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Abstract

The sphere decoder (SD) is an attractive low-complexity alternative
to maximum likelihood (ML) detection in a variety of communication
systems. It is also employed in multiple-input multiple-output (MIMO)
systems where the computational complexity of the optimum detector
grows exponentially with the number of transmit antennas. We propose
an enhanced version of the SD based on an additional cost function de-
rived from conditions on worst case interference, that we call dominance
conditions. The proposed detector, the king sphere decoder (KSD), has
a computational complexity that results to be not larger than the com-
plexity of the sphere decoder and numerical simulations show that the
complexity reduction is usually quite significant.

1 Introduction
Currently, system design for wireless communications assumes the presence of
multiple antennas at both transmit and receive locations in order to meet the
requirements for high data rate transmission [1]. The main reason is found in the
equivalent multiple-input multiple-output (MIMO) channel providing diversity
and/or capacity gains to the system, where in the last case, compared to single-
antenna systems, capacity is increased by a factor equal to the minimum number
of transmit and receive antennas.

The problem of (optimal) maximum-likelihood (ML) decoding in MIMO
systems is known to be exponentially complex in the number of transmit anten-
nas [2,3]. Various suboptimal algorithms have been developed as low-complexity
alternatives to ML decoding, e.g. branch and bound techniques [4], lattice-
based approaches [5] and other tree-search algorithms as the A* algorithm [6].
A comprehensive study highlighting the connections among various approaches
for low-complexity ML decoding in wireless communications is found in [7].

In the framework of communication and information theory, the term sphere
decoder (SD) usually refers to a collection of extremely efficient algorithms based
on number-theoretic tools, providing optimal or nearly-optimal solutions with
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reduced average computational complexity with respect to the exhaustive search
of standard ML decoding. Inspired from the work on vector search in lat-
tices [8, 9], various SD algorithms have been proposed, e.g. for ML sequence
estimation in channels with memory [10] and ML decoding for multidimen-
sional modulations in fading channels [11]. SD has been then extended in the
context of multiantenna systems, both for uncoded and space-time coded trans-
missions [12]. Description and performance comparison of different methods for
SD-based ML decoding are found in [13,14]: both works conclude that Schnorr–
Euchner-based SD (SESD) outperforms other SD variants. Furthermore, the
limitation of the algorithm to underloaded scenarios, i.e. with number of trans-
mit antennas not exceeding the number of receive antennas, has been tackled
in successive works dealing with optimal decoding in (underdetermined) over-
loaded systems [15–17]. It is worth noticing that some works showed that the
expected complexity of SD is polynomial for a wide range of number of an-
tennas and signal-to-noise ratio (SNR) values [18, 19], however according to a
more rigorous definition of expected complexity other works state that SD ex-
hibits reduced (w.r.t. ML) exponential complexity [20]. Other SD algorithms
approaching near-ML performance and suitable for implementation with very
large scale integration (VLSI) architectures have been proposed in [21].

A different approach for ML decoding, based on dominance conditions, has
been studied in [22–24] for systems adopting BPSK or QPSK modulation, and
then extended in [25] to arbitrary-size PSK modulation. Such an algorithm,
namely king decoder (KD), provides the ML solution and thus it is optimal
from the point of view of Symbol Error Rate (SER) performance. Two major
advantages are: (i) no matrix inversion and/or factorization is needed; (ii) the
same algorithm applies to both underloaded and overloaded systems.

The main contribution of this paper is an enhanced version of SD, which is
based on an additional cost function derived from dominance conditions, thus
exploiting the properties of KD. The new algorithm presents a significantly
reduced computational complexity, measured as the average number of visited
nodes, w.r.t. the classic SD.

The rest of the paper is organized as follows: in Section 2 we present the
mathematical model for the system under investigation; Section 3 describes the
SD; dominance conditions, representing the core of the improving innovation,
are analytically studied in Section 4; the proposed KSD for MIMO detection is
described in Section 5; in Section 6 we show and compare the performance in
terms of computational complexity obtained via numerical simulations; finally,
concluding remarks are given in Section 7.

Notation - Lower-case bold letters denote vectors, with an denoting the nth
entry of a; upper-case bold letters denote matrices, with an,m and am denoting
the (n,m)th entry and the mth column of A, respectively; E {·}, (·)∗, (·)T ,
(·)H , and ‖·‖2, denote expectation, conjugate, transpose, conjugate-transpose
and squared Frobenius norm operators, respectively.
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2 System Model
We consider a narrowband MIMO system with K transmit antennas and N
receive antennas, described by the following vector model

y = Hx + n, (1)

where y ∈ CN is the received vector, whose entry yi represents the signal re-
ceived by the ith receive antenna; H ∈ CN×K is the channel matrix, whose
entry hij represents the fading coefficient between the jth transmit antenna
and the ith receive antenna; x ∈ CK is the transmitted vector, whose entry
xj represents the symbol transmitted by the jth transmit antenna; n ∈ CN is
the additive noise vector modeled according to a zero-mean complex Gaussian
distribution with variance E

{
nnH

}
= η0IN . Transmitted symbols are drawn

from a finite set of complex symbols χ which depends on the specific chosen
modulation scheme. The channel vector from the kth transmit antenna is hk,
i.e. the kth column of channel matrix. Also, we assume perfect channel state
information at the receiver.

The problem of optimal decoding x from the knowledge of y is formulated
as follows

xML = arg min
x∈χK

‖y −Hx‖2 (2)

where exhaustive search is apparently prohibitive for sizes of interest, thus the
need for low-complexity alternatives. Assuming the constraint that the total
average energy to be transmitted over the single symbol period cannot exceed
Ex, system performance are evaluated with respect to the SNR per single receive
antenna, i.e. SNR , Ex/η0.

It is worth noticing that other kinds of systems for multiuser communica-
tions, such as direct-sequence code-division-multiple-access (DS-CDMA) [2] and
multi-carrier code-division-multiple-access (MC-CDMA) [26], share the same
linear model with additive noise described by (1).

3 Sphere Decoder
The idea of sphere decoding is to restrict the search to transmitted vectors
whose received constellation counterparts are included in a hyper-sphere with
radius r centered on the received signal y, that is

‖y −Hx‖2 < r2. (3)

If the sphere contains no vectors the algorithm either fails or restarts with an
increased radius. In the latter case the result of the algorithm is always the
optimal ML solution, obtained with reduced computational complexity when
the number of vectors in the sphere is small compared to the overall number
of possible transmitted vectors, i.e. |χ|K . The choice of the radius is crucial in
order to obtain a computational complexity gain; in the ideal case the sphere
should include just one vector.

The test in (3) is efficiently performed by exploiting the QL (corresp. QR)
factorization of the channel matrix H in terms of a unitary matrix Q (i.e.
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QHQ = IN ) and a lower-triangular matrix L (corresp. upper-triangular matrix
R). In this case (2) can be equivalently formulated as

xML = arg min
x∈χK

‖ỹ − Lx‖2 (4)

= arg min
x∈χK

K∑
i=1

∣∣∣∣∣∣ỹi −
i∑

j=1

lijxj

∣∣∣∣∣∣
2

, (5)

where ỹ , QTy. The QR factorization enables the test in (3) to be formulated
as a tree search with pruning [7]. In fact the summation in (5) can be performed
on a tree with K + 1 layers where the term∣∣∣∣∣∣ỹi −

i∑
j=1

lijxj

∣∣∣∣∣∣
2

, (6)

can be computed at each node of the layer i. The advantage of this formulation
is that the partial distance in (6) is always positive; this fact implies that the
children nodes have always greater partial distances, i.e. the metric is said to be
cumulative. Therefore at each node at layer i we can compute the accumulated
partial distance

i∑
k=1

∣∣∣∣∣∣ỹi −
i∑

j=1

lijxj

∣∣∣∣∣∣
2

, (7)

and compare it with a threshold, corresponding to r2. The algorithm selects
only the nodes leading to leaves that are within a sphere and at the same time
computes the metric that will be used at the end to select the optimal solution.
As stated before, if no leaves are contained in the sphere then the radius is
increased and the search on the tree is restarted.

There are two possible strategies to perform the tree search: the breadth-first
search (BFS) and the depth-first search (DFS) [7]. In the breadth-first search,
all surviving nodes of the same level are visited before moving to the next level,
until the leaves are reached. In the depth-first, at each level only one node is
visited, and following its child in K steps a leaf is reached. At this point the
radius is updated and the algorithm proceeds with other nodes starting from
upper levels. While in BFS the tree is traversed from top to bottom, in DFS
the tree is traversed horizontally. In the latter case the algorithm can be started
with an infinite radius as it can be updated as soon as the first leave is reached.
The performance of the SD algorithm can be improved by choosing a proper
enumeration order. In Fincke-Pohst enumeration [8] branches are enumerated
in a natural fashion, while in Schnorr-Euchner enumeration [9,13] branches are
selected in a zig-zag fashion for QAM constellations along each dimension [14].

The computational complexity of the sphere decoding algorithm is measured
by the average number of visited nodes needed to obtain (4) [20]. That figure is
closely related to the time required by the algorithm to provide the solution and
clearly related to the throughput that is achievable in currently available digital
hardware [27]. The computational cost of QL factorization is not considered
here, since it is computed once for all and it represents a negligible factor in the
overall complexity.
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4 Dominance Conditions
In the sphere decoding algorithm at each node the partial distance is checked in
order to exclude some branches in the tree. Another condition can be derived
from the Euclidean distance that can improve the computational complexity
of the sphere decoder. In this section we derive a set of sufficient conditions
that can be used to exclude some possible transmitted vectors from the set of
candidates in the ML search.

Geometrically the ML solution is given by the vector x that minimizes the
Euclidean distance

f (x) = (y −Hx)
H

(y −Hx) . (8)

We first define the difference of the Euclidean distance between two generic
points of χK .

Definition 1. Given two generic vectors x and x̂, with {x, x̂} ∈ χK , the discrete
difference is defined as ∆f (x; x̂) , f (x)− f (x̂) .

Definition 2. The discrete difference related to vectors differing only in the
kth component is called kth discrete difference along the kth coordinate and
denoted ∆kf (x; x̂).

A necessary and sufficient condition for x to be a global minimum for the
cost function f (x) is then that all discrete differences ∆f (x; x̂) are non positive
for each x̂ ∈ χK . The search of the global minimum just by looking at the
differences does not reduce the computational complexity of the ML search
alone. The number of differences to compute is still exponential with the number
of inputs and the size of the constellation. However, as it will be clearer in the
following, we can avoid to look at all differences and still get the optimal solution.

In the special case of the Euclidean distance the discrete difference along the
generic kth coordinate takes on a specific expression, as stated by the following
proposition.

Proposition 1. For any pair of vectors x and x̂ that belong to χK and differ
only in the kth position

∆kf (x; x̂) = −2<

(xk − x̂k)
∗

hHk y −
∑
i6=k

xih
H
k hi


+
(
|xk|2 − |x̂k|2

)
hHk hk. (9)

Proof. See appendix 8.

The kth discrete difference in (9) depends on the observed vector y and on
the symbols of the other elements of the input vector x, i.e. xi, i 6= k. The
sign of the discrete difference ∆kf (x; x̂) determines which of the two possible
transmit vectors x and x̂ is closer to the observation y.

The discrete difference expression in (9) can be simplified if a constellation
with constant modulus is employed, as the second term on the right hand side
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of (9) becomes zero. In this case the discrete difference reduces to

∆kf (x; x̂) =

− 2<

(xk − x̂k)
∗

hHk y −
∑
i 6=k

xih
H
k hi

 . (10)

4.1 Dominance conditions for 4-QAM
Since 4-QAM constellations are separable, we can equivalently consider a real-
valued system model, whose dimensions are doubled, with binary signaling, i.e.
χ = {−1,+1}. In the following, theoretical results will be derived referring to
the real-valued system model. In this case, the kth discrete difference is

∆kf (x; x̂) = −2 (xk − x̂k)

hTk y −∑
i6=k

xih
T
k hi

 . (11)

Eq. (11) can be used to make an optimal decision under the assumption that
the contribution due to the other components of vector x are known. From (11),
a necessary condition can be derived for BPSK constellations as follows. The
discrete difference is non positive when the two terms on the right-hand side of
(11) have the same sign

sign (xk − x̂k) = sign

hTk y −∑
i6=k

xih
T
k hi

 . (12)

Note however that in the binary case there exists only one adjacent point, i.e.
x̂k = −xk, and the above equation can be written as

sign (2xk) = sign

hTk y −∑
i 6=k

xih
T
k hi

 , (13)

that can be equivalently rewritten as

xk = sign

hTk y −∑
i 6=k

xih
T
k hi

 . (14)

From (14) we have that the ML solution must satisfy the set of equations

xML
k = sign

hTk y −∑
i6=k

xML
i hTk hi

 , k = 1, . . . ,K (15)

which provide the set of local minima of the Euclidean distance, thus represent-
ing a necessary condition for the ML solution, as for these points all the kth
discrete differences are non positive.

It is interesting to note that the same set of equations has been derived
in the context of Hopfield neural network (HNN) [28, 29] and applied to ML
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decoding. In [30, 31], detectors for code division multiple access (CDMA) have
been proposed for the first time and then the idea has been further developed
in [32–35]. The Eq. (14) represents the discrete-time approximation of the
equation of motion of neurons, as the metric of ML optimum detector can be
mapped to the energy function of the HNN and the ML solution is the result
of the dynamic update of (14) (see for example [35] and references therein).
Therefore the search is based on a gradient descent algorithm that may not
provide the exact ML solution, but rather only a local minimum. Furthermore
when the updates of the discrete-time equations are done in parallel, the solution
may also present limit cycles and no convergence to a fixed point [36]. In order to
prevent the updating rule to enter a limit cycle and to force the dynamic update
through increasing likelihood towards the global minimum, in [37] a modified
HNN approach to ML decoding is proposed, leading to a family of likelihood
ascent sub-optimal detectors (LAS). All these algorithms are sub-optimal and
can approach optimal performances only under specific conditions.

The necessary conditions in (15) suggest to restrict the search for the ML
solution to the set of local minima. Unfortunately, no method is known to
enumerate all equilibrium points, i.e. points that satisfy (15) with a compu-
tational complexity that it is not exponential. However, we can still identify
cases where the determination of the sign of the kth discrete difference, i.e. the
determination of the kth component of local minima, can be made regardless
of the contribution of all other components of x. A sufficient condition for the
determination of the sign of the kth discrete difference is given by the following
proposition.

Proposition 2. If the following condition is satisfied∣∣hTk y∣∣ >∑
i 6=k

∣∣hTk hi∣∣ (16)

then the sign of the corresponding kth discrete difference for BPSK constellation
is determined regardless of the contribution of all other components of x.

Proof. See appendix 9.

Eq. (16) is a dominance condition because, when it holds, the kth component
of the projected received vector is so strong that dominates all other components.
The dominance condition assumes that in (16) no symbols xi, i 6= k, are known.
However, in sequential decoding, partial knowledge may be available. In such
cases the sign of the discrete difference depends only on the subset of xi that are
still to be decoded. A dominance condition when only a subset W of symbols
is already available, can be given.

Proposition 3. Given the set of known symbols W and a set of unknown
symbols O, if the following condition holds∣∣∣∣∣∣hTk y −

∑
m∈W,m 6=k

xmhTk hm

∣∣∣∣∣∣ >
∑

i∈O,i6=k

∣∣hTi hk∣∣ , (17)

then the sign of the corresponding kth discrete difference for BPSK constellation
is determined regardless of the contribution of all components of x, xi, i ∈ O.
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Proof. Analogous to the proof of Prop. 2.

Eq. (17) generalizes (16): if some antenna i is not dominant over his mul-
tiantenna interference, it may happen that it is conditionally dominant, as the
interference by the already known bits is canceled out.

The sufficient condition in (16) was also derived in [33], where it has been
used in a multiuser detection algorithm based on Hopfield Neural Networks.
Eqs. (16) and (17) have also been used in [22] for maximum-likelihood sequence
detection and then in [23] with a preprocessing algorithm for multiuser detec-
tion. In [24] they have been used for a stand-alone tree-search algorithm for
low-complexity ML detection in spatial multiplexing MIMO systems, the king
decoder.

Eqs. (16) and (17) are satisfied if the off-diagonal terms of the channel cor-
relation matrix are small compared to the terms

∣∣hTk y∣∣, k = 1, . . . ,K. Whether
the conditions are satisfied or not depends on the received vector y and on the
structure of the channel or of the correlation channel matrix.

4.2 Dominance conditions for M-QAM
In the case of M -QAM constellations, dominance conditions can be expressed
in terms of those for 4-QAM, when M = 2n and n is an even number, e.g.
16-QAM. In fact such QAM constellations can be written as weighted linear
combination of n/2 4-QAMs [15]. For example, the 16-QAM transmit vector
can be expressed as

x = x1 + 2x2 (18)

where x1,x2 are 4-QAM vectors. Consequently, the system model (1) can be
written as

y =
[
H 2H

]( x1

x2

)
+ n (19)

which represents the equivalent model for 16-QAM MIMO systems with K
transmit and N receive antennas in terms of 4-QAM MIMO system with 2K
transmit and N receive antennas. Based on this equivalence, we can restrict
our attention to 4-QAM MIMO systems without loss of generality.

4.3 Dominance conditions for M-PSK
It is possible to derive analogous dominance conditions in the general case of
M -PSK, however in this case the real-valued system model does not hold. Dom-
inance conditions based on the complex-valued system model have been derived
and analyzed in [25]. Results are not reported here, as they are not necessary
for popular systems supporting QAM.

5 King Sphere Decoder
The main contribution of this paper is the integration of the conditions (16)
and (17) in any sphere decoding algorithm. The idea that we propose is to use
the conditional dominance condition given by (17) at each node of the decoding
tree in addition to the partial distance condition of the standard sphere decoding
algorithm. The dominance conditions, when satisfied, allow to cut branches off

8



Figure 1: Tree-search algorithm for a system with N = 5 and K = 5 antennas.
The transmitted bit vector is x = (1,−1,−1,−1, 1)

T . Paths with stars are
provided by the dominance conditions alone, while the path with square nodes
is the ML solution

that cannot correspond to the optimal solution and then reduce the number
of the visited nodes, i.e. the computational complexity of the search. The
operation of the proposed algorithm is shown with the help of Fig. 1 that shows
a decoding tree for a system with N = 5 and M = 5 antennas. At each node
we can check whether (17) is satisfied or not. For example the node pointed by
the arrow corresponds to the dominance condition∣∣hT3 y − hT3 h2x2 − hT3 h1x1

∣∣
x1=1,x2=1

> ∣∣hT3 h4

∣∣+
∣∣hT3 h5

∣∣ . (20)

If the condition is satisfied then a decision on the corresponding bit can be made
and only one of the two branches that departs from that node is selected, and
half of child nodes can be cut off. In our example such condition is satisfied and
a decision on bit 3 can be made: x3 = −1, if x1 = 1 and x2 = 1 or, equivalently,
we can exclude all the vectors that have x1 = 1, x2 = 1, x3 = 1. At the end we
obtain a set of possible ML solutions, as shown in Fig. 1, where only 6 out of
32 paths survive.

The tree-search algorithm that makes use of the (conditional) dominance
conditions alone has already been presented in [24,25], where it has been called
king decoder (KD). In general at the end of the tree-search the selection of the
optimal solution is made among the survivors by computing the corresponding
metric and then the last step of the search involves the computation of Euclidean
distances for all survivors. In KD rather than compute the Euclidean distance
at the end of the enumeration process, a different equivalent metric, that is
cumulative and re-uses the computations done for dominance conditions, has
been introduced [24].

We propose in this paper the inclusion of the dominance conditions as an ad-
ditional step in a generic tree-search algorithm for ML decoding. For simplicity
we restrict our attention to sphere decoding and we show that at the expenses
of a marginal increase of computational complexity at each node, a significant
reduction of the average number of visited node can be achieved. By integrating
the dominance conditions into sphere decoding, we can exclude points that can-

9



Algorithm 1 Generic tree-search algorithm (adapted from [7])

reset_tree() {initialize the tree}
init_search() {ex.: reset partial distance}
init_ACTIVE() {Create an empty list of active nodes}
cn = root {current node (cn) is root}
//– Main loop
while cn is not empty do
if cn is not a leaf then
if cn is a valid node then
get valid child nodes of cn
sort valid child nodes
insert valid child nodes in ACTIVE
update node counter

end if
else
select best node
update bounding function

end if
get next node in ACTIVE

end while
//
if best node is empty then
restart with a reduced radius

else
get the ML solution corresponding to the best node

end if

not be ML solution before checking if they lie within the sphere. At the end of
the tree-search the partial metric computation carried on by the sphere decoder
can be used to select the optimal solution. We call this enhanced version of the
sphere decoder, king sphere decoder (KSD).

We consider the formulation of a generic tree-search algorithm based on the
pseudo-code provided by Murugan et al. in [7] which describes a generic branch-
and-bound algorithm. More generally in a tree-search algorithm at each node a
decision is made based on a boolean condition that it is not necessarily expressed
as a cost function compared to a bounding function, but as combination of
several boolean conditions.

In the algorithm, ACTIVE contains an ordered set of nodes to be visited. The
data structure used to implement ACTIVE determines the traverse strategy in
the tree. In case of BFS a queue data structure can be employed, while a stack is
suitable for DFS. The algorithm starts with the initialization of the radius, that
can also be infinite, as in DFS. The main loop visits each valid node of the tree,
starting from the root. At each node, unless a leaf is reached, the (conditional)
dominance is checked first. If it is satisfied then one of the two child nodes can
be excluded and will not be visited, otherwise no action is taken. Then, for each
child nodes that has not been excluded, the partial distance is computed and
compared against to the current radius. At this point only nodes that lie within
the partial distance will be considered valid nodes. Therefore for each node, in
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general, a sub-set of child nodes are valid node and will be visited in the loop.
Note that dominance conditions are applied to the current node and partial
distances are computed on its child nodes only if they are not excluded by the
previous check. If valid nodes that are generated from the current node need
to be sorted, as for example in Schnorr-Euchner enumeration, a sort function is
called before nodes are inserted in ACTIVE.

If the current visited node is a leaf then according to the metric, that is
cumulatively computed, then the best candidate can be chosen and, depending
on the tree traversing strategy, the radius may be updated. If a BFS is employed
then it may happen that no leaf nodes are available at the end of the main loop
(there is no best node) and a new search must be performed with an increased
radius.

Note that the only required modification with respect to the sphere decoding
algorithm is contained in the function that generates valid child nodes.

Dominance conditions introduced in the king sphere decoder can be seen as
new set of constraints reducing the number of points to be visited, and for which
no partial distance needs to be computed, because the new algorithm discards
paths that surely cannot be local minima and then cannot be the ML solution.

As for sphere decoder, the advantage of the KSD is the expected large re-
duction of the number of the visited nodes and then of surviving paths. In the
best-case scenario, in every visited node the dominance condition is satisfied,
and then the algorithm returns a unique solution that corresponds to the ML
solution, and only M nodes are visited, regardless of the choice of radius. In
general the number of visited nodes is greater than M because the condition
in (17) is not always satisfied. In the worst-case scenario no dominant bit is
found, and then no decrease in the number of visited nodes with respect to the
original tree-search algorithm is achieved. While the added conditions might
increase the computational complexity at each node, the average number of vis-
ited nodes can only be decreased. Therefore the algorithm can only perform
better in terms of computational complexity measured in terms of the average
number of visited nodes at the expenses of increased computation at each node.
In practical implementations this represents a good trade-off between speed,
and then achievable throughput, and area on VLSI devices.

The efficiency of the algorithm will depend on the structure of the channel,
i.e. on the matrixH and is higher in those cases where the off-diagonals elements
of the channel correlation matrix are relatively small. This might be the case
of some correlative MIMO channel models that take into account correlation
among transmit and receive antennas or keyhole channels [38].

Note that the dominance conditions do not require any matrix inversion or
matrix factorization and can be employed unmodified both in underloaded and
overloaded systems.

6 Simulation Results
The proposed algorithm has always optimal performances in terms of SER, by
construction. Performances are then measured in terms of the average number
of visited nodes. We have run Monte-Carlo simulations in order to verify the
improvement that can be gained with our proposed algorithm as in the worst
case scenario performances are the same as those of SD.
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Simulation results are presented with reference to two typologies of wireless
channels, with different mathematical structures in their channel matrices: (i)
independent fading, where entries of the channel matrix are assumed to be i.i.d.
according to a zero-mean complex Gaussian distribution with unit variance; (ii)
correlated fading, where a Kronecker model is assumed to take spatial corre-
lation into account [39]. More specifically, in the case of correlated fading we
assume that the channel matrix follows the structure [40]

H = R
1/2
R GR

1/2
T , (21)

where RT and RR describe spatial correlation at transmit and receive locations,
respectively, and G matches the independent fading structure.

In Fig. 2 results from simulations are shown for MIMO systems with differ-
ent number of transmit and receive antennas. Two MIMO channel models are
considered. The first is the standard MIMO channel model where the channel
matrix elements are drawn from a complex Gaussian distribution. The sec-
ond model is the correlative MIMO channel where correlation between transmit
antennas and between receive antennas as in (21) where, according the model
proposed in [40], we have

RT =



1 ρT ρ4T · · · ρ
(K−1)2
T

ρT 1
. . . . . .

...

ρ4T ρT 1
. . . ρ4T

...
. . . . . . . . . ρT

ρ
(K−1)2
T · · · ρ4T ρT 1


(22)

and

RR =



1 ρR ρ4R · · · ρ
(N−1)2
R

ρR 1
. . . . . .

...

ρ4R ρR 1
. . . ρ4R

...
. . . . . . . . . ρT

ρ
(N−1)2
R · · · ρ4R ρR 1


(23)

with ρT and ρR transmit and receive correlation indexes, respectively. Results
are obtained for ρT = 0.5 and ρR = 0.5 and both SD and KSD, with deep first
(DF) search strategy, in terms of the number of visited nodes averaged over the
channel and noise realizations as well as the possible transmitted vectors [20].

Figs. 2, 3 and 4 show that in practice dominance conditions can effectively
reduce the computational complexity of SD in all cases under consideration. The
reduction is greater with correlated MIMO systems, suggesting that dominance
conditions are more frequently satisfied in this case.
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Figure 2: Average number of visited nodes as function of average signal-to-noise
ratio. 4-QAM system with K = 2, N = 2.

7 Conclusions
We have proposed an enhanced version of the SD, namely KSD, that presents a
lower computational complexity measured in terms of average number of visited
nodes, w.r.t classic SD implementation. The reduction in complexity is possible
because an additional cost function is considered in the standard tree-search
based SD. The cost function is based on the dominance conditions that allows
to take a decision when multiantenna interference is not too strong. There-
fore the KSD has all the features of any SD algorithm and has always better
performances. Numerical simulations show that for MIMO systems, both with
independent and correlated fading statistics, the dominance conditions effec-
tively reduce the computational complexity of the SD.

8 Proof of proposition 1
We explicitly write the discrete difference as:

∆kf (x; x̂) =

− 2<
{

(xk − x̂k)
∗
hHk y

}
+ xHHHHx− x̂HHHHx̂ (24)

The term xHHHHx− x̂HHHHx̂ is a real scalar, so we can apply the conjugate-
transpose operator with no change to obtain
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Figure 3: Average number of visited nodes as function of average signal-to-noise
ratio. 4-QAM system with K = 4, N = 4.

xHHHHx− x̂HHHHx̂ =

<

∑
i

∑
j

x∗ih
H
i hjxj −

∑
m

∑
n

x̂∗mhHmhnx̂n

 =

2<

(xk − x̂k)
∗

hHk y −
∑
i 6=k

xih
H
k hi


+
(
|xk|2 − |x̂k|2

)
hHk hk (25)

By substituting (25) into (24) we can write the discrete difference as stated by
the proposition.

9 Proof of Proposition 2
The sign of the kth discrete difference for x (w.r.t. its unique adjacent vector
x̂ along the kth coordinate) is determined by (14), reported in the following for
convenience:

xk = sign

hTk y −∑
i6=k

xih
T
k hi

 . (26)

When the sufficient condition (16) holds, the first term in r.h.s. of (26) is
dominant over the sum representing the second term, independently on xi, i 6= k.
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Figure 4: Average number of visited nodes as function of average signal-to-noise
ratio. 16-QAM system with K = 2, N = 4.

In such a case (26) reduces to

xk = sign
[
hTk y

]
,

that is the kth discrete difference depends only on xk, as stated by the propo-
sition.
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