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Line Spectrum Estimation with Probabilistic Priors
Dave Zachariah, Petter Wirfält, Magnus Jansson and SaikatChatterjee

Abstract—For line spectrum estimation, we derive the maxi-
mum a posteriori probability estimator where prior knowled ge
of frequencies is modeled probabilistically. Since the spectrum is
periodic, an appropriate distribution is the circular von M ises
distribution that can parameterize the entire range of prior
certainty of the frequencies. An efficient alternating projections
method is used to solve the resulting optimization problem.The
estimator is evaluated numerically and compared with other
estimators and the Craḿer-Rao bound.

Index Terms—Line spectrum, frequency estimation, maximum
a posteriori probability, circular distributions, altern ating projec-
tions method

I. I NTRODUCTION

Line spectrum estimation is a classical problem in signal
processing with many applications, including communications,
radar, sonar and seismology [1]. In such applications, the
observed signal contains frequencies that may be known
to varying degrees of certainty. Examples include diagnosis
applications where the power line frequency may appear
[2]; communications systems with known carrier frequencies;
characterization of circuits, e.g., analogue to digital converters,
power amplifiers, etc., using sinusoidal test signals which
further give rise to known harmonics. Assuming a subspace
approach, the problem is similar to direction of arrival es-
timation with uniform linear arrays, for which methods that
incorporate prior knowledge have been developed [3], [4], [5].
In [2], the approach of [4] was developed for frequency esti-
mation. This method, however, assumes perfect, deterministic
knowledge of a subset of frequencies while assuming no prior
knowledge about the remaining ones. Alternative methods for
incorporating prior knowledge in line spectrum estimation
have been developed by imposing sparsifying penalties on
spectral amplitudes over a grid of frequencies, cf. [6].

In this paper, we approach the problem in a probabilistic
manner, in which the prior certainty of each frequency can
vary. For discrete-time signals, any inferred value of the di-
mensionless frequencyω is equivalent to that ofω′ = ω+2πk,
wherek is an integer. Thus for consistent probabilistic infer-
ence, the prior and posterior probability density functions (pdf)
need to be periodic or circular [7]. Probabilistic treatment of
the frequencies is uncommon in the literature. A rare example
is [8] but it assumes noninformative priors; in that case, for
well-separated frequencies, the resulting maximum a posteriori
probability (MAP) estimator is the periodogram. See also [9].
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We derive the MAP line spectrum estimator that exploits
prior knowledge of the frequencies. This information may be
given from past experience or in the process of detecting
the number of cisoids. The information is then particularly
useful when few samples are available and/or when the signal-
to-noise ratio is low, i.e., in conditions where standard line
spectrum estimators may fail. A computationally efficient
alternating projections method is used to solve the resulting
optimization problem. The performance of the MAP estimator
is evaluated numerically and compared with two other estima-
tors, the Cramér-Rao bound (CRB) and the hybrid CRB.

Notation: A∗ andA† denote the Hermitian transpose and
Moore-Penrose pseudo-inverse of the matrixA, respectively.
ΠA andΠ⊥

A denote the orthogonal projection matrices onto
the range space ofA and its complement, respectively. tr{·}
denotes the trace operator.ei is the ith standard basis vector
in Rm.

II. PROBLEM FORMULATION

A set ofm samples of a sum ofd cisoids is observed

y(t) =

d∑

i=1

sie
jωit + n(t) ∈ C, t = 0, . . . ,m− 1, (1)

wheresi ∈ C parameterizes the amplitude and phase of the
ith cisoid, andωi is its frequency. The zero-mean noisen(t) is
assumed to be independent and identically distributed (i.i.d.)
complex Gaussian with varianceσ2. For identifiabilitym > d.
In vector form, (1) can be written as

y = A(ω)s + n ∈ C
m (2)

wheren = [n(0) · · · n(m−1)]⊤ ∈ Cm ands = [s1 · · · sd]⊤ ∈
Cd. The Vandermonde matrix

A(ω) =




1 · · · 1
ejω1 . . . ejωd

...
. . .

...
ej(m−1)ω1 · · · ej(m−1)ωd


 ∈ C

m×d

is parameterized byω = [ω1 · · ·ωd]
⊤. The goal is to estimate

ω, s andσ2 from y.
No prior knowledge ofs or σ2 is assumed. We model this

using noninformative Jeffreys priorsp(s) ∝ 1 and p(σ2) ∝
1/σ2 [10], which enables a consistent Bayesian treatment of
the estimation problem.

The frequencies{ωi} are modeled as independent random
variables, with circular pdfs, such thatp(ωi) = p(ωi+2πk) for
any integerk. A tractable prior distribution with this property
is the von Mises distribution,ωi ∼ M(µi, κi), which can be
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Fig. 1. Illustration of three different prior pdfs over frequenciesω ∈ [−π, π).
The circular means areµ1 = 0.45π, µ2 = 0.60π andµ3 = −0.95π. The
dispersion is parameterized byκi and here set toκ1 = 500, κ2 = 50 and
κ3 = 5. For further illustrations of the von Mises pdf, see [12].

thought of as a circular analogue of the Gaussian distribution
on the line [7]. Its pdf is

p(ωi;µi, κi) =
1

2πI0(κi)
eκi cos(ωi−µi), (3)

with Iℓ(κi) being the modified Bessel function of orderℓ. The
circular mean and circular variance ofωi areE[ωi] = µi and
Var[ωi] = 1− I1(κi)/I0(κi), respectively.1 As the concentra-
tion parameter is varied to its extremes,κi → 0 andκi → ∞,
the pdf ofωi ∈ [−π, π) approaches a uniform and a Gaussian
pdf with variance1/κi, respectively [11]. Thus,κi enables
parametrization of the prior certainty of frequencyωi, from
complete ignorance to virtual certainty. An illustration of the
von Mises pdf is given in Fig. 1. For relatively small variances,
the approximate properties of the pdf provides a practical way
to selectκi using the confidence level of a Gaussian with
variance1/κi.

III. MAP ESTIMATOR

The joint maximum a posteriori probability estimator ofω, s
andσ2 is given by maximization ofp(ω, s, σ2|y), or equiv-
alently the cost functionJ(ω, s, σ2) = J1(ω, s, σ2) + J2(ω),
where

J1(ω, s, σ2) = ln p(y|ω, s, σ2) + ln p(s) + ln p(σ2) (4)

and J2(ω) = ln p(ω). Using the noninformative priors ofs
andσ2, one obtains

J1(ω, s, σ2) = −m lnσ2 − 1

σ2
‖y −A(ω)s‖22 − lnσ2 +K1,

(5)
whereK1 is a constant and the maximizers are given byŝ =
A†(ω)y and σ̂2 = y∗Π⊥

A
(ω)y/(m+ 1). Then

J1(ω, ŝ, σ̂
2) = −(m+ 1) ln

(
y∗Π⊥

A
(ω)y

)
+K ′

1, (6)

1For circular distributions thenth trigonometric moment is defined byςn =
Eθ[e

jnθ]. In polar coordinates,ς1 = ρejµ, whereµ and 1 − ρ define the
circular mean and variance ofθ, respectively [7].

whereK ′
1 = K1 − (m + 1). Further, as the frequencies are

independently distributed,J2(ω) can be written compactly in
terms ofA(ω),

J2(ω) =

d∑

i=1

ln p(ωi)

=
∑

i

κi cos(ωi − µi) +K2

=
∑

i

κi

2
ej(ωi−µi) +

κi

2
e−j(ωi−µi) +K2

= Re{e∗2A(ω)π}+K2,

(7)

whereπ = [π1 · · ·πd]
⊤ with πi = κie

−jµi parameterizing the
prior knowledge, andK2 is a constant.

A. Concentrated cost function

Combining (6) and (7), the MAP estimator is given by

ω̂map= argmin
ω∈Ω

Vmap(ω), (8)

where

Vmap(ω) ,
(
y∗Π⊥

A(ω)y
)
eφ(ω),

φ(ω) = Re{e∗2A(ω)β} and β ,

− 1
m+1 [κ1e

−jµ1 · · ·κde
−jµd ]⊤. The cost function is highly

nonlinear and multimodal, but given a good initial guess the
optimization problem can be solved by a grid or Newton-
based search method [1]. The computational complexity of
such ad-dimensional optimization problem may, however,
be prohibitive. For this reason we formulate an alternating
projection method based on [13], which reduces the problem
to a series of 1-dimensional optimization problems and results
in a computationally tractable estimator.

B. Alternating projection solution

Let the ith column ofA be denoted asai ∈ Cm×1, corre-
sponding toωi, and the remaining columnsAi, corresponding
the remaining frequencies denoteďωi. Then the projection
operator can be decomposed asΠAi:ai

= ΠAi
+Πãi

, where
ãi = Π⊥

Ai
ai, so thatΠãi

= ãiã
∗
i /‖ãi‖2.

The cost functionVmap(ω) is minimized for each frequency
ωi, holdingω̌i constant. Hence thed-dimensional optimization
problem (8) is relaxed into an iteration of 1-dimensional grid
searches:

ω̂i = argmin
ωi∈Ωi

V (ωi; ω̌i), (9)

where

V (ωi; ω̌i) ,

(
y∗Π⊥

Ai
y − |y∗Π⊥

Ai
a(ωi)|2

‖Π⊥
Ai

a(ωi)‖2

)
eφi(ωi), (10)

a(ω) =
[
1 ejω · · · ej(m−1)ω

]⊤
andφi(ω) = Re{βie

jω}.
This follows from the decomposition ofΠA(ω) and
Re{e∗2A(ω)β} = Re{e∗2βiai(ωi)} + Re{e∗2

∑
ℓ 6=i βℓaℓ(ωℓ)}

in (8). Note that, asω̌i is held constant, the latter term is
removed from the cost function.
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The search (9) is performed sequentially for alli = 1, . . . , d
over a grid ofg points, denotedΩi. The grid searches are re-
peated until the difference between iterates,|∆ω̂i|, is less than
someε. A key element in the algorithm is the initialization, and
we follow the procedure of [13]. To reduce the initial error in
the search incurred when holdinǧωi constant, the algorithm is
initialized by settingω̂ = ∅ and with frequenciesi = 1, . . . , d
sorted in descending order with respect to their prior certainty,
as quantified by the magnitude ofβi. Then the estimates are
initialized sequentiallyi = 1, . . . , d,

ω̂i = argmin
ωi∈Ωi

V (ωi; ω̂) followed byω̂ := ω̂ ∪ ω̂i.

The gridsΩi are initially in the interval[−π, π) and can
subsequently be refined by narrowing the intervals centered
around the previous estimates,ω̂i. The refinement is repeated
L times. The alternating projections-based MAP estimator is
summarized in Algorithm 1.

Algorithm 1 MAP line spectrum estimator

1: Input: y, {µi, κi}di=1 andL
2: Initialize ω̂ = ∅ and formβ andΩ1

i

3: for ℓ = 1, . . . , L do
4: repeat
5: For i = 1, . . . , d
6: FormΠ⊥

Ai
(ω̌i)

7: ω̂i = argminωi∈Ωℓ

i

V (ωi; ω̌i) using (10)
8: until |∆ω̂i| < εℓ
9: RefineΩℓ+1

i , ∀i
10: end for
11: ŝ = A†(ω̂)y
12: σ̂2 = y∗Π⊥

A(ω̂)y/(m + 1)
13: Output: ω̂, ŝ and σ̂2

IV. EXPERIMENTAL RESULTS

The estimator is evaluated by means of simulation with
respect to the root mean square error, RMSE(ω̂i) ,

√
E[ω̃2

i ],
where ω̃i is the estimation error (modulo-2π) for a given
realization ofn, s andω. The RMSE is estimated using104

Monte Carlo runs.
The Cramér-Rao bound (CRB) for deterministicω ands is

given byC(ω, s) =
(

2
σ2 Re

{
S∗D∗Π⊥

A
DS
})−1

, whereS =

diag(s) and theith column ofD is di =
da(ωi)
dωi

[14]. In the
simulations,C(ω, s) is averaged over all realizations ofω and
s. For conditionally unbiased estimators, the diagonal elements
set the limit RMSE(ω̂i) ≥ √

cii. The posterior Cramér-Rao
bound does not exist for stochastic frequencies since regularity
conditions do not hold for the von Mises pdf [15], [16]. When
κi are large, however, the variances of the frequencies are
small and furtherp(ωi) can be approximated locally by a
Gaussian with variance1/κi. Then, following [17], we can
formulate an approximate hybrid Cramér-Rao bound (ACRB)
[18], [19], C(s) ≃

(
2
σ2 Re

{
S∗D̄∗Π̄⊥

A
D̄S
}
+Λω

)−1
, where

D̄ andΠ̄⊥
A

are evaluated at the mean frequencies andΛω =
diag{λω,1, . . . , λω,d} in which λω,i equalsκi or 0 depend-
ing on whether the frequencyωi is treated stochastically or
deterministically, respectively.

For further comparison we also consider the ‘Estimation
of Signal Parameters via Rotational Invariance Techniques’
(ESPRIT) estimator, using the forward-backward covariance
estimate [20], [1], which does not take prior knowledge into
account, and the Markov-based PLEDGE estimator, which is
state of the art for deterministic prior knowledge [21], [2].

A. Setup

We considerd = 3 cisoids with varying prior knowledge
of the frequencies. The prior certainties ofω1, ω2 and ω3

are parameterized by concentration parametersκ1 = 2 · 103,
κ2 = 2 · 102 and κ3 = 0; corresponding to standard
deviations of approximately7 · 10−3π and2 · 10−2π radians,
and complete ignorance, respectively. Frequenciesω1 andω2

are randomly generated with circular meansµ1 = 0.45π and
µ2 = 0.60π [22], while ω3 is set deterministically to0.75π
(as the estimator is ignorant,κ3 = 0, it can setµ3 arbitrarily,
e.g.,µ3 = 0.). This choice prevents realizations of randomly
generated frequency separations well below the resolution
limit of the periodogram resulting in near-degeneracy of the
estimation problem.

The cisoid amplitude and phase were set assi = αie
jϕi ,

whereαi ≡ 1 andϕi is drawn uniformly over[0, 2π) for each
realization. Two signal parameters are varied: (i) the signal-
to-noise ratio, SNRi , E[|si|2]/E[|n(t)|2] = σ−2 and (ii) the
number of samples,m.

For the MAP estimator, a grid ofg = 500 points was used.
The algorithm was set to terminate afterL = 10 refinement
levels. The refinement level is performed by reducing the
search segment by half, resulting in a resolution limit of
aboutπ/(2L−1g) ≈ 4 · 10−6π radians. In our experience, a
convergence toleranceε of 2 grid points prevents occasional
cycling of the minimum point of (10). For PLEDGE we set
µ1 as the prior ofω1. For ESPRIT and PLEDGE, the window
length was fixed atm/2.

B. Results

An illustration of the convergence of the MAP estimator
is given in Fig. 2. Under the same setting,m = 32 samples
are processed in approximately 4, 200 and 740 milliseconds
using the current implementations of ESPRIT, PLEDGE and
MAP, respectively.

The results from the Monte Carlo runs are given below.
First, Figs. 3, 4, and 5 show the RMSE of the frequency for
each cisoid when fixingm = 32 and varying SNR. Recall that
the prior certainty of the frequencies is in decreasing order.
The MAP estimator incorporates the information optimally
and is therefore capable of producing estimates ofω1 that
converge to the CRB from below as SNR increases in Fig. 3.
The intermediate case,ω2, is illustrated in Fig. 4. For the
frequency with minimum certainty,ω3, MAP closes the gap
to the bound faster than ESPRIT.

In this scenario the random frequency separation is on
average wide so that the average performance improvements of
PLEDGE over ESPRITare marginal at low SNR, cf. determinis-
tic scenario in [2]. For the first cisoid, PLEDGE cannot improve
on the prior ofω1, which it takes to be perfect deterministic



4

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

10
1

iter

| m
od

−
2π

 e
rr

or
 |

 

 
ω

1

ω
2

ω
3

Fig. 2. The convergence of the MAP estimates. Absolute error|ω̃i| versus
iteration for a typical realization withm = 32 and SNR = 10 dB. The
algorithm terminated at the 12th iteration.
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Fig. 3. RMSE(ω̂1) vs SNR form = 32.

knowledge. Hence the actual deviations ofω1 fromµ1 impedes
the estimates ofω2 andω3 at high SNR.

Next, the number of samples is varied so thatm ∈
{8, 16, 32, 64, 128} while fixing SNR=0 dB. The results are
displayed in Figs. 6, 7 and 8. Again, forω1 andω3 MAP is able
to improve on the prior knowledge; it converges to the CRB
from below and follows the ACRB closely. The convergence
is also faster forω3. The differences between ESPRIT and
PLEDGE are more visible. The latter exhibits a smaller gain
for ω2 at low m, but is significantly impaired at highm due
to the deterministic modeling of prior knowledgeω1 = µ1.

Reproducible research:Code for reproducing empirical re-
sults is available at www.ee.kth.se/∼davez/rr-line.

V. CONCLUSION

We have derived the MAP line spectrum estimator in which
frequencies are modeled probabilistically. Using the circular
von Mises distribution allows for appropriately parameterizing
the entire range of uncertainty of the prior knowledge, from
complete ignorance to virtual certainty of each frequency.An
efficient alternating projections-based solution of the resulting
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Fig. 4. RMSE(ω̂2) vs SNR form = 32.
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Fig. 5. RMSE(ω̂3) vs SNR form = 32.
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Fig. 6. RMSE(ω̂1) vs m for SNR = 0 dB.
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Fig. 7. RMSE(ω̂2) vs m for SNR = 0 dB.
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Fig. 8. RMSE(ω̂3) vs m for SNR = 0 dB.

optimization problem was used. The average performance of
MAP was then compared to the ESPRIT and Markov-based
PLEDGE estimators and the Cramér-Rao bound, where its
ability to improve on the prior knowledge was demonstrated.
MAP would be particularly useful in scenarios with low SNR
and/or when few samples are available.
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