the additive noise are strictly modified by the same multiplica-

tive factor ηi (24), which seems highly unlikely in practice.

Indeed, it is easy to check that

2Note that, for sake of simplicity, Σ(−i) (resp. Γ(−i)) is the covariance matrix

of S (−i) (resp. D̂
(c)T

i
B̂T

i
S (i)) which is thus the submatrix of Σ (resp. Γi) but its

i-th row and column.
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• as soon as D̂
(c)

k
includes the temporal samples of D

(c)

k

which interfere with D
(c)

i
, then BT

i
D̂

(c)

k
= 0 (with k , i).

This means that the deterministic part of the k-th interfer-

ing class of ERPs does not corrupt the estimate of the i-th

class of ERPs: k , i, Γ
(c)

(−i)
= 0;

• Γ
(r)

(−i)
, 0 since it is the variance of the residue of interfering

sources in the estimate of i-th spatio-temporal pattern P
(c)

i
.

However, it is worth noting that ηi and Γ
(r)

(−i)
tend towards 0 as

soon as Ki tends towards infinity, since P̂
(c)

i
is estimated in

the LMS sense. This means from theorem 2 that the xDAWN

framework provides asymptotical optimal spatial filters when

the number of trials Ki tends towards infinity.

3.2. Asymptotic performance analysis

In this section, we investigate the influence of a limited num-

ber of time samples to estimate the covariance matrices Σi and

ΣX on the SINR.

Indeed, the estimation of matrices Σi and ΣX from a limited

number of samples leads to the matrices Σ̂i = Σi + δΣi and

Σ̂X = ΣX + δΣX (where δΣ· denotes the error of estimation be-

tween actual value of Σ· and its estimates Σ̂· from data) leads

to estimate the spatial filter ûi which differs from ui by δui:

ûi = ui + δui. Therefore, the mean SINR ri(ûi) achieved after

applying the spatial filter ûi can be expressed at the first order

of perturbation as

ri

(

ûi

)

=
σ(i)2(u∗

T

i
wi)

2

u∗
T

i
RH(−i)

u∗
i

(

1 − δri

)

= ri

(

u∗i
) (

1 − δri

)

, (26)

with

δri = 1 −
(wT

i
ui)

2

(wT
i

u∗
i
)2

u∗
T

i
RH(−i)

u∗
i

uT
i

RH(−i)
ui

×

(

1 −
Tr

(

RH(−i)
E[δuiδu

T
i

]
)

uT
i

RH(−i)
ui

+
wT

i
E[δuiδu

T
i

]wi

(

wT
i

ui

)2

)

(27)

under the assumption that spatial filter ûi is independent of X

(i.e. (A5)). It is easy to show that

E
[

δuiδu
T
i

]

= ΠiE
[

δΣiuiu
T
i δΣi

]

Πi + ΠXE
[

δΣXuiu
T
i δΣX

]

ΠX

+ ΠiE
[

δΣiuiu
T
i δΣX

]

ΠX + ΠXE
[

δΣXuiu
T
i δΣi

]

Πi

(28)

where

Πi =

Ne
∑

k=2

1

λ
(i)

1
− λ

(i)

k

θ
(i)

k
θ

(i)T

k
+

1

λ
(i)

1
− ηi

Π, (29)

ΠX = −
1

2
uiu

T
i −

Ne
∑

k=2

λ
(i)

1

λ
(i)

1
− λ

(i)

k

θ
(i)

k
θ

(i)T

k
−
λ

(i)

1

λ
(i)

1
− ηi

Π, (30)

Π = R−1
n − R−1

n W
(

WT R−1
n W

)−1
WT R−1

n , (31)

and E
[

δΣiuiu
T
i
δΣi

]

, E
[

δΣXuiu
T
i
δΣX

]

, E
[

δΣXuiu
T
i
δΣi

]

and

E
[

δΣiuiu
T
i
δΣX

]

are expressed in Appendix C. In the same

way, one can obtain the perturbations of ŵi = wi + δwi and

â
(c)

i
= a

(c)

i
+ δa

(c)

i
as

E
[

δwiδw
T
i

]

= Πw
XE

[

δΣXuiu
T
i δΣX

]

Πw
X

T
+Πw

i E
[

δΣiuiu
T
i δΣi

]

Πw
i

T

+ Πw
XE

[

δΣXuiu
T
i δΣi

]

Πw
i

T
+ Πw

i E
[

δΣiuiu
T
i δΣX

]

Πw
X

T
, (32)

where

Πw
X = I + ΣXΠX ,

Πw
i = ΣXΠi,

and

E

[

δa
(c)

i
δa

(c)

i

T
]

= B̂T
i

(

Tr
(

RnE
[

δuiδu
T
i

]

)

I+

Ne
∑

k=1

wT
k E

[

δuiδu
T
i

]

wk

×

(

D
(c)

k
a

(c)

k
a

(c)

k

T
D

(c)

k

T
+ D

(r)

k
D

(r)

k

T
δ2k

)

)

B̂i. (33)

It is worth noting that, since the estimations of covariance

matrices are unbiased, the estimates ûi, ŵi and â
(c)

i
are also un-

biased. Moreover, E[δuiδu
T
i

] tends towards 0 when the number

of time samples Nt tends to infinity, which can be verified from

the expression (C.1). As a consequence, under weak assump-

tions, the xDAWN framework leads to unbiased and consistent

estimators.

4. Relations with other methods

In this section, we investigate the relation between the pro-

posed xDAWN framework and other classical methods used to

enhance ERPs.

4.1. Principal and independent component analysis

A classical approach used in neuroscience to enhance the

ERPs is principal component analysis (PCA): it aims at esti-

mating spatial filters such that the principal components are un-

correlated and account for as much of variance of the data as

possible. As a consequence, the spatial filters are estimated

from

U
(PCA)

i
= arg max

U

Tr
(

UT AT
i

AiU
)

Tr
(

UT U
) , (34)

which are equal to wi in the monodimensinal case. As pointed

out in [18], the major drawback of PCA comes from the fact

that it does not directly taken into account the noise N and the

others ERP A j ( j , i). Even if the PCA enhances evoked po-

tentials Ai, spatial filters U
(PCA)

i
could also largely amplify the

concurrent ERPs and noise compared to Ai.

An other classical approach is independent component anal-

ysis (ICA) which aims at recovering the sources by optimizing

a criterion which presents an optimum for independent sources

(or at least based on an approximation of independence). For

instance, SOBI [8, 22] estimates sources with different spectra,

JADE [8, 23] is based on an assumption of non-Gaussian and

independent sources through 4th order cumulants or the most
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widely used algorithm in neuroscience FastICA [8, 24] which

maximizes the negentropy. However, ICA and PCA algorithms

are data driven methods which do not exploit the underlying

ERP paradigm. Moreover, as pointed out in the introduction,

these methods often fail to estimate accurately sources when

their number is larger than the number of sensors (which is gen-

erally the case in EEG experiments) and they require to select

(manually or automatically) the estimated components which

mainly contain the ERPs.

4.2. Common spatial pattern

Common spatial pattern (CSP) [12, 13] aims at estimating

spatial filters such that they discriminate between two classes

using

U
(CS P)

i
= arg max

U

Tr
(

UTΣ+U
)

Tr
(

UT
(

Σ+ + Σ−
)

U
) , (35)

where Σ+ and Σ− are the two data covariances matrices in the

two conditions. Although CSP has been largely used to classify

spectral data [13], it is also suitable to enhance temporal signals.

Indeed, CSP is simply based on the fact that the power of the

latent signal is larger in the first condition than in the second

condition. Applied in the ERP context, it allows to enhance one

of the classes with respect to all the others ones with

Σ+ =
1

|Ii|
E
[

X(Ii)
T X(Ii)

]

Σ− =
1

|I−i|
E
[

X(I−i)
T X(I−i)

]

where Ii (resp. I−i) is the set of time indexes related to the i-th

ERP (resp. others ERPs). |I| denotes the cardinal of set I and

X(I) indicates the samples of X with time indices belonging

in I.

Even if the comparison between CSP and xDAWN can be

unfair since CSP is not directly designed to enhance ERP, it is

worth noting that both solutions of (35) and (3) are the gen-

eralized vectors associated with the largest generalized eigen-

value of (Σ+,Σ− + Σ+) and (Σi,ΣX), respectively. These two

methods share the same framework, i.e. generalized eigen-

value decomposition (GEVD), but differ in the pair of matrices

(ΣN ,ΣD) to be analyzed: xDAWN enhances a repeated pattern

time locked to stimuli while CSP is based on the increase of the

signal power after stimuli which can be interpreted as a signal-

to-signal-plus-interference ratio (SSIR). Consequently, one can

derive the same performance analysis for CSP as has been pro-

vided for xDAWN algorithm3.

4.3. Canonical correlation analysis

Finally, the xDAWN algorithm is closely related to the prin-

cipal or canonical angles [20, 25, 26], which are generaliza-

tions of canonical correlation analysis (CCA) [27]. Indeed, if

only one class of ERPs is assumed (even if several classes of

3Note that the detailed expressions are not given in this article due to the

lack of space.
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Figure 1: Asymptotical performance analysis of perturbation δr (27) of

SINR (20) with one class of stimulus (Ne = 1) and 60% of overlapping.

ERPs are involved), xDAWN algorithm, which thus sums up

to classical beamforming, and CCA provide the same estimate

as shown in [18]. However, as soon as several classes of ERPs

are involved and assumed, the proposed xDAWN algorithm can

be seen as an extension of CCA by taking into account the pos-

sible overlapping between classes of ERPs.

5. Results

In this section, numerical simulations are first provided to

show the behavior of the xDAWN algorithm and to compare it

to others classical methods (Section 5.1) before illustration on

real data (Section 5.2).

5.1. Numerical simulations

In order to validate asymptotical performance expressions,

several configurations are considered for which theoretical and

numerical values are plotted. These experiments allow not only

to check the correctness of the theoretical expressions and to

evaluate the area of validity of the asymptotical developments

but also and mainly to evaluate and to tune the parameters used

in the xDAWN algorithm.

In all these analyses, the continuous lines are the theoret-

ical asymptotic performance while markers correspond to the

numerical performances obtained by averaging over 1000 inde-

pendent trials. Several algorithms to estimate spatial filters are

considered: xDAWN algorithm, epoching algorithm4, CSP [13]

and FastICA [8, 24].

In the first set of simulations (Fig. 1), there is only one class

of stimulus (Ne = 1) in the experiment. The actual dura-

tion of ERP M1 is equal to 100 samples, spatial distribution w1

and covariance matrix Rn are such that wT
1

R−1
n w1 = 1. More-

over α1σ
(c)(1)2 = 1 and σ(r)2

= 0 so that the optimal SINR is

equal to one. Finally K1 is even such that the (2i − 1)-th and

(2i)-th ERPs overlap by 60%. It is aimed at investigating the

influence of the number K1 of trials on the estimated SINR.

Obviously, the SINR increases with the number of trials. One

can see that the xDAWN algorithm provides better estimates of

spatial filters than epoching or FastICA, consequently xDAWN

algorithm provides the best estimates of spatial filters. This

4Epoching algorithm is a variation of xDAWN algorithm where P
(c)
i

is esti-

mated by averaging the signal after the stimuli onsets. This leads to replace (13)

by P̂
(c)
i
= DT

i
X/Ki. This estimation is widely used by neuroscientists [1].
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(b) Influence of K1 on δri (27)

Figure 2: Asymptotical performance analysis of the number of trials K1 on

SINR (20) and on perturbation δr (27) with two classes of stimulus (Ne =

2), an overlapping between classes of 70% and within the first class of 40%.

Actual and estimated durations of ERPs are fixed to 100 (M1 = M̂1 = M2 =

M̂2 = 100), wT
1

R−1
n w2 = .7 and σ(c)2

/σ2 = .90 for target and interfering ERPs.

Optimal SINR is thus equal to 6.05.

can be explained by the fact that the kernel P
(c)

1
is better esti-

mated by (13) than by simple averaging due to the overlapping

of several ERPs.

In the second set of simulations (Fig. 2), two kinds of stim-

uli are considered (Ne = 2). Two alternatives of xDAWN

algorithm are thus involved: ‘’xDAWN’ which assumes the

true number of ERP classes and ‘xDAWN Mono’ for which

only one class of ERP is assumed. The actual duration of

ERPs M1 and M2 are both equal to 100 samples, spatial dis-

tributions w1 and w2 and covariance matrix Rn are such that

wT
1

R−1
n w1 = wT

2
R−1

n w2 = 1 and wT
1

R−1
n w2 = .7. The ratio of the

numbers of target ERPs and the number of concurrent ERPs is

fixed to one third (K2 = 3K1). The influence of the number

K1 of target stimuli on the SINR has been investigated. As al-

ready noticed, the xDAWN algorithm is asymptotically optimal

as the number of target stimuli increases (Fig. 2(b)) while other

algorithms (CSP and FastICA) provide biased estimates of the

optimal spatial filters. Moreover, ‘xDAWN Mono’ algorithm

slightly outperforms ‘xDAWN’ in case of few target stimuli.

This can be explained by the variance of the estimate P̂
(c)

1
with

very few data.

In the third set of simulations (Fig. 3 to Fig. 5), two kinds

of stimuli are considered (Ne = 2). The actual duration of

ERPs M1 and M2 are both equal to 100 samples, spatial dis-

tributions w1 and w2 and covariance matrix Rn are such that

wT
1

R−1
n w1 = wT

2
R−1

n w2 = 1. The ratio of the numbers of target

ERPs and the number of concurrent ERPs is fixed to one third

(K2 = 3K1). Firstly, Fig. 3 investigates the influence of tem-

poral (Fig. 3(a)) and spatial (Fig. 3(b)) overlappings between

target and concurrent stimuli. This simulation highlights that

xDAWN algorithms (‘xDAWN’ as well as ‘xDAWN Mono’)
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(û

i
)/
r i
(u

∗ i
)

 

 

xDAWN xDAWNMono CSP FastICA

(a) Influence of overlap

0 0.2 0.4 0.6 0.8
10

−3

10
−2

10
−1

w
T
1 R

−1
n w2

1
−

r i
(û
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(b) Influence of wT
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Figure 3: Asymptotical performance analysis of perturbation δr (27) of

SINR (20) with two classes of stimulus (Ne = 2), 100 target stimuli (K1 = 100)

so K2 = 300 and σ(c)2
/σ2 = .90 for the two classes of ERPs: influence of

overlapping with wT
1

R−1
n w2 = .7 (Fig. 3(a)) and of wT

1
R−1

n w2 with overlapping

of 70% (Fig. 3(b)).

provide very good performance on the spatial filters estimate

compared to classical CSP or FastICA, even with very con-

fusing configurations. For instance with 100% overlapping be-

tween target and concurrent stimuli or with wT
1

R−1
n w2 close to

one, ‘xDAWN’ provides less than 1% of performance loss com-

pared to optimal SINR. Secondly, Fig. 4 investigates the influ-

ence of the assumed durations of ERPs (M̂1 and M̂2) on the

SINR. In the two simulations, xDAWN algorithm outperforms

the other methods and FastICA provides quasi-constant per-

formance since this method does not depend of this parame-

ter. Furthermore, in Fig. 4(a) one can observe that the CSP

provides the best performance when the assumed duration of

ERP, M̂1, is equal to its actual value (M̂1 = 100), however

the CSP estimate is almost unaffected by this parameter since

the performance is almost equal. Moreover, with xDAWN

algorithm, the performance increases with the assumed dura-

tion of target ERPs (M̂1) until the actual value is reached and

then is constant if the assumed duration is larger than the ac-

tual (M̂1 > M1 = 100). On the contrary, with ‘xDAWN mono’,

the performance increases only until the estimate of Σ1 is cor-

rupted by the interfering ERPs (i.e. from M̂1 = 1 to 30, since

the overlapping is of 70% with M1 = 100) and then decreases.

Fig. 4(b) shows that the performance of xDAWN algorithm in-

creases with the assumed duration of interfering ERP (M̂2) un-

til the part of concurrent ERPs which overlaps the target ERPs

is fully included in the assumed model (i.e. D̂
(c)

2
includes the

all temporal samples of S 2 which interfere with S 1): E[δri]

decreases from M̂2 = 1 to 70, since the overlapping between

classes of ERPs is of 70% with M1 = 100. Adding more tem-

poral samples of S 2 than those which interfere with S 1 into

D̂
(c)

2
leaves the performance constant. In this simulation since
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(b) Influence of M̂2

Figure 4: Asymptotical performance analysis of perturbation δr (27) of

SINR (20) with two classes of stimulus (Ne = 2) and 100 target stimuli

(K1 = 100) so K2 = 300: influence of assumed duration of ERP M̂1 (Fig. 4(a))

and M̂2 (Fig. 4(b)) with 70% of overlap, wT
1

R−1
n w2 = .7 and σ(c)2

/σ2 = .90 for

target and interfering ERPs.

xDAWN mono is independent of M̂2, its performance is ob-

viously equal. These two simulations show that the xDAWN

algorithm provides a good behavior with respect to the assumed

durations of ERPs: in practice, it is even better to overestimate

them since the performance is then the same as the performance

achieved by the actual values. Finally, in Fig. 5 we can inves-

tigate the influence of the stochastic temporal patterns in ERPs

by varying the ratio σ(c)2

(i)/σ(i)2 for both classes of ERPs: the

global power of ERPs is remained constant, only the repartition

of the power between common and stochastic pattern varies.

In these two simulations, CSP and FastICA provide quite con-

stant performance: indeed, these two methods do not assume

anything about temporal patterns but the fact that the perfor-

mance is slightly better with a low common temporal pattern

(i.e. σ(c)2

(i)/σ(i)2 close to 0) is simply due to a better estima-

tion of statistics since samples are thus independent which is

not the case when σ(c)2

(i)/σ(i)2 is close to 1. In Fig. 5(a), since

M̂2 = M2 thus B̂T
1

D2 = 0 with xDAWN algorithm; as a con-

sequence, xDAWN algorithm is independent of σ(c)2

(2)/σ(2)2,

leading thus to constant performance. On the contrary, the per-

formance of xDAWN mono, which assumes that there are no

interfering ERPs, decreases with the increase of the power of

the common ERPs. In this simulation, considering the case

of σ(c)2

(2)/σ(2)2 close to 0 is very interesting since this con-

figuration corresponds to the case of a single class of ERPs

(Ne = 1). In this specific case, ‘xDAWN mono’ slightly out-

performs xDAWN: indeed, xDAWN (resp. ‘xDAWN mono’)

assumes that there are two (resp. one) classes of ERPs while

its actual value is one. This simulation shows that xDAWN is

quite robust to an error of modeling due to an overestimation

of the actual number of classes of ERPs. Moreover, Fig. 5(b)
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(û

i
)/
r i
(u

∗ i
)

 

 

xDAWN xDAWNMono CSP FastICA

(a) Influence of a
(r)

2

0 0.2 0.4 0.6 0.8 1

10
−2

10
−1

10
0

σ(c)(1)2/σ(1)2

1
−

r i
(û
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Figure 5: Asymptotical performance analysis of perturbation δr (27) of

SINR (20).

highlights that the performance of xDAWN obviously increases

with the ratio σ(c)2

(1)/σ(1)2 (i.e. when the power of the com-

mon target pattern increases) since it is the main assumption of

xDAWN framework.

5.2. Application to real data

In this section, the behavior of xDAWN algorithm is illus-

trated on actual electro-encephalograhic (EEG) data. EEG data

has been recorded from 29 scalp electrodes placed at standard

positions of an extended 10*20 international system referenced

to the nose and grounded to the forehead. All impedances

have been kept below 10kOhms. Signals have been sampled

at 500Hz using a BrainAmp amplifier (BrainProducts GmBH,

Munich). The EEG data has been collected using the BCI2000

system with the P300 speller scenario [28]. A P300 speller is a

kind of brain computer interface (BCI) which allows the user to

spell sequentially symbols without any muscular control [29].

The user looks at a screen on which a 6× 6 matrix regroups the

36 symbols. The rows and columns are randomly intensified

and to select a symbol, the user has to focus his/her attention

on the symbol he/she wants to spell. When the row or the col-

umn corresponding to the target symbol, the user’s brain elicits

a P300 ERP. The raw signals have been band-passed filtered

with a fourth order Butterworth bandpass filter whose cutoff

frequencies are 1Hz and 20Hz.

Figure 6 displays the estimated temporal common pattern

Â
(c)

i
related to the P300 ERP by the xDAWN algorithm and its

‘xDAWN Mono’ variant. As one can see, the proposed method

(‘xDAWN’) slightly improves the estimate of the target com-

mon pattern A
(c)

i
: with the ‘xDAWN Mono method, there exist

oscillations at the same frequency as the rows/columns intensi-

fications (5.6Hz) of the P300 speller. Indeed, the temporal pat-

tern related to target stimuli is superimposed on with a quasi-

periodic signal at the same frequency as the intensifications of
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Figure 7: Classification accuracy (CA) of the P300 speller versus the number

of spatial filters (N fi)).

the rows/columns of the P300 speller BCI. On the contrary,

with the ‘xDAWN’ method, these undulations are drastically

reduced. This improvement of the estimates of the common

temporal pattern is also observed on the estimates of the spatial

filters. Indeed, Figure 7 reports the average classification accu-

racy (CA) of the P300 BCI prediction for the three subjects with

respect to the number of spatial filters. It is worth noting that

with only one spatial filter, ‘xDAWN’ algorithm outperforms

‘xDAWN Mono’, highlighting the importance of modeling the

P300 ERP as well as the interfering ERP related to all stimula-

tion flashes. The CA shows that the P300 ERPs lie in a small

dimensional space since the CA is optimal with three spatial

filters.

Figures 8 and 9 show the influence of the assumed duration of

ERP M̂1 and M̂2, respectively, on the estimate Â
(c)

1
related to the

P300 ERP. The estimates Â
(c)

1
are robust to the assumed dura-

tion M̂1 (Fig. 8), since the estimates differ only slightly against

M̂1. Moreover, the estimates have converged for M̂1 ≥ 400:

increasing M̂1 does not modify the estimates. The xDAWN

alogrithm is also robust to an overestimation of the assumed

duration M̂2 (Fig. 9): in this experiment choosing M̂2 larger

than 90 (i.e. the duration of the interstimulus interval) does not

change the shape of the estimated Â
(c)

1
. These two experiments

confirm the theoretical experiments (Fig. 4) that it is better to

overestimate the duration of the assumed ERPs than to under-

estimate them.
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Figure 8: Influence of the assumed duration of ERP M̂1, with M̂2 = 500

(i.e. 1s). Each column is related to one subject and from top to bottom

M̂1 ∈ {100, 200, 300, 400, 500, 600, 750} (i.e. .2, .4, .6, .8, 1 and 1.5 sec-

onds). The estimated temporal common pattern Â
(c)

1
is the black continuous

line, the light gray line is the estimate for M̂1 = 750.
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6. Conclusions and perspectives

In this article, theoretical spatial filters and asymptotical per-

formance analysis of the proposed xDAWN framework are pro-

vided. The proposed xDAWN framework estimates a factoriza-

tion of the space spanned by a repeated spatio-temporal pattern

time-locked to target stimuli. The formulation of the decompo-

sition is given in a closed form through a generalized eigenvalue

decomposition of a pair of particular covariance matrices which

only requires the knowledge of stimuli onsets. It provides the

full factorization composed of the temporal patterns and its spa-

tial distribution over sensors as well as the related spatial fil-

ters which leads to the maximum SINR. A theoretical analy-

sis of the xDAWN framework shows that under weak assump-

tions the xDAWN algorithm is asymptotically optimal to esti-

mate the spatial filters and decomposition of spatio-temporal

patterns. Moreover, the finite sample effect is calculated the-

oretically in a closed form and validated by simulations: the

xDAWN framework leads to an unbiased and consistent esti-

mator of optimal spatial filters. These results allow firstly to

demonstrate the good behavior of the proposed xDAWN algo-

rithm compared to CSP and FastICA even with complex con-

figurations if model (3) is satisfied. The theoretical analysis of

xDAWN algorithm has shown that it has the property to be ro-

bust with respect to model parameter values. In addition, these

results are useful to tune parameters of the experiments (for

instance, the number of target stimulus repetitions needed to

obtain a desired SINR). Finally, illustrations on real EEG data

show that xDAWN algorithm outperforms classical spatial fil-

tering methods such as CSP or FastICA in a P300 speller BCI

context.

Future works will deal with the automatic estimation of

model parameters (for instance time duration of ERPs). More-

over, the latency of each single ERP can slightly vary over the

experiment as well as its amplitude: future works will also em-

bedded their estimations into the framework.

Appendix A. Pair beamformer defined by generalized

eigenvalue decomposition of
(

Σi,ΣX

)

Theorem 3 (Pair beamformer defined by GEVD of
(

Σi,ΣX

)

).

Let consider
(

Σi,ΣX

)

defined by (22) and (23), where ΣX and

Rn are definite positive matrices, such that Σi , µΣX .

Moreover let assume that

Γi =

(

Γ′
i

0

0 Γ′′
i

)

and Σ =

(

Σ′ 0

0 Σ′′

)

are two blocks decompositions5 of matrices Γi and Σ such that

Γ′
i
, ηiΣ

′ and Γ′′
i
= ηiΣ

′′, with Γ′
i
∈ RNr×Nr . Finaly, let decom-

pose W such that W = [W ′,W ′′], with W ′ ∈ RNs×Nr .

The GEVD of the pair
(

Σi,ΣX

)

has the following decomposition

• ηi for generalized eigenvalue (Ns − Nr) times whose as-

sociated generalized eigenvectors are orthogonal to wi,

∀i ∈ {1, · · · ,Nr}

5Without lose of generality, it is assumed that the entries of Γi such that

Γ′
i
, ηiΣ

′ are the Nr first ones.

• Nr generalized eigenvalues λk , ηi whose associated

generalized eigenvectors are expressed as linear combi-

naisons of R−1
n w j:

vk = R−1
n Wβk,

with βk = [βk,1, · · · , βk,Ne
]T = [β′

T

k ,β
′′T

k ]T . β′k is thus non-

trivial solutions of

Σw
i β
′
k = λkΣ

w
Xβ
′
k, (A.1)

with Σw
i
= W ′

T

R−T
H
ΣiR

−1
H

W ′, Σw
X
= W ′

T

R−T
H
ΣXR−1

H
W ′ and

β′′k = −Σ
′′W ′′

T

R−1
H

W ′β′k, where RH = Rn +W ′′Σ′′W ′′
T

.

Proof The GEVD of the pair
(

Σi,ΣX

)

,

∀k ∈ {1, · · · ,Ns}, Σivk = λkΣXvk,

is equivalent to the GEVD of

W ′
(

Γ′i − λkΣ
′
)

W ′
T

vk = (λk − ηi)
(

W ′′Σ′′W ′′
T

+ Rn

)

vk. (A.2)

From this latter expression, it is easy to show that

• λk = ηi, Ns − Nr times and related vk are all orthogonal to

wi, ∀i ∈ {1, · · · ,Ne};

• λk , ηi, Nr times and related vk are linear combinaison of

R−1
n wi, using the left multiplication of (A.2) by 1

λk−ηi
R−1

n .

Moreover, left multiplication of (A.2) by
(

W ′′Σ′′W ′′
T

+ Rn

)−1

and Woodbory identities [30] lead to write

vk =
(

W ′′Σ′′W ′′
T

+ Rn

)−1
W ′β′k

= R−1
n W ′β′k − R−1

n W ′′Σ′′W ′′
T
(

W ′′Σ′′W ′′
T

+ Rn

)−1
W ′β′k

= R−1
n Wβk,

with βk = [β′
T

k ,β
′′T

k ]T .

Finally by injecting vk =
(

W ′′Σ′′W ′′
T

+ Rn

)−1
W ′β′k in Σivk =

λkΣXvk, one can expressed β′k as the non-trivial solutions

of (A.1). �

Appendix B. Proof of theorem 2

Proof Let Σi and ΣX be two matrices of RNs×Ns defined by (22)

and (23). Theorem 3 shows that this pair of matrices has only

two distinct generalized eigenvalues: ηi degenerated Ns − 1

times and λk , ηi once.

⇐ Let us suppose that ηi ≥ 0, Γ(−i) = ηiΣ(−i) and γi(i)
2 >

ηiσ(i)2. Let denote vk and λk the generalized eigenvectors and

eigenvalues of the pair
(

Σi,ΣX

)

: ∀k, Σivk = λkΣXvk.

In this case,

Σivk = αiγi(i)
2(wT

i vk

)

wi + ηiRH(−i)
vk,

ΣXvk = αiσ(i)2(wT
i vk

)

wi + RH(−i)
vk,
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where RH(−i)
= W(−i)Σ(−i)W

T
(−i)
+ Rn.

Theorem 3 shows that the eigenvector associated with the

unique generalized eigenvalue different from ηi can be ex-

pressed as vk ∝ R−1
H(−i)

wi. In this case, the associated generalized

eigenvalue satisfies

λk =
vT

k
Σivk

vT
k
ΣXvk

=
ηi + αiγi(i)

2wT
i

R−1
H(−i)

wi

1 + αiσ(i)2wT
i

R−1
H(−i)

wi

> ηi

since ηiσ(i)2 < γi(i)
2.

This demonstrate that the generalized eigenvector associated

with the unique largest generalized eigenvalue of the pair
(

Σi,ΣX

)

is proportional to R−1
H(−i)

wi.

⇒ Let us suppose that the generalized eigenvector vk asso-

ciated with the unique largest eigenvalue of the pair
(

Σi,ΣX

)

is

proportional to R−1
H(−i)

wi. Using Woodbury identities [20], one

can note that

Σivk =
(

αiγi(i)
2(wT

i R−1
H(−i)

wi

)

+ ηi

)

wi

+W(−i)

(

Γ(−i) − ηiΣ(−i)

)

WT
(−i)R

−1
H(−i)

wi

and

ΣXvk =
(

1 + αiσ(i)2wT
i R−1

H(−i)
wi

)

wi

Since ΣXvk lies in the span of wi and since RH(−i)
is a full rank

matrix, this implies that Γ(−i) = ηiΣ(−i). Moreover, due to the

uniqueness of the largest generalized eigenvalue λk, one can

write that

λk =
vT

k
Σivk

vT
k
ΣXvk

=
ηi + αiγi(i)

2wT
i

R−1
H

wi

1 + αiσ(i)2wT
i

R−1
H

wi

.

As a consequence, λk > ηi implies that γi(i)
2 > ηiσ(i)2, finish-

ing the demonstration. �

Appendix C. Expressions of E

[

δΣαuiu
T

i
δΣβ
]

After some computation, one can obtain that

E
[

δΣαuiu
T
i δΣβ

]

=
1

Nt

(

(uT
i Rnui)Σα,β + Rnuiu

T
i Σα,β

+
(

uT
i

(

Σα,β − ηα,βRn

)

ui

)

Rn +
(

Σα,β − ηα,βRn

)

uiu
T
i Rn

)

+WE
[

δΣ
(α)

S (r) W
T uiu

T
i WδΣ

(β)

S (r)

]

WT

+
1

N2
t

W

(

E
[

S (r)T

FαS
(c)WT uiu

T
i WS (r)T

FβS
(c)]

+ E
[

S (c)T

FαS
(r)WT uiu

T
i WS (c)T

FβS
(r)]

+ E
[

S (r)T

FαS
(c)WT uiu

T
i WS (c)T

FβS
(r)]

+ E
[

S (c)T

FαS
(r)WT uiu

T
i WS (r)T

FβS
(c)]

)

WT , (C.1)

where (α, β) ∈ {X, i}2 and

• FX is the identity matrix and Fi = B̂iD̂
(c)T

i
D̂

(c)

i
B̂T

i
;

• ΣX,X = ΣX , Σi,X = ΣX,i = Σi and Σi,i = WΓ′
i
WT + η′

i
Rn with

η′i =
Tr

(

F2
i

)

Nt

,

Γ′i = diag

(

a
(c)T

k
D

(c)T

k
F2

i
D

(c)

k
a

(c)

k

Nt

+
Tr

(

D
(r)T

k
F2

i
D

(r)

k

)

Nt

δ2k

)

;

• ηX,X = 1, ηi,X = ηX,i = ηi and ηi,i = η
′
i
.

Moreover, let us defined v = WT u,

E
[

S (c)T

FαS
(r)vvT S (r)T

FβS
(c)

]

=

Ne
∑

k=1

δ2kv2
kS (c)T

FαD
(r)

k
D

(r)T

k
FβS

(c),

E
[

S (r)T

FαS
(c)vvT S (c)T

FβS
(r)

]

= diag
(

δ2kvT S (c)T

FαD
(r)

k
D

(r)T

k
FβS

(c)v
)

,

E
[

S (r)T

FαS
(c)vvT S (r)T

FβS
(c)

]

=





























δ2
1
vT S (c)T

FαD
(r)

1
D

(r)T

1
FβS

(c)v1

...

δ2
Ne

vT S (c)T

FαD
(r)

Ne
D

(r)T

Ne
FβS

(c)vNe





























E
[

S (c)T

FαS
(r)vvT S (c)T

FβS
(r)

]

= E
[

S (c)T

FαS
(r)vvT S (r)T

FβS
(c)

]T
.

Finally, for all i , j

E
[

δΣ
(α)

S (r) W
T uiu

T
i WδΣ

(β)

S (r)

]

i, j
=

Tr
(

D
(r)T

i
FαD

(r)

j
D

(r)T

j
FβD

(r)

i

)

N2
t

δ2i δ
2
jviv j,

and

E
[

δΣ
(α)

S (r) W
T uiu

T
i WδΣ

(β)

S (r)

]

i,i
=

Tr
(

D
(r)T

i
FαD

(r)

i
D

(r)T

i
FβD

(r)

i

)

N2
t

δ4i v2
i

+

Ne
∑

k=1

Tr
[

D
(r)T

i
FαD

(r)

k
D

(r)T

k
FβD

(r)

i

]

N2
t

δ2i δ
2
kv2

k .
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