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Abstract

We propose a conjugate gradient type optimization technique for the computa-
tion of the Karcher mean on the set of complex linear subspaces of fixed dimen-
sion, modeled by the so-called Grassmannian. The identification of the Grass-
mannian with Hermitian projection matrices allows an accessible introduction
of the geometric concepts required for an intrinsic conjugate gradient method.
In particular, proper definitions of geodesics, parallel transport, and the Rie-
mannian gradient of the Karcher mean function are presented. We provide an
efficient step-size selection for the special case of one dimensional complex sub-
spaces and illustrate how the method can be employed for blind identification
via numerical experiments.

Keywords: conjugate gradient algorithm, Grassmannian, complex projective
space, complex linear subspaces, Karcher mean.

1. Introduction

In a wide range of signal processing applications and methods, subspaces
of a fixed dimension play an important role. Signal and noise subspaces of
covariance matrices are well studied objects in classical applications, such as
subspace tracking [1] or direction of arrival estimation [2]. More recently, a
significant amount of work is focussed on applying subspace based methods
to image and video analysis [3], as well as to matrix completion problems [4].
One fundamental challenge amongst these works is the study of the statistical
properties of distributions of subspaces. Specifically, in the present work, we
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are interested in computing the mean of a set of subspaces of equal dimension
via averaging.

The averaging process, considered in this paper, employs the intrinsic ge-
ometric structure of the underlying set and is also known as the computation
of the Karcher mean (in differential geometry, [5]), Fréchet mean or barycentre
(statistics), geometric mean (linear algebra and matrix analysis), or center of
mass (physics). General concepts of a geometric mean have been extensively
studied from both theoretical and practical points of view. To mention just a
few, they include probability theory and shape spaces [6, 7], imaging [8], linear
algebra and matrix analysis [9], interpolation [10], and convex and differential
geometry [11, 12].

An appropriate mathematical framework is given by the so-called Grassman-
nian, which assigns a differentiable manifold structure to the set of subspaces of
equal dimension. Usually, this is achieved by identification with a matrix quo-
tient space.4 In this work, we do not follow such an approach. By following [14]
instead, we identify the set of subspaces of equal dimension with a set of matri-
ces. More precisely, we consider the set of Hermitian projectors of fixed rank,
which inherits its differentiable structure from the surrounding vector space of
Hermitian matrices. In contrast to [14], we consider the complex case here. The
identification of the complex Grassmannian with Hermitian projection matrices
allows an accessible introduction of the geometric concepts such as geodesics,
parallel transport, and the Riemannian gradient of the Karcher mean function.

In general, computing the Karcher mean on a smooth manifold involves a
process of optimization, which by its own is of both theoretical and practical
interest. Various numerical methods have been developed on the Grassmannian,
such as a direct method [15], gradient descent algorithms [16], Newton’s method
[14], and conjugate gradient methods [17, 18].

In this work, we focus on the development of conjugate gradient methods.
These methods have been proven to be efficient in many applications due to their
trade-off between computational complexity and excellent convergence proper-
ties. In particular, we propose an efficient step-size selection for the interesting
case where the Grassmannian is equal to the complex projective space. More-
over, we outline how the developed method can be employed for blind identifi-
cation.

The paper is organized as follows. Section 2 recalls some basic concepts in
differential geometry, which make the present work intuitive and self-contained.
An abstract framework of conjugate gradient methods on smooth manifolds is
given in Section 3. In Section 4, the geometry of the Grassmannian is presented,
followed by a detailed analysis of the of the Karcher mean function in Section 5.
A geometric CG algorithm is given in Section 6 for the computation of the
Karcher mean on the Grassmannian in general, together with a particularly

4The set of m-dimensional subspaces of Cn is identified with Cn×m
∗ /GL(m), cf.[13], Cn×m

∗
is the set of full rank (n×m)-matrices, and GL(m) are the complex invertible (m×m)-matrices.
The equivalence relation is defined by X∼Y ⇔X=gY for some g ∈ GL(m).
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efficient step-size selection for the special case of the complex projective space.
In Section 7, we outline how the proposed approach of averaging subspaces
is evidenced to be useful in blind identification and a conclusion is drawn in
Section 8.

2. Differential geometric concepts

In this section, we shortly recall and explain the differential geometric con-
cepts that are needed for this work. We refer to [20] for a detailed insight
into differential and Riemannian geometry and for the formal definitions of the
mathematical objects, and to [13] for an introduction of the topic with a focus
on matrix manifolds.

Strictly speaking, a manifold M is a topological space that can locally be
continuously mapped to some linear space, where this map has a continuous
inverse. These maps are called charts, and since charts are invertible, we can
consider the change of two charts around any point in M as a local map from the
linear space into itself. M is a differentiable or smooth manifold, if these maps
are smooth for all points in M . Many data sets considered in signal processing
are subsets of such a manifold. Important examples are matrix groups, the set
of subspaces of fixed dimension, the set of matrices with orthonormal columns
(so-called Stiefel manifold), the set of positive definite matrices, etc.

To every point x in the smooth manifold M one can assign a tangent space,
consisting of all velocities of smooth curves in M that pass x. Formally, we
define

TxM := {α̇x(0) | α(t) ⊂M,αx(0) = x}. (1)

Intuitively, TxM contains all possible directions in which one can tangentially
pass through x. The elements of TxM are called tangent vectors at x.

A Riemannian manifold M is a smooth manifold with a scalar product
gx(·, ·) assigned to each tangent space TxM that varies smoothly with x, the so
called Riemannian metric. We drop the subscript x if it is clear from the context
which tangent space g refers to. The corresponding norm will be denoted by ‖·‖g.
The Riemannian metric allows to measure the distance on the manifold. As a
natural extension of a straight line in the Euclidean space, a geodesic is defined
to be a smooth curve in M that connects two sufficiently close points with
shortest length. The length of a smooth curve α : (a, b)→M on a Riemannian
manifold is defined as

L(α) =
∫ b
a

√
gα(t) (α̇(t), α̇(t)) dt. (2)

In Euclidean space, two velocities at different locations are both vectors in
this space. This allows to form linear combinations and scalar products of
these vectors. In the manifold setting, however, this is not possible, since these
velocities are elements in different (tangent) spaces. We hence need a way to
identify tangent vectors at x ∈ M with tangent vectors at y ∈ M if x 6= y. To
that end, we assume that there is a unique geodesic in M that connects x and y,
say γ(t), with γ(0) = x and γ(τ) = y, being possible if x, y are not too far apart.
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The parallel transport along γ(t) admits one way of identifying TxM with TyM .
A rigorous definition is beyond the scope of this work, but loosely speaking, the
transportation is done in such a way that during the transportation process,
there is no intrinsic rotation of the transported vector. In particular, this leaves
the scalar product between the transported vector and the velocity of the curve
invariant.

Certainly, such an identification of tangent vectors depends on the geodesic.
Consider for example a sphere with two different geodesics connecting the south
with the north pole (i.e. two meridians) that leave the south pole by an angle of
π/2. Parallel transporting the same vector along both meridians from the south
pole to the north will result in two antiparallel vectors at the north pole. Note
that the identification of different tangent spaces via parallel transport along a
geodesic is just one particular instance of a more general concept termed vector
transport in [13].

In order to minimize a real valued function on M , we have to extend the
notion of a gradient to the Riemannian manifold setting. To that end, recall
that if f : Rn → R is smooth in x, there is a unique vector G(x) such that

d
d tf(x+ tH)|t=0 = G(x)TH =: 〈G(x), H〉Euclid for all H ∈ Rn, (3)

where (·)T denotes transpose. Typically, we write ∇f(x) := G(x) and call it
the gradient of f at x. This coordinate free definition of a gradient can be
straightforwardly adapted to the manifold case. Let

f : M → R (4)

be smooth in x ∈M . There is a unique tangent vector G(x) ∈ TxM such that

D f(x)H := d
d t (f ◦ γ)(t)|t=0 = gx (G(x), γ̇(0)) (5)

for all geodesics γ with γ(0) = x and γ̇(0) = H. We denote the Riemannian
gradient as grad f(x) := G(x). Note, that the Riemannian gradient is a tangent
vector in the respective tangent space that depends on the chosen Riemannian
metric. It is unique due to the Riesz representation theorem. The following
special case is of particular interest. Let M be a submanifold of some Euclidean
space E with Riemannian metric induced by the surrounding space, i.e. the
Riemannian metric is obtained by restricting the scalar product from E to the
tangent spaces. In this setting, the normal subspace is the orthogonal comple-
ment of the tangent space. Assume furthermore, that the function f that is
to be minimized in (4) is in fact the restriction of a function f̂ that is globally
defined on the entire surrounding Euclidean space. If Πx denotes the orthogonal
projection from E onto the tangent space TxM , then the Riemannian gradient
is just the projection of the gradient of f̂ in E. In formulas, this reads as

grad f(x) = Πx∇f̂(x). (6)

4
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Figure 1: Illustration of the geometric conjugate gradient method.

3. A conjugate gradient method on manifolds

In this section, we recall one possibility of how to transfer the concept of
conjugate gradient (CG) methods to the manifold setting. We refer to [13]
for a more general approach that uses retractions on manifolds. Ultimately,
the latter approach might lead to a whole set of general methods to minimize
(4). The CG method is initialized by some x0 ∈ M and the descent direction
H0 := − grad f(x0) is given by the Riemannian gradient. Subsequently, sweeps
are iterated that consist of two steps, a line search in a given direction (i.e. along
a geodesic in that direction) followed by an update of the search direction. We
illustrate the CG method on manifolds in Figure 2. Several different possibilities
for these steps lead to different CG methods. Assume now that xi, Hi, and
Gi := grad f(xi) are given.

3.1. Line search

Given a geodesic γi with γi(0) = xi and γ̇i(0) = Hi, the line search aims
to find ai ∈ R that minimizes f ◦ γ : t → R. We propose two approximations.
The first is based on the assumption that f ◦ γ has its minimum near 0, which
under certain mild conditions follows from the fact that xi is already near the
optimum. The step-size is chosen via a one dimensional Newton step, cf. [17],
i.e.

aNewton
i := −

d
dt (f◦γ)(t)|t=0∣∣ d2

dt2 (f◦γ)(t)|t=0

∣∣ . (7)

The absolute value in the denominator is chosen for the following reason. While
being an unaltered one-dimensional Newton step in a neighborhood of a mini-
mum the step size is the negative of a regular Newton step if
d2

dt2 (f ◦ γ)(t)
∣∣
t=0

< 0 and thus yields non-attractiveness for critical points that
are no minima, cf. [21].

This approach, however, uses second order information of the cost function
and is often computationally too expensive. An alternative approach is the
Riemmanian adaption of the backtracking line search, described in Algorithm 1
below. The new iterate is then given by

xi+1 = γ(ai), (8)
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where ai is either obtained by backtracking or by Eq. (7).

Algorithm 1: Backtracking line search on manifolds

Step 1: Choose a > 0, c, ρ ∈ (0, 1) and set a← a;
Step 2: repeat until (f ◦ γ)(a) ≤ f(xi) + c a gx(Gi, Hi);

a← ρ a;
end repeat;

Step 3: Choose step-size abacktrack
i := a;

3.2. Search direction update

In order to compute the new search direction Hi+1 ∈ Txi+1
M , we need to

transport Hi and Gi, which are tangent to xi, to the tangent space Txi+1
M .

This is done via parallel transport along the geodesic γ, which we denote by

τ : Txi
M → Txi+1

M. (9)

The updated search direction is now chosen according to a Riemannian adap-
tion of the Hestenes-Stiefel formula, or any other CG formula known from the
Euclidean case, cf. [22]. Specifically, we have

Hi+1 = −Gi+1 + riτHi, (10)

where the most common formulas for ri read in the manifold setting as

rHSi = g(Gi+1,Gi+1−τGi)
g(τHi,Gi+1−τGi)

(Hestenes-Stiefel)

rPRi = g(Gi+1,Gi+1−τGi)
‖Gi‖2g

(Polak-Ribière)

rFRi =
‖Gi+1‖2g
‖Gi‖2g

(Fletcher-Reeves)

rDYi =
‖Gi+1‖2g

g(τHi,Gi+1−τGi)
(Dai-Yuan)

r∗i = − g(Gi+1,Gi+1−τGi)
g(Hi,Gi)

.

(11)

Albeit the nice performance in applications, convergence analysis of CG methods
on smooth manifolds is still an open problem. To the best of the authors’
knowledge, the only partial convergence result is provided in [23].

4. Geometry of the Grassmannian

The complex Grassmannian Grm,n is defined as the set of complex m-
dimensional C-linear subspaces of Cn. It provides a natural generalization of
the familiar complex projective spaces. We denote the unitary group by

Un := {X ∈ Cn×n|XHX = In}, (12)
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where (·)H denotes complex conjugate transpose, and In is the (n× n)-identity
matrix. For computational purposes it makes sense to identify the Grass-
mannian Grm,n with a set of self-adjoint Hermitian projection operators as

Grm,n := {P ∈ Cn×n | PH = P, P 2 = P, trP = m}, (13)

i.e. the smooth manifold of rank m Hermitian projection operators of Cn.
Here, tr(·) is the trace of a matrix. In the sequel we describe the Riemannian
geometry directly for the submanifold Grm,n of Cn×n. As we will see, this
approach has advantages that simplify both the analysis and the design of CG-
based algorithms. We begin by recalling facts about the complex Grassmannian
[24, 25]. Let

un :={Ω ∈ Cn×n|ΩH =−Ω} and Hermn := ı un (14)

denote the real n2-dimensional vector spaces of skew-Hermitian and Hermitian
matrices, respectively. Here we follow the terminology in group theory, with un
being the Lie algebra for the unitary Lie group Un. In particular, eun = Un,
where e(·) is the matrix exponential function.

Theorem 1. The Grassmannian Grm,n is a real, smooth, and compact sub-
manifold of Hermn of real dimension 2m(n − m) + 1. Moreover, the tangent
space at an element P ∈ Grm,n is given as

TP Grm,n = {PΩ− ΩP | Ω ∈ un}. (15)

It is useful for further analysis to define the linear operator

adP : Cn×n → Cn×n, adP (X) := [P,X] := PX −XP. (16)

Lemma 1. ([14] for the real case) For any P ∈ Grm,n the minimal polynomial
of adP is equal to s3 − s. Thus ad3

P = adP , i.e.,

ad2
P H = [P, [P,H]] = H ∀H ∈ TP Grm,n . (17)

In the sequel, we will always endow Hermn with the Frobenius inner product,
defined by

〈X,Y 〉 := tr(XY ). (18)

The Euclidean Riemannian metric gP on Grm,n induced by the embedding space
Hermn is defined by the restriction of (18) to the tangent spaces, i.e.

gP (H1, H2) = tr(H1H2) ∀P ∈ Grm,n and ∀H1, H2 ∈ TP Grm,n . (19)

Lemma 2. ([14] for the real case) Let P ∈ Grm,n be arbitrary. The normal
subspace at P in Hermn is given by NP Grm,n = {X − ad2

P X | X ∈ Hermn}.
The linear map

ΠP : Hermn → Hermn, X 7→ ad2
P X = [P, [P,X]] (20)

is the self-adjoint Hermitian projection operator onto TP Grm,n with kernel
NP Grm,n.

7



In general, a geodesic is a minimizer of the variational problem (2), i.e. it
is the solution of the corresponding Euler-Lagrange equation, the latter being a
second order ordinary differential equation. The following result characterizes
the geodesics on Grm,n.

Theorem 2. ([14] for the real case) The geodesics of Grm,n are exactly the

solutions of the second order differential equation P̈+[Ṗ , [Ṗ , P ]] = 0. The unique
geodesic P (t) with initial conditions P (0) = P0 ∈ Grm,n, Ṗ (0) = H ∈ TP0 Grm,n
is given by

PH(t) = et[H,P0] P0 e−t[H,P0] . (21)

Definition 1. We define the Riemannian exponential map as

expP0
: TP0 Grm,n → Grm,n, H 7→ PH(1). (22)

As outlined above, we need the concept of parallel transport along geodesics
to give vector addition a well defined meaning.

Lemma 3 ([26] for the real case). For P ∈ Grm,n and G0 ∈ TP Grm,n the
parallel transport of G0 along the geodesic PH(t) is given by

GH(t) = et[H,P ]G0 e−t[H,P ] . (23)

Note, that the complex case considered here follows by a straightforward
adaption of the proof of the real case in [26].

5. Karcher mean

5.1. The distance between two complex subspaces

In the first step we investigate the Riemannian distance of two complex
subspaces. For convenience, we denote the standard projector by

I :=
[
Im 0
0 0

]
. (24)

Let P ∈ Grm,n, and assume for the moment that P is sufficiently close to I, i.e.
that there is a unique geodesic emanating from I to P . Together with Eq. (21)
this implies the existence of a unique Z = Z(P ) ∈ B0 ⊂ C(n−m)×n where B0 is
a sufficiently small open ball around the zero matrix 0, such that

P = e

[
0 −ZH

Z 0

]
I e
−
[

0 −ZH

Z 0

]
. (25)

Hence, Z can be considered as a function of P , implicitly defined by (25).

Lemma 4 (cf. Fig. ??). With

Z(P ) :=
[

0 −ZH(P )
Z(P ) 0

]
, (26)

the geodesic distance from I to P is given by dist(I, P ) = ‖[Z(P ), I]‖.

8
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Figure 2: Illustration of the geometric conjugate gradient method.

Proof. Let γ(t) = etZ(P ) I e−tZ(P ) be the geodesic (21) emanating from I in
direction adZ(P )(I) with γ(1) = P . With γ̇(t) = etZ(P )[Z(P ), I] e−tZ(P ) and
by Eq. (2) we get∫ 1

0
‖γ̇(t)‖ d t =

∫ 1

0
‖[Z(P ), I]‖ d t = ‖[Z(P ), I]‖ =

√
tr[Z(P ), I]2 (27)

and the result follows.

Let U ⊂ Grm,n be a neighborhood around I and B ⊂ TI Grm,n such that
expI : B → U is one-one and onto. Consider the function

f : U → R, P 7→ dist2(I, P ). (28)

To calculate the derivative we use an equivalent expression of f , namely

f(P ) = − tr
(
I ad2

Z(P )(I)
)
. (28′)

Let H ∈ TP Grm,n be an arbitrary tangent vector. For the directional derivative
we will use the abbreviation Z ′ := DZ(P )H, cf. Eq. (5). Therefore

D f(P )H = −2 tr (I adZ(adZ′(I))) . (29)

For computing the Riemannian gradient, we need an expression for adZ′ . To
that end, note that Eq. (25) is equivalent to

P = eadZ(P )(I) (30)

and thus differentiating (30) with respect to P in direction H yields

D(P )H = H = eadZ
((

id− e
− adadZ

adadZ
(adZ′)

)
(I)
)
. (31)

Here, the operators eadZ and id− e
− adadZ

adadZ
have to be understood via their series

expansion and acting on the right as usual. By parallel transporting
[

0 KH

K 0

]
∈

TI Grm,n with K ∈ C(n−m)×m along the unique geodesic connecting I and P it
is easily seen that H ∈ TP Grm,n has the representation

H = eadZ
[

0 KH

K 0

]
. (32)

9



Using

K :=
[

0 −KH

K 0

]
(33)

and (32) a lengthy but straightforward computation including the decomposition

of the function x 7→ 1−e−x

x = sinh x
x + 1−cosh x

x into even and odd parts shows
that (31) is equivalent to[

0 KH

K 0

]
= adK(I) =

(
sinh adadZ

adadZ
(adZ′)

)
(I). (34)

By assumption on P being close enough to I, the selfadjoint operator
sinh adadZ

adadZ
is invertible. Exploiting now the representation property of the ad-operator,
i.e. [adX , adY ] = ad[X,Y ], as well as linearity and anti-selfadjointness, i.e.
tr(A adB(C)) = − tr(C adB(A)), we can conclude that (34) is equivalent to

Z ′ = ( sinh adZ
adZ

)−1(K). (35)

In summary,

D f(P )H = −2 tr
(
I adZ

(
ad( sinh adZ

adZ

)−1

(K)
(I)
))

= 2 tr
((

adI Z
)(

adI

((
sinh adZ

adZ

)−1

(K)
)))

= −2 tr
((

ad2
I Z︸ ︷︷ ︸

=Z

)((
sinh adZ

adZ

)−1

(K)
))

= −2 tr

(
Z
(

sinh adZ
adZ

)−1

(K)

)
= −2 tr(ZK).

(36)

The last equality in (36) is true by the self-adjointness of the operator ( sinh adZ
adZ

)−1

and x 7→ x
sinh x = 1 − x2

6 + O(x4) being an even function. In other words,

( sinh adZ
adZ

)−1 can be considered to act as the identity operator to the left onto Z
under the trace. Hence, critical points are characterized by

D f(P ) = 0 ⇐⇒ < tr(ZHK) = 0 ∀ K ∈ C(n−m)×m ⇐⇒ Z = 0. (37)

Together with Eq. (30) this yields that the unique critical point of f is given
by P = I, as one would expect.5 Moreover, from (36) we can compute the
Riemannian gradient of the function f by

D f(P )H = −2 tr(ZK) = 2 tr([Z, I][K, I])

= 2 tr(eZ [Z, I] e−Z eZ [K, I] e−Z) = tr(2[Z, P ]H).
(38)

Since 2[Z, P ] ∈ TP Grm.n and since the trace is the Riemannian metric we can
conclude, cf. (5), that

grad f(P ) = 2[Z, P ]. (39)

5f is defined in a neighborhood of I ensuring bijectivity of the Riemannian exponential.
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Up to here all our computations were done sufficiently close to the standard
projector I. As the Grassmannian is a homogeneous space, meaning that every
point P ∈ Grm,n can be transformed to any other point on Q ∈ Grm,n by
a suitable unitary matrix transformation P = ΘQΘH, Θ ∈ Un, we can now
transfer all our computations to an arbitrary element of Grm,n. Let Q ∈ Grm,n
be arbitrary, and let P be sufficiently close to Q. Analogous to (30), we can then
express P = e[ξ(P ),Q]Q e−[ξ(P ),Q] for unique ξ ∈ TQ Grm,n. Here, the tangent
vector ξ plays the role which

[
0 ZH

Z 0

]
played in (39). By a slight abuse of notation

we consider the distance function between these arbitrary P and Q

f : Grm,n → R, P 7→ tr ξξH = tr ξ2 = dist2(P,Q). (40)

Note, that by the above described invariance, the analogue of Eq. (37) yields
the critical point condition

D f(P ) = 0⇐⇒ ξ = 0. (41)

Theorem 3. The Riemannian gradient, with respect to the Euclidean metric,
of the function f , defined by (40), is given by

grad f(P ) = 2 ad[ξ,Q] P. (42)

Note that result (42) is in accordance with Proposition III 4.8 in [27].

Remark 1. One can derive further explicit formulas for the distance, however,
they are less well suited for gradient computations or numerics. Let P,Q ∈
Grm,n. For any given Θ ∈ Un such that P = ΘH I Θ we define[

Q1 Q2

QH
2 Q3

]
:= ΘQΘH. (43)

Let 1 ≥ λ1 ≥ · · · ≥ λm ≥ 0 denote the eigenvalues of Q1 ∈ Hermm. Then

dist(P,Q) =
√

2
∑m
i=1 arccos2(

√
λi) . (44)

Alternatively, let 1≥µ1≥· · ·≥µn−m ≥ 0 denote the eigenvalues of Q3. Then

dist(P,Q) =
√

2
∑n−m
i=1 arcsin2(

√
µi) . (45)

In particular, if P,Q ∈ Grm,n with Q = Y Y H and Y HY = Im, then

1
2 dist2(P,Q) = tr

(
arccos2((Y HPY )

1
2 )
)
. (46)

5.2. The Karcher mean

We now consider a geodesically convex open ball6 B ⊂ Grm,n containing all,
say N data points Qi. Note, that the Riemannian exponential map is bijective

6I.e. all points in B can be connected by a unique shortest geodesic contained completely
in B. E.g. for a sphere, the maximal geodesically convex open balls are open hemispheres.
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on B and thus the results from the last section carry over to the subsequent
analysis. Moreover, this assumption ensures that the Karcher mean is the unique
minimizer of the function defined by (48), [5]. This seems to be a sensible
assumption in many applications, where different data might be considered to
be different measurements of one and the same observable. Let us assume that
P ∈B and thus, for each i there exists a unique ξi∈TQiGrm,n with

P = expQi
(ξi) = e[ξi,Qi]Qi e−[ξi,Qi] . (47)

Let the Karcher mean function now be defined as

F : B → R, P 7→ 1
N

∑N
i=1 dist2(P,Qi). (48)

Adapting (28) and (26) accordingly, we get

F (P ) = 1
N

∑N
i=1 tr ξ2

i = − 1
N

∑N
i=1 trQi ad2

[ξi,Qi]Qi. (49)

As a generalization of (41) we get the well known fact [5, 12] that

DF (P ) = 0⇐⇒
∑N
i=1 e[ξi,Qi] ξi e−[ξi,Qi] = 0. (50)

The interpretation of this condition is as follows. Let P be the unique critical
point of F on B. Attaching a suitable coordinate chart around P tells us that in
this chart P is equal to the usual Euclidean geometric mean of the data points
Qi, expressed in exactly this chart.7 The Riemannian gradient of the Karcher
mean now follows immediately from Theorem 3.

Theorem 4. The Riemannian gradient of F , defined by (48), is as

gradF (P ) = 2
N

∑N
i=1 ad[ξi,Qi] P. (51)

5.3. Inverse of the Riemannian exponential

In the sequel we will present a procedure to explicitly compute the inverse
of the Riemannian exponential.

To that end, let Q ∈ Grm,n and B ⊂ TQ Grm,n be a neighborhood of 0 such
that expQ : B → expQ(B) is a bijection. Assume further that P ∈ expQ(B).
Thus, there exists a unique ξ ∈ B such that

P = e[ξ,Q]Q e−[ξ,Q] . (52)

From the previous section, it follows that tr ξ2 = dist2(P,Q). A partial task in
our optimization procedure will therefore be to compute ξ as a function of P
for a given Q in (52). Let Θ ∈ Un such that Q = Θ I ΘH. It follows that

ΘHPΘ = e[ξ̂,I] · I · e−[ξ̂,I] =: P̂ =
[
P̂11 P̂12

P̂H
12 P̂22

]
, (53)

7Such a chart is called Riemannian normal coordinate chart in the literature.
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with ξ̂ of the form

ξ̂ = ΘHξΘ =
[

0 −ZH

Z 0

]
. (54)

Using a singular value decomposition (SVD) as ZH =UΣTV H we arrive at the
representation[

UH 0
0 V H

]
P̂ [ U 0

0 V ]=e

[
0 −ΣT

Σ 0

]
· I · e−

[
0 −ΣT

Σ 0

]

=

 cos
√

ΣTΣ −ΣT sin
√

ΣΣT√
ΣΣT

sin
√

ΣΣT√
ΣΣT

Σ cos
√

ΣΣT

·I·
 cos

√
ΣTΣ ΣT sin

√
ΣΣT√

ΣΣT

− sin
√

ΣΣT√
ΣΣT

Σ cos
√

ΣΣT


=

 cos2
√

ΣTΣ −ΣT cos
√

ΣΣT sin
√

ΣΣT√
ΣΣT

cos
√

ΣΣT sin
√

ΣΣT√
ΣΣT

Σ sin2
√

ΣΣT


=

 cos2
√

ΣTΣ −ΣT sin 2
√

ΣΣT

2
√

ΣΣT

sin 2
√

ΣΣT

2
√

ΣΣT
Σ sin2

√
ΣΣT

 .

(55)

The above matrix valued trigonometric functions have to be interpreted via
their series expansion. To be more precise, the matrix Σ is a rectangular diago-
nal matrix, and therefore ΣΣT, ΣTΣ, and their corresponding square roots are
diagonal (but square) as well. For i ≤ m the ii−th entry of cos2

√
ΣTΣ equals

the squared cosine of the i−th singular value of Σ, i.e. it equals cos2 σi, and
equals 1 otherwise. The right-hand side of (55) can be efficiently computed via

a CS-decomposition [28] of Y , where P̂ =Y Y H with Y HY =Im, or equivalently

by an SVD of P̂12. Using inverse trigonometric functions, ξ can now be con-
structed from (54). Ultimately, we have explicitly constructed the inverse of
the Riemannian exponential map on Grm,n.

6. A conjugate gradient algorithm for computing the Karcher mean
on the Grassmannian

In the last sections, all ingredients have been derived for a geometric CG
algorithm as described in Section 3. Here, we focus on its implementation
and provide an explicit pseudo code for computing the Karcher mean of a set
of complex subspaces. Note that a projector P can be uniquely expressed as
P = XXH, where X is an element of the complex Stiefel manifold

Stm,n := {X ∈ Cn×m|XHX = Im}. (56)

In order to compute the gradient of the Karcher mean function, the results in
Section 5 require that after computing the tangent directions ξi ∈ TQi

Grm,n in
(47), one needs to parallel transport them back to TP Grm,n, i.e. e[ξi,Qi] ξi e−[ξi,Qi] ∈
TP Grm,n. The gradient of the Karcher mean function is simply the sum of all
the parallel transported vectors in TP Grm,n according to (51).
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Algorithm 2: Riemannian gradient of the Karcher mean on Grm,n

Input : Yi ∈ Stm,n for i=1, . . . , N and [X1 X2] ∈ Un with X1 ∈ Stm,n;
Step 1 : for i = 1, . . . , N do;

Compute the SVD of XH
1 YiYi

HX2 = UiΣiVi
H;

Compute Λi := UH
i X

H
1 YiYi

HX1Ui

Step 2 : Compute Z =
N∑
i=1

[
0 −ZH

i

Zi 0

]
with

−ZH
i = Ui

[
arccos

√
Λi 000

]
Vi

H ∈ Cm×(n−m);
Output: The Riemannian gradient

gradF (X1X
H
1 ) = −

[
X1 X2

]
Z
[
X1 X2

]H
;

Now let N complex subspaces {Qi} ⊂ Grm,n be given, and let Yi1 ∈ Stm,n,
for i = 1, . . . , N , be the respective set of N unitary bases. For a given ini-
tialization P ∈ Grm,n with its representation X ∈ Stm,n, we summarize a CG
algorithm for computing the Karcher mean of the Qi’s in Algorithm 3.

Algorithm 3: A CG for computing the Karcher mean on Grm,n

Input : Stiefel matrices Yi ∈ Stm,n for i = 1, . . . , N ;

Step 1 : Generate an initial guess [X
(1)
1 X

(1)
2 ] ∈ Un and set i = 1;

Step 2 : Compute H(1) = − gradF (X(1)X(1)H) using Algorithm 2 ;
Step 3 : Set i = i+ 1;

Step 4 : Update [X
(i+1)
1 X

(i+1)
2 ]← ea[Hi,X

(i)
1 X

(i)
1

H
][X

(i)
1 X

(i)
2 ], where a is

computed via backtracking line search as in Algorithm 1;

Step 5 : Update H(i+1) ← −G(i+1) + r GHi
(a), where

G(i+1) = gradF (X(i+1)X(i+1)H),

and r is chosen according to Eq. (11);

Step 6 : If i mod (2m(n−m)− 1) = 0, set H(i+1) ← −G(i+1);

Step 7 : If
∥∥G(i+1)

∥∥ is small enough, stop. Otherwise, go to Step 3;

As mentioned in Section 3, instead of employing a backtracking line search
for selecting an optimal step size at each conjugate direction in Step 4 in Al-
gorithm 3, one can use a one dimensional Newton step instead. Applying this
approach to a general Grassmannian requires the calculation of the first and
second derivatives of eigenvalues and eigenvectors of a Hermitian matrix valued
function Y H

i P (t)Yi, cf. (44). Unfortunately, this approach is not well defined
when the corresponding eigenvalues are multiple.

In the rest of this section, we derive a Newton step size selection as in (7) for
the special case where m = 1, i.e. the complex projective space CPn−1 = Gr1,n.
Let Qi = yiy

H
i ∈ CPn−1, i = 1, . . . , N be a given set of data points with yi ∈ Cn

14



statisfying ‖yi‖ = 1. We define

λi(t) := yHi P (t)yi, (57)

where P (t) is defined by (21), and by abuse of notation we set λi = λi(0). The
first and second derivatives of the Karcher mean F can be computed as

d
d ε (F ◦ P )(ε)|ε=0 = tr(gradF (P (0))Ṗ (0)), (58)

and

d2

d ε2 (F ◦ P )(ε)|ε=0 = d2

d ε2 2
∑n
i=1 arccos2

√
λi(ε)

∣∣∣
ε=0

= 2 d
d ε

∑n
i=1 arccos

√
λi(ε)

−λ̇i(ε)√
λi(ε)−λi(ε)2

∣∣
ε=0

= 2
∑n
i=1

(
λ̇2
i

λi−λ2
i
− 2(λi−λ2

i )λ̈i−λ̇2
i (1−2λi)

2(
√
λi−λ2

i )3
arccos

√
λi

)
,

(59)

respectively. Finally, a one dimensional Newton step can be computed according
to Eq. (7).

7. An application in blind identification

We outline how the above described computation of the Karcher mean can
be applied to the problem of Blind Identification (BI). A simple instantaneous
BI model assumes that the observation is a linear combination of some unknown
sources, i.e.

w(t) = As(t), (60)

where A ∈ Cn×n is the full rank system matrix and w(t) presents n observed
linear mixtures of n sources s(t). Blind identification aims to estimate the
system matrix A and various algorithms have been developed for this task, cf.
[29, 30]. Recall, that the system matrix A can be estimated only up to an
arbitrary complex scaling and permutation of the columns, cf. [30]. Thus it is
reasonable to consider estimates of columns of A as elements in the complex
projective space CPn−1 := Gr1,n. We refer to [19] for an approach on how to
include the full rank constraint of A into this setting.

It is known that performance of BI methods are sensitive to the distribution
of noise, cf. [31, 32]. In other words, different distributions for the noise might
lead to different optimal estimation of the system matrix. In particular, when
system noise is present that varies over time, the matrix A can no longer be
guaranteed to be estimated correctly by a single process. To overcome this
difficulty, an intuitive idea is to simply average over sub-optimal estimations of
the system. A similar approach has been investigated in [33], where a Karcher
mean based method is proposed for solving the real and whitened ICA problem.
Unfortunately, its applications are limited to the cases with stationary signals
and noise.
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Our experiments employ the following noisy model

wi(t) = (A+ εiZi)si(t), i = 1, . . . , N, (61)

where A is the ground truth system matrix, Zi ∈ Cn×n models system noise,
εi > 0 represents the noise level, and si(t) denotes the unknown signals. Both,
real and imaginary parts of all entries of the ground truth system matrix A are
drawn from a normal distribution. Perturbations Zi are applied to the system
matrix, where the real and imaginary part of each entry of Zi are drawn from
a uniform distribution on the interval [−0.5, 0.5].

A popular BI algorithm is the so-called Strong Uncorrelated Transform
(SUT), cf. [34]. It uses the assumption that the source signals are uncorre-
lated and non-circular with distinct circularity coefficients. A joint diagonalizer
of both the covariance and the pseudo-covariance matrix of the observations
serves as an estimation of the inverse of the system matrix A. We employ the
SUT for each of the N subproblems to get N estimates of A. After apply-
ing a suitable preprocess, we may assume that corresponding columns of the
estimates are aligned, cf. [35] for more details, and thus we neglect the permu-
tation ambiguity in our experiments. The overall estimate is given by column
wise computing the Karcher mean of the solutions of the sub-problems. Iden-
tification performance of the proposed method is measured by the normalized
Amari error, cf. [36], defined as

J(Â, A) := 1
m

 m∑
i=1

m∑
j=1
|bij |

max
j
|bij | +

m∑
j=1

m∑
i=1
|bij |

max
i
|bij |

− 2, (62)

where Â is an estimation of A, and B = (bij)
m
i,j=1 = Â−1A. In general, the

smaller the Amari error, the better the identification of the system matrix.
In our experiments, we compare the proposed Karcher mean method to a

simple standard approach, referred to as the Euclidean mean approach. Thereby,
all solutions produced by SUT are summed up and the columns of the obtained
matrix are normalized to have unit norm. First of all, we investigate the per-
formance of both methods against the number of estimations N . We fix n = 5
and run N = 100 experiments per number of estimations. As the box plots
of Amari errors in Figure 3 and Figure 4 suggest, both Karcher and Euclidean
subspace averaging methods admit a consistently increasing performance with
an increasing number of estimations. In our second experiment, we choose a
various number of noise levels εi ∈ {1, 0.5, 0.2, 0.1, 0.01} and fix the number of
estimations N = 10. As shown in Figure 5, the Karcher mean approach outper-
forms the Euclidean counterpart consistently and its advantage is considerably
higher, the more noise is present.

8. Conclusion

This work focuses on the problem of averaging complex subspaces of equal di-
mension by computing their Karcher mean, which is under mild assumptions the
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Figure 3: Performance of subspace averaging via Karcher mean.
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Figure 4: Performance of subspace averaging via Euclidean mean.

unique minimum of a well defined smooth function on the complex Grassman-
nian. An accessible introduction to the geometric structure of the Grassmanian
is provided by its identification with the set of Hermitian projectors. In par-
ticular, explicit formulas for geodesics, parallel transport, and the Riemannian
gradient of the Karcher mean function are given, which, in contrast to other
formulas available in the literature, are well suited for implementation.
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Figure 5: Comparison of performance (left = Euclidean, right = Karcher).

These results are used to propose an intrinsic conjugate gradient algorithm
on the Grassmannian for computing the Karcher mean. We present experiments
and outline the usability of such an approach in blind identification.

References

[1] A. Srivastava, E. Klassen, Bayesian and geometric subspace tracking, Ad-
vances in Applied Probability 36 (2004) 43–56.

[2] T. Adalı, S. Haykin, Adaptive Signal Processing: Next Generation Solu-
tions, Adaptive and Learning Systems for Signal Processing, Communica-
tions and Control, Wiley-IEEE Press, 2010.

[3] P. Turaga, A. Veeraraghavan, A. Srivastava, R. Chellappa, Statistical com-
putations on Grassmann and Stiefel manifolds for image and video-based
recognition, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33 (2011) 2273–2286.

[4] L. Simonsson, L. Eldén, Grassmann algorithms for low rank approximation
of matrices with missing values, BIT 50 (2010) 173–191.

[5] H. Karcher, Riemannian center of mass and mollifier smoothing, Commun.
Pure Appl. Math. 30 (1977) 509–541.

[6] W. S. Kendall, Probability, convexity, and harmonic maps with small
image. I: Uniqueness and fine existence, Proc. Lond. Math. Soc., III. Ser.
61 (1990) 371–406.

18
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