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Adaptive Quantizers for Estimation
Rodrigo Cabral Farias and Jean-Marc Brossier

Abstract—In this paper, adaptive estimation based on noisy
quantized observations is studied. A low complexity adaptive
algorithm using a quantizer with adjustable input gain and offset
is presented. Three possible scalar models for the parameter
to be estimated are considered: constant, Wiener process and
Wiener process with deterministic drift. After showing that the
algorithm is asymptotically unbiased for estimating a constant,
it is shown, in the three cases, that the asymptotic mean squared
error depends on the Fisher information for the quantized
measurements. It is also shown that the loss of performance due
to quantization depends approximately on the ratio of the Fisher
information for quantized and continuous measurements. At the
end of the paper the theoretical results are validated through
simulation under two different classes of noise, generalized
Gaussian noise and Student’s-t noise.

Index Terms—Parameter estimation, adaptive estimation,
quantization.

I. INTRODUCTION

CONTINUOUS advances in the development of cheaper
and smaller sensors and communication devices moti-

vated the introduction of sensor networks in many different
domains, e.g. military applications, infrastructure security,
environment monitoring, industrial applications and traffic
monitoring [1]. When designing a sensing system, one must
account not only for the physical perturbations that can affect
sensing performance, more specifically noise, but also for the
inherent design constraints such as bandwidth and complexity
limitations. Commonly, the effect of the noise in system per-
formance is taken into account, but bandwidth and complexity
constraints are neglected.

One simple way to respect bandwidth constraints is to
compress sensor information using quantizers. The theory of
quantizer design for reducing distortion in the measurement
representation is well established in the literature [2], however
much less results can be found when the quantities to be recon-
structed are not directly the measurements but an underlying
parameter embedded in noise.

In [3], noisy samples of a constant are taken using a uniform
quantizer with an input offset, the output samples of the
quantizer are used to estimate the constant. Using this type of
measurement system, results for different types of offset were
obtained. The types of offset considered were known constant
and variable offset, random offset and offset based on feedback
of the output measurements. The comparison was performed
based on the Cramér–Rao bound (CRB) ratio which is the
worst case ratio between the CRB for quantized measurements
and continuous measurements. It was shown that the last type
of offset, based on feedback, was the most efficient one.
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Another interesting result from [3] is that in the Gaussian
noise case with one bit quantized measurements, the minimum
CRB ratio that can be attained is π

2 . This result was used
as a motivation for [4] to study more in detail estimation
under Gaussian noise and binary quantization. In [4], it was
shown that the CRB for a fixed known threshold can be upper
bounded by the exponential of the squared difference between
the threshold and the constant to be estimated. This means that
the closer the threshold is to the parameter to be estimated
with binary measurements, the lower can be the estimation
variance. It was also pointed out that an iterative algorithm
could be used to adjust the threshold exactly to be the last
estimate of the parameter.

An adaptive algorithm for placing the threshold was detailed
in [5], where a sensor network extension was also proposed.
At each time step, a sensor measures one bit, updates its
threshold using a simple cumulative sum and broadcasts the
new threshold to the other sensors and to a fusion center. Thus,
the thresholds are placed around the parameter in an adaptive
way and at the fusion center the broadcasted bits are used
to obtain a more precise estimate of the parameter. Two other
methods for updating the thresholds were presented in [6], one
method used a more refined cumulative sum based on the last
two measured bits, the other proposed method was to estimate
the parameter using a maximum likelihood method and then
set the threshold at the estimate of the parameter. It was shown
that in the asymptotic case (large number of iterates) the
CRB for the fusion center estimate using maximum likelihood
threshold updates converges to the minimum possible CRB,
which is the CRB when the threshold is placed exactly at the
parameter.

In the same line of the work mentioned above, algorithms
for estimating a scalar parameter from multiple bit quantized
noisy measurements are proposed. The algorithms developed
in this work are based on low complexity adaptive techniques
that can be easily implemented in practice. The mean and
mean squared error (MSE) are obtained for a general class of
symmetrically distributed noise and three types of parameter
evolution: constant, Wiener process and Wiener process with
drift. As in related work [3], the loss of estimation performance
due to quantization is also evaluated and the validity of the
performance results is verified through simulation.

The main contributions of this work are
• Design and analysis of adaptive estimation algorithms

based on multiple bit quantized noisy measurements.
Differently of [5] and [6], where only binary quantization
is treated.
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• Explicit performance analysis for tracking of a varying
parameter. In [3]–[6] the parameter is set to be constant
and all subsequent analysis is based on this hypothesis.

• Low complexity algorithms. The algorithms proposed
here are based on simple recursive techniques that have
lower complexity than the maximum likelihood methods
used in [5] and [6].

The paper is structured in the following form: in section II
the problem is stated and the main assumptions are made, in
section III the general adaptive algorithm and results from
adaptive algorithms theory are presented, then in section
IV the parameters of the adaptive algorithm are obtained.
Section V contains theoretical performance results and also the
simulation of the algorithm. Section VI concludes the paper.

II. PROBLEM STATEMENT

Let X be a stochastic process defined on the probability
space P = (Ω,F ,P) with values on (R,B (R)), at each instant
k ∈ N?, the corresponding scalar random variable (r.v.) Xk

will be given by the following model:

Xk = Xk−1 +Wk, (1)

where Wk is a sequence of independent Gaussian random vari-
ables with its mean given by a small amplitude deterministic
unknown sequence uk and small known standard deviation
σw:

Wk ∼ N
(
uk, σ

2
w

)
. (2)

The initial condition X0 will be considered to be an unknown
deterministic constant.

The model expressed in (1) is a compact form to describe
three different evolution models for Xk:
• Constant: by taking uk = σw = 0, then Xk = X0 = x

is an unknown deterministic constant.
• Wiener process: if uk = 0, σw > 0 and small , then
Xk is a slowly varying Wiener process. This model is
commonly used to describe a slowly varying parameter
of a system when the model for its evolution is random
but with unknown form.

• Wiener process with drift: in this case uk and σw are
non zero and with small amplitudes. The fact that uk is
nonzero makes the Wiener process to have a drift, thus
representing a model with a deterministic component that
is perturbed by small random fluctuations.

The process X is observed through Y and they are related
as follows:

Yk = Xk + Vk, (3)

where the noise Vk is a sequence of additive independent and
identically distributed (i.i.d.) r.v. which is also independent of
Wk. The cumulative distribution function (CDF) of Vk will be
denoted by F . Some assumptions on F are stated below.

Assumptions (on the noise distribution):
A1. F is locally Lipschitz continuous.
A2. F admits a probability density function (PDF) f with

respect to (w.r.t.) the standard Lebesgue measure on
(R,B (R)).

A3. The PDF f (x) is an even function and it strictly de-
creases w.r.t. |x|.

The first assumption is required by the method of analysis
that will be used to assess the performance of the pro-
posed algorithms. Most noise CDFs considered in practice are
Lipschitz continuous, thus the first assumption is generally
satisfied. Assumption 2 is a commonly used assumption that
in practice will be used when the derivative of F w.r.t. its
arguments is needed. Assumption 3 will be used to prove
the asymptotic convergence of the algorithms and it is also
commonly satisfied in practice.

The observations are quantized using an adjustable quantizer
whose output is given by

ik = Q

(
Yk − bk

∆k

)
, (4)

where ik is an integer defined on a finite set of NI integers,
NI being the number of quantization intervals. The quantizer
parameters bk and 1

∆k
are sequences of adjustable offsets and

gains respectively. The function Q represents a static normal-
ized quantizer and it is characterized by NI + 1 thresholds.
For simplification purposes some assumptions on the quantizer
will be used.

Assumptions (on the quantizer):
A4. NI will be considered to be an even natural number and

ik ∈ I =

{
−NI

2
, . . . ,−1,+1, . . . ,+

NI
2

}
.

A5. It will be assumed that the static quantizer is symmetric
and centered at zero. This means that the vector of
thresholds1

τ =
[
τ−NI2

. . . τ−1 τ0 τ1 . . . τNI
2

]T
has elements given by the following expressions

τ0 = 0,

τi = −τ−i, ∀i ∈
{

1, · · · , NI
2

}
,

τNI
2

= +∞. (5)

These assumptions will be used later to simplify the choice
of parameters of the algorithms.

For |Yk−bk|∆k
∈ [τi−1, τi), the adjustable quantizer output is

given by

ik = Q

(
Yk − bk

∆k

)
= i sign (Yk − bk) . (6)

A scheme representing the quantizer is given in Fig. 1. Note
that even if the quantizer is not uniform (with constant distance
between thresholds), it can be implemented using a uniform
quantizer with a compander approach [2].

Based on the quantizer outputs the main objective is to
estimate Xk and a secondary objective is to adjust the pa-
rameters bk and ∆k to enhance estimation performance. As
the estimate X̂k of Xk will be possibly used in real time

1Infinite thresholds are used to have the same notation for the probabilities
of the granular and overload regions.
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Fig. 1. Scheme representing the adjustable quantizer. The offset and gain
can be adjusted dynamically while the quantizer thresholds are fixed.
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ik
Quantized
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∆

X̂k−1

−

Adjustable
Quantizer

Fig. 2. Block representation of the estimation scheme. The estimation
algorithm and the procedures to set the offset and the gain are represented by
the Update block.

applications, it might be estimated online, which means that
X̂k will only depend on past and present ik. To simplify it
will be considered that the offset is set to be X̂k−1 and that
the gain is set to be a constant ∆. For the adaptive algorithm
presented later, the fact that the offset is set to X̂k−1 will
have, as a consequence, an asymptotic performance that does
not depend on the mean of Xk, thus simplifying the analysis.
The choice of ∆ is discussed in section IV.

The general scheme for the estimation of Xk is depicted in
Fig. 2 and the main objective will be to find a low complexity
algorithm that will be placed in the block named Update.

III. GENERAL ALGORITHM

A simple and general form for the estimation algorithm that
respects the constraints defined above (low complexity and
online) is the following adaptive algorithm:

X̂k = X̂k−1 + γkη

[
Q

(
Yk − X̂k−1

∆

)]
. (7)

In the expression above, γk is a sequence of positive real
gains and η[·] is a mapping from I to R that is defined as a
sequence of NI coefficients

{
η−NI2

, . . . , η−1, η1, . . . , ηNI
2

}
,

these coefficients are equivalent to the output quantization
levels used in quantization theory. The use of this algorithm
is also motivated by the following observations:

• when estimating a constant, the maximum likelihood esti-
mator can be approximated by a simpler online algorithm
using a stochastic gradient ascent algorithm, which has
the same form as (7). It is shown in section IV that for
the optimal choice of ηi, (7) is equivalent to a stochastic
gradient ascent method to maximize the log-likelihood.

• To estimate a Wiener process, a simple choice of estima-
tor is a Kalman filter like method based on the quantized
innovation, which is also (7).

Due to the symmetry of the noise distribution, when X̂k is
close to Xk, it seems reasonable to suppose that the corrections
given by the output quantizer levels have odd symmetry with
positive values for positive i, this symmetry will be useful
later for simplification purposes. Thus, one assumption will
be added to A1-A5.

Assumption (on the quantizer output levels):
A6. The quantizer output levels have odd symmetry w.r.t. i:

ηi = −η−i, (8)

with ηi > 0 for i > 0.
The non differentiable non linearity in (7) makes it difficult

to be analyzed. Fortunately, an analysis based on mean approx-
imations was developed in [7] for a wide class of adaptive
algorithms, within this framework, the function η could be
a general non linear non differentiable function of Yk and
X̂k and it was shown that the gains γk that optimizes the
estimation of Xk should be as follows:
• γk ∝ 1

k when Xk is constant.
• γk is constant for a Wiener process Xk.
• γk ∝ u

2
3

k when Xk is a Wiener process with drift.
In the following parts of this section the results of [7] will

be applied for the analysis of (7) in the three evolution models
of Xk.

A. Constant Xk

In this case Xk = x. To obtain convergence of x̂k to a
constant, the gains must be:

γk =
γ

k
. (9)

For large k, the mean trajectory of X̂k can be approximated
using the ordinary differential equation (ODE) method. The
ODE method approximates the expectation of the estimator
E
[
X̂k

]
by x̂ (tk), where x̂ (t) is the solution of

dx̂

dt
= γh (x̂) , (10)

the correspondence between continuous and discrete time is

given by tk =
k∑
j=1

1
j and h (x̂) is the following:

h (x̂) = E
[
η

(
Q

(
x− x̂+ V

∆

))]
, (11)

where the expectation is evaluated w.r.t. F (v).
For the solution of (10) to be valid as an approximation of

E
[
X̂k

]
, h (x̂) has to be a locally Lipschitz continuous function
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of x̂. Using the assumptions on the quantizer thresholds and
output levels, the expectation in (11) can be written as:

h (x̂) =

NI
2∑
i=1

[ηiFd (i, x̂, x)− ηiFd (−i, x̂, x)] , (12)

where Fd is a difference of CDFs:

Fd =



F (τi∆ + x̂− x)− F (τi−1∆ + x̂− x)

if i ∈
{

1, · · · , NI2
}
,

F (τi+1∆ + x̂− x)− F (τi∆ + x̂− x)

if i ∈
{
−1, · · · ,−NI2

}
.

(13)
From assumption A1, the function h is a linear combination

of locally Lipschitz continuous functions, which implies that
h is also locally Lipschitz continuous, thus the ODE method
can be applied.

If x̂ → x when t → ∞ for all x and all x̂ (0), the
adaptive algorithm is asymptotically unbiased, and in this case
it can also be shown, using a central limit theorem, that the
estimation error is asymptotically distributed as a Gaussian r.v.
[7, pp. 109]:

√
k
(
X̂k − x

)
 
k→∞

N
(
0, σ2
∞
)
, (14)

where the asymptotic variance σ2
∞ is given by:

σ2
∞ =

γ2R (x)

−2γhx̂ (x)− 1
, (15)

• The term denoted R in the numerator is the vari-
ance of the adaptive algorithm normalized increments(
X̂k−X̂k−1

γk

)
when x̂ is equal to x. From A3 and A6,

h (x̂) = 0 when x̂ = x and this variance can be written as
the second order moment of the quantizer output levels:

R (x) = Var
[
η

(
Q

(
x− x̂+ V

∆

))]∣∣∣∣
x̂=x

=

NI
2∑
i=1

(
η2
i Fd (i, x, x) + η2

−iFd (−i, x, x)
)

= 2

NI
2∑
i=1

η2
i Fd (i, x, x) , (16)

where the last equality comes from the symmetry assump-
tions.

• The term in the denominator is the derivative of h when
x̂ is equal to x:

hx̂ (x) =
dh

dx̂

∣∣∣∣
x̂=x

(17)

= −
NI
2∑
i=1

[ηifd (i, x, x)− ηifd (−i, x, x)] ,

with

fd =



f (τi−1∆ + x̂− x)− f (τi∆ + x̂− x)

if i ∈
{

1, · · · , NI2
}
,

f (τi∆ + x̂− x)− f (τi+1∆ + x̂− x)

if i ∈
{
−1, · · · ,−NI2

}
.

(18)
From the symmetry assumptions, fd (i, x, x) is odd w.r.t.
i, thus (17) can be rewritten as

hx̂ (x) = −2

NI
2∑
i=1

ηifd (i, x, x) . (19)

Minimizing σ2
∞ w.r.t. the positive gain γ gives

γ? = − 1

hx̂ (x)
(20)

σ2
∞ =

R (x)

h2
x̂ (x)

. (21)

When x̂ = x, the functions Fd (i, x̂, x) and fd (i, x̂, x) do
not depend on x anymore, thus from now on they will be
denoted Fd [i] and fd [i]. The functions R (x) and hx̂ (x) do
not depend on x either, thus they will be denoted by the
constants R and hx̂ respectively.

To specify completely the adaptive algorithm, the quantizer
parameters ηi, τ and ∆ can be chosen to minimize (21).

B. Wiener process

If Xk is a Wiener process, the mean of Wk is uk = 0
and the variance is a known constant Var [Wk] = σ2

w. The
algorithm gain can be chosen to be a constant γk = γ. For
small σ2

w, the mean trajectory of X̂k is also approximated by
(10), x being the initial condition x0 of the Wiener process,
which is equal to its mean for every k. Thus, if x̂ converges to
x, the algorithm is asymptotically unbiased and, in this case,
it can be shown that the asymptotic estimation MSE can be
approximated in the following way [7, pp. 130-131]:

MSE∞ = lim
k→∞

E
[
X̂k −Xk

]2
≈ γE [ξt]

2
. (22)

The stochastic process ξt is the solution of a stochastic
differential equation:

dξt = hx̂ξtdt− γσw
√
RdZt, (23)

where Zt is a continuous time Wiener process with unit
increment variance. Under the condition

γhx̂ < 0, (24)

ξt is stationary with a marginal Gaussian density N
(

0, σ2
ξ

)
,

where the variance is

σ2
ξ =

γ2R+ σ2
w

−2γhx̂
. (25)
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Thus, MSE∞ can be approximated by σ2
ξ . Minimizing MSE∞

w.r.t. γ gives the optimal γ

γ? =
σw√
R
, (26)

which is a positive real, thus changing the condition (24) into

hx̂ < 0. (27)

The MSE for γ? is

MSE∞ =
σw
√
R

−hx̂
. (28)

Using (28) and (21) the MSE can be rewritten as

MSE∞ = σwσ∞. (29)

Both the asymptotic MSE for estimating a Wiener process and
the asymptotic variance for estimating a constant depend on
the quantizer parameters through σ∞, therefore the optimal
quantizer parameters will be the same in both cases. The only
difference in the adaptive algorithms for these two cases is the
sequence of gains γk.

C. Wiener process with drift

In this case the mean of Wk is nonzero and given by a
small amplitude sequence uk, the variance is a constant σw.
The gain γk will be considered to be variable in time and
under the assumption of asymptotic unbiasedness for constant
Xk, the MSE can be approximated by the term due to the
estimation bias which is given by [7, pp. 136]:

MSEk = E
[
X̂k −Xk

]2
≈ u2

k

γ2
kh

2
x̂

− γk
R

2hx̂
. (30)

Minimization w.r.t. γk leads to

γ?k =

[
4u2

k

−hx̂R

] 1
3

(31)

MSEk ≈ 3

[
uk
4

R

h2
x̂

] 2
3

. (32)

Note that in practice, uk may be unknown and it will be
necessary to replace its value in γ?k by an estimate of it
Ûk, which can be also obtained adaptively, for example by
calculating a recursive mean on X̂k − X̂k−1.

The MSE can also be rewritten as a function of σ2
∞ with a

dependence on uk

MSEk ≈ 3
[uk

4
σ2
∞
] 2

3

. (33)

Also in this case the MSE is an increasing function of σ∞.
From the three cases it is possible to see that the quantizer
design will depend on the following:

1) Asymptotic unbiasedness: it is necessary to prove asymp-
totic unbiasedness of the algorithm when Xk is constant
for the MSE results given above to be valid. This can be
done by proving the asymptotic global stability of the

ODE (10) for an arbitrary Xk = x and X̂0 = x̂ (0) in
R.

2) Minimization of σ2
∞: the quantizer parameters can be

chosen to minimize σ2
∞ and, as a consequence, they

will maximize the performance for the three evolution
models of Xk.

IV. ASYMPTOTIC UNBIASEDNESS AND ADAPTIVE
ALGORITHM DESIGN

In this section, first it will be shown that the algorithm is
asymptotically unbiased. Then, optimization of the algorithm
asymptotic performance will be done by minimizing σ2

∞
,which depends on ηi, ∆ (x) and τ . The optimal coefficients
ηi will be found and then the choice for the parameters ∆ and
τ will be discussed.

A. Asymptotic unbiasedness

For the asymptotic performance results to be valid, it is
necessary to prove that the estimation procedure when Xk = x
is asymptotically unbiased. For doing so, one needs to prove
that the solution of (10) for any x̂ (0) and x tends to x as
t→∞.

The approximation for the mean error can be written as

ε = x̂− x (34)

and the ODE for the mean error is

dε

dt
= γh̃ (ε) , (35)

where h̃ (ε) = h (ε+ x) is a function that does not depend on
x.

It is necessary to prove that ε → 0 as t → ∞ for
every ε (0) ∈ R, which means that ε = 0 is a globally
asymptotically stable point [8]. Global asymptotic stability of
ε = 0 can be shown using an asymptotic stability theorem
for nonlinear ODEs. This will require the definition of an
unbounded Lyapunov function of the error. To simplify, a
quadratic function will be used:

L (ε) = ε2, (36)

which is a positive definite function and tends to infinity when
ε tends to infinity.

If γh̃ (ε) = 0 for ε = 0 and dL
dt < 0 for ε 6= 0 then by the

Barbashin–Krasovskii theorem [8, Ch. 4], ε = 0 is a globally
asymptotically stable point.

To show that both conditions are met, expression (12) can
be rewritten using A6:

h (ε) =

NI
2∑
i=1

ηi

[
F̃d (i, ε)− F̃d (−i, ε)

]
, (37)

where F̃d (i, ε) = Fd (i, ε+ x, x) is also a function that does
not depend on x.

When ε = 0, the differences between F̃d in the sum are
differences between probabilities on symmetric intervals, the
symmetry of the noise PDF stated in A3 and the symmetry of
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the quantizer stated in A5 imply that h̃ (0) = 0, fulfilling the
first condition.

The second condition can be written in more detail by using
the chain rule for the derivative:

dL
dt

=
dL
dε

dε

dt
= 2εγh̃ (ε) < 0, for ε 6= 0. (38)

As γ > 0 by definition, h̃ (ε) has to respect the following
constraints:

h̃ (ε) > 0, for ε < 0,
h̃ (ε) < 0, for ε > 0. (39)

When ε 6= 0, the terms in the sum that gives h̃ (ε) are the
difference between integrals of the noise PDF under the same
interval size but with asymmetric interval centers. Using the
symmetry assumptions, for ε > 0, F̃d (i, ε) is the integration of
f over an interval more distant to zero than for F̃d (−i, ε), then
by the decreasing assumption on f , F̃d (i, ε) < F̃d (−i, ε) and
consequently h̃ (ε) < 0. Using the same reasoning for ε < 0
one can show that h̃ (ε) > 0. Therefore, the inequalities in
(39) are verified and dL

dt < 0 for ε 6= 0.
Finally, as both conditions are satisfied one can say that

ε = 0 is globally asymptotically stable, which means that
the estimator is asymptotically unbiased and that all the
performance results obtained are valid.

Note that from A3 and A5, hx̂ (x) < 0, thus the supple-
mentary condition for stationarity (24) is also respected.

B. Optimal quantizer parameters

The performance of the adaptive algorithm can be maxi-
mized by minimizing σ2

∞ w.r.t. the quantizer levels ηi. Using
(16) and (19) in (21) gives the following minimization prob-
lem:

arg min
η

{
R

h2
x̂

}
= arg min

η

{
ηTFdη

2 [ηT fd]
2

}
, (40)

where η is a vector with the coefficients

η =
[
η1 . . . ηNI

2

]T
. (41)

Fd is a diagonal matrix given by

Fd = diag

[
Fd [1] , · · · , Fd

[
NI
2

]]
(42)

and fd is the following vector

fd =

[
fd [1] · · · fd

[
NI
2

]]T
. (43)

The minimization problem is equivalent to the following
maximization problem:

arg max
η

{[
ηT fd

]2
ηTFdη

}
. (44)

Using the fact that Fd is diagonal with non zero diagonal
elements, (44) becomes

arg max
η


[(

Fd
1
2η
)T (

Fd
− 1

2 fd

)]2

(
Fd

1
2η
)T (

Fd
1
2η
)

 , (45)

the matrices Fd
1
2 and Fd

− 1
2 are obtained by taking the

square root and the inverse of the square root of the diagonal
elements in Fd. Using the Cauchy–Schwarz inequality on the
expression in the numerator gives


[(

Fd
1
2η
)T (

Fd
− 1

2 fd

)]2

(
Fd

1
2η
)T (

Fd
1
2η
)

 ≤ fd
TFd

−1fd (46)

and the equality happens for

Fd
1
2η ∝ Fd

− 1
2 fd. (47)

Therefore, the optimal η can be chosen to be

η? = Fd
−1fd. (48)

It is possible to see that the coefficients chosen in this way
still depends on ∆ and τ . The minimum σ2

∞ is

σ2
∞ =

1

2
(
fd
TFd

−1fd

) =

2

NI
2∑
i=1

f2
d [i]

Fd [i]

−1

. (49)

To simplify the choice of the constant ∆, it will be con-
sidered that the noise CDF is parametrized by a known scale
parameter δ, which means that

F (x) = Fn

(x
δ

)
, (50)

where Fn is the noise CDF for δ = 1. Thus, the evaluation of
the quantizer output levels can be simplified by setting:

∆ = c∆δ. (51)

Since the coefficients η? do not depend on x anymore, for
a given c∆ and noise CDF, they can be pre-calculated and
stored in a table. For i > 0, these coefficients are given by

η?i =
fd [i]

Fd [i]
. (52)

Note that for ∆ given by (51), ηi depends on δ only through
a 1
δ multiplicative factor, the other factor can be written as a

function of normalized PDFs and CDFs, thus this factor can be
pre-calculated based only on the normalized distribution. Note
also that the η?i are given by the score function for estimating
a constant location parameter when considering that the offset
is fixed and placed exactly at x, therefore this algorithm is
equivalent to a gradient ascent technique to maximize the log-
likelihood that iterates only one time per observation and sets
the offset each time at the last estimate.
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Using the ηi from (52), the adaptive estimator can be written
as

X̂k = X̂k−1 + γksign (ik) η|ik|, (53)

with ik = Q
(
Yk−X̂k−1

∆

)
.

The sum in (49) is the Fisher information Iq for estimating
a constant x from the output of the adjustable quantizer with
an offset exactly placed at x:

Iq = 2

NI
2∑
i=1

f2
d [i]

Fd [i]
, (54)

this quantity can be maximized w.r.t. τ , thus leading to the
following optimization problem:

τ ? = arg max
τ

Iq. (55)

Problem (55) without constraints on the thresholds seems to
be very difficult to solve analytically and no simple solutions
for this problem were found in the literature. Therefore,
general solutions for (55) will not be treated here, for the
results that will be presented in section V it will be considered
that the quantizer is uniform, with τ defined as follows

τ =

[
τ1 = 1 · · · τNI

2 −1
=
NI
2
− 1 τNI

2

=∞
]T

,

(56)
then in this case, only c∆ need to be set and consequently a
grid method can be used.

In the next section the results for each case using the choice
of parameters obtained above will be detailed and discussed.

V. RESULTS AND SIMULATION

It will be supposed that the noise CDF and δ are known and
also the type of evolution model for Xk. Thus for a given NI ,
cδ and τ , the coefficients ηi used in the estimation algorithm
(53) can be calculated using (52).

There are two quantities that still need to be determined, hx̂
and R. Using (52) in (16) and (19) gives

hx̂ = −2

NI
2∑
i=1

f2
d [i]

Fd [i]
= −Iq (57)

R = 2

NI
2∑
i=1

f2
d [i]

Fd [i]
= Iq. (58)

The specific gain γk and the performance of the algorithm
for each model will now be determined.

A. Constant Xk

Replacing hx̂ given by (57) in (20) and the result in (9)
gives the following gains:

γk =
1

kIq
(59)

and by replacing (57) and (58) in (21), σ2
∞ is obtained:

σ2
∞ =

1

Iq
. (60)

In practice this means that for large k, the estimation
variance will be (cf. (14))

Var
[
X̂k

]
≈ 1

kIq
. (61)

The right hand side of (61) is the inverse of the Fisher
information for estimating Xk = x based on ik when the
offset is fixed to be x. The inverse of the Fisher information is
known as the Cramér–Rao bound and it is a lower bound on the
variance of unbiased estimators [9, Ch. 3]. This means that for
large k, the estimator has the lowest possible variance within
the class of unbiased estimators using quantized observations
with offset bk = x.

In the continuous case (infinite number of quantization
intervals) the CRB for k observations is given by

CRBc =
1

kIc
, (62)

where Ic is the Fisher information given by

Ic =

∫ (
f ′ (x)

f (x)

)2

f (x) dx (63)

and f ′ (x) = df(x)
dx . In the cases where Ic exists and for large

k, one can calculate the loss of estimation performance Lq in
decibels (dB) in the following way:

Lq = −10 log10

Var
[
X̂k

]
CRBc

 = −10 log10

(
Iq
Ic

)
. (64)

B. Wiener process

Using (58) in (26), the following constant gain is obtained:

γ? =
σw√
Iq

(65)

and for this gain, the asymptotic MSE is obtained by substi-
tuting (60) in (29):

MSE∞ =
σw√
Iq
. (66)

The comparison with the continuous case can be done also
using a lower bound on the variance. In this case as Xk is
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random the Bayesian Cramér–Rao bound (BCRB) can be used,
this bound is defined as the inverse of the Bayesian information
for time k [10, Ch. 1]:

BCRBk =
1

Jk
. (67)

For a Wiener process, the Bayesian information can be cal-
culated recursively. The recursive expression, given in its
general form in [11], for a scalar Wiener process observed
with additive noise is

Jk = Ic +
1

σ2
w

− 1

σ4
w

(
Jk−1 + 1

σ2
w

) . (68)

The comparison must be done for k →∞. After calculating
the fixed point J∞ of (68), the asymptotic BCRB obtained is

BCRB∞ =
2

Ic +
√
I2
c + 4 Ic

σ2
w

. (69)

Expression (66) is only valid for small σw, in this case (69)
can be approximated by

BCRB∞ ≈
σw√
Ic

(70)

and the loss in asymptotic performance LWq for the estimation
of the Wiener process can be approximated by a function of
Lq:

LWq ≈
1

2
Lq. (71)

C. Wiener process with drift

The varying optimal gain and the MSE are obtained by
replacing (57) and (58) in (31) and (32):

γ?k =

[
4u2

k

I2
q

] 1
3

(72)

MSEk ≈ 3

[
uk
4Iq

] 2
3

. (73)

As uk is unknown, it might be estimated. For slowly varying
uk it can be estimated by smoothing the differences between
successive estimates:

Ûk = Ûk−1 + γuk

[(
X̂k − X̂k−1

)
− Ûk−1

]
. (74)

Then, Ûk can replace uk in the evaluation of the gain and the
MSE. If more information about the evolution of uk is known,
it might be incorporated in (74) to have more precise estimates
and get closer to the optimal adaptive gain.

As it is hard to have a bound on performance for the esti-
mation of a deterministic signal under non Gaussian noise, the
comparison with the continuous observation case will be done
using the approximate performance for a nonlinear adaptive

algorithm using continuous observations. The algorithm has
the following form:

X̂k = X̂k−1 + γckηc

(
Yk − X̂k−1

)
, (75)

where γck and the non linearity ηc (x) are optimized to mini-
mize the MSE.

Using the same theory described for the quantized case it
is possible to show that the optimal γck and ηc (x) are

γck =

[
4u2

k

I2
c

] 1
3

(76)

ηc (x) =
f ′ (x)

f (x)
, (77)

which exist under the constraint that Ic converges and is not
zero and that f ′ (x) exists for every x.

The MSE can be approximated in a similar way as before:

MSEk ≈ 3

[
uk
4Ic

] 2
3

. (78)

Therefore, the loss in performance incurred by quantizing
the observations in the estimation of the Wiener process with
drift LWD

q can be approximated by

LWD
q ≈ 2

3
Lq. (79)

The losses for the three models of Xk depend directly on
Lq , thus Lq allows to approximate how much of performance
is lost for a specific type of noise and threshold set comparing
to the optimal (possibly suboptimal in the case with drift)
estimator based on continuous measurements. In the next
subsection the loss will be evaluated for two different classes
of noise considering that the quantization is uniform, then the
adaptive algorithm will be simulated in the three cases and the
simulated loss will be compared to the results given above to
check their validity.

D. Simulation

The thresholds are considered to be uniform and given by
(56). For a given type of noise, supposing that δ is known
and for fixed NI , Iq can be evaluated by replacing (56) and
(51) in the expressions for fd and Fd. As Iq is now a function
of c∆ only, it can be maximized by adjusting this parameter.
Being a scalar maximization problem this can be done by
using grid optimization (searching for the maximum in a fine
grid of possible c∆). After finding the optimal c∆ and Iq ,
the coefficients ηi, the optimal gains γk and the quantizer
input gain 1

∆ can be evaluated and then all the parameters
are defined.

Note that it is supposed that the model for Xk is known as
setting γk depends on it. As a consequence of this assumption,
in a real application the choice between the three models must
be clear. When this choice is not clear from the application, it
is always simpler to choose Xk to be a Wiener process, first,
because the complexity of the algorithm is lower and second,
because supposing that the increments are Gaussian and i.i.d.
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does not impose too much information on the evolution of
Xk. Still, σw must be known, in practice it can be set based
on prior knowledge on the possible variation of Xk or by
accepting a slower convergence and a small loss of asymptotic
performance, it can be estimated jointly with Xk using an extra
adaptive estimator for it. In the last case, when it is known that
the increments of Xk have a deterministic component, the fact
the γk depends on uk is not very useful and prior information
on the variations of Xk are not normally as detailed as
knowing uk itself, making it necessary to accept a small loss of
performance to estimate uk jointly. The estimation of uk can
be done using (74) where prior knowledge on the variations
of uk can be integrated in the gain γuk . If precise knowledge
on the evolution of uk is known through dynamical models,
then it might be more useful to use other forms of adaptive
estimators known as multi-step algorithms [7, Ch. 4].

The evaluation of the loss and the verification of the results
will be done considering two different classes of noise that
verify assumptions A1 to A3, namely, generalized Gaussian
(GG) noise and Student’s-t (ST) noise. The motivation for
the use of these two densities comes from signal processing,
statistics and information theory.

In signal processing, when additive noise is not constrained
to be Gaussian a common assumption is that the noise follows
a GG distribution [12]. This distribution not only contains the
Gaussian case as an specific example, but also by changing
one of its parameters, one can represent from the impulsive
Laplacian case to distributions close to the uniform case.
In robust statistics, when the additive noise is considered
to be impulsive, a general class for the distribution of the
noise is the ST distribution [13]. ST distribution includes as
a specific case the Cauchy distribution, known to be heavy
tailed and thus normally used in robust statistics, also by
changing a parameter of the distribution an entire class of
heavy tailed distributions can be represented. When looking
from an information point of view, if no priors on the noise
distributions are given, noise models must be as random as
possible to ensure that the noise is an uninformative part of the
observation, thus noise models must maximize some criterium
of randomness. Commonly used criteria for randomness are
entropy measures and both distributions considered above are
entropy maximizers. GG distributions maximize the Shannon
entropy under constraints on the moments [14, Ch. 12] and ST
distributions maximize the Rényi entropy under constraints on
the second order moment [15].

Both distributions are parametrized by a shape parameter
β ∈ R+ and their PDFs and CDFs for δ = 1 are

fGG (x) =
β

2Γ
(

1
β

)e−|x|
β

, (80)

FGG (x) =
1

2

1 + sign (x)
γ
(

1
β , |x|

β
)

Γ
(

1
β

)
 , (81)

for the GG distribution, where γ (·, ·) is the incomplete gamma
function and Γ (·) is the gamma function,
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Fig. 3. Loss of performance due to quantization of measurements for different
types of noise and number of quantization bits.

fST (x) =
Γ
(
β+1

2

)
√
βπΓ

(
β
2

) (1 +
1

β
x2

)− β+1
2

, (82)

FST (x) =
1

2

{
1 + sign (x)

[
1− I β

x2+β

(
β

2
,

1

2

)]}
,(83)

for the ST distribution, where I β

x2+β

(·, ·) is the incomplete
beta function.

1) Performance loss - Lq: The first quantity to be evaluated
will be the loss Lq . To evaluate Lq , after evaluating Iq based
on f and F defined above, it is also needed to evaluate Ic.
Evaluating the integral on (63), one obtains for the GG and
ST distributions respectively:

IGG (x) =
β (β − 1) Γ

(
1− 1

β

)
Γ
(

1
β

) , (84)

IST (x) =
β + 1

β + 3
. (85)

The loss was evaluated for NI = {2, 4, 8, 16, 32} which
corresponds to NB = log2 (NI) = {1, 2, 3, 4, 5} number of
bits and for the shape parameters β = {1.5, 2, 2.5, 3} for GG
noise and β = {1, 2, 3} for ST noise. The results are shown
in Fig. 3. As it was expected, the loss reduces with increasing
NB . It is interesting to note that the maximum loss, observed
for NB = 1, goes from approximately 1dB to 4dB, which
represents factors less than 3 in MSE increase for estimating a
constant with 1 bit quantization. Also interesting is the fact that
the loss decreases rapidly with NB , for 2 bits quantization all
the tested types of noise produce losses below 1dB, resulting
in linear increases in MSE not larger than 1.3. This indicates
that when using the adaptive estimators developed here, it is
not very useful to use more than 4 or 5 bits for quantization.

The performance for 2 bits seems to be related to the noise
tail, note that smaller losses were obtained for distributions
with heavier tail (ST distributions and GG distribution with
β = 1.5), this is due to the fact that for large tail distributions
a small region around the median of the distribution is very
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Fig. 4. Constant. Quantization loss of performance for GG and ST noises and NB = {2, 3, 4, 5} when Xk is constant. For each type of noise there are 4
curves, the constant losses are the theoretical results and the decreasing losses are the simulated results, thus producing pairs of curves of the same type, for
each pair the higher results represent lower number of quantization bits. In (a) results for GG noise and NB = 2 and 3, in (b) the results for GG noise and
NB = 4 and 5 are shown. The figures (c) and (d) are the results for ST noise, in (c) NB = 2 and 3 are considered while in (d) NB = 4 and 5.

informative, thus as most of the information is contained there,
when the only threshold available is placed there, the relative
gain of information is greater than in the other cases, leading
to smaller losses. This can also be the reason for the slow
decrease of the loss for these distributions, as the quantizer
thresholds are placed uniformly, some of them will be placed
in the non informative amplitude region and consequently the
decrease in loss will be not as sharp as in the other cases.

Laplacian distribution was not tested, because for this
distribution the optimal adaptive estimator in the continuous
case is already an adaptive estimator with a binary quantizer.
This can be seen easily if one evaluates Iq as a function of the
thresholds, the result will be a constant for all possible sets
of thresholds meaning that they are unimportant, moreover, if
ηi are evaluated one will find that they are all equal, therefore
only the sign of the difference between the observations and
the last estimate is important. Consequently, the loss found in
this case would be a constant for all NB .

To validate the results, the adaptive algorithms will be
simulated and the loss obtained will be compared to the
approximations given above. The simulation results will be
presented in the same order as before, first the constant case,
then the Wiener process case and finally the case with drift.
All the simulation were done considering NB = {2, 3, 4, 5}.

2) Simulated loss - Constant: in the constant case, the 7
types of noise with evaluated Lq were tested, the value of
X0 = x was set to be zero and the initial condition of the
adaptive algorithm was set with a small error (X̂1 ∈ {0, 10}),
the number of samples was set to be 5000 to have sufficient
points for convergence, the algorithm was simulated 2.5 ×
106 times and the error results were averaged to produce a

simulated MSE. Based on the simulated MSE a simulated loss
was calculated, and it is shown in Fig. 4.

The simulated results seems to converge to the theoretical
approximations of Lq , thus validating these approximations.
This also means that the variance of estimation tends in
simulation to the CRB for quantized observations, validating
the fact that the algorithm is asymptotically optimal. The
convergence time looks to be related to NB , when NB
increases the time to get closer to the optimal performance
decreases.

3) Simulated loss -Wiener process: for a Wiener process,
Lq was evaluated by setting X̂ (0) randomly around 0 and
X0 = 0, then 104 realizations with 105 samples were simu-
lated and the MSE was estimated by averaging the realizations
of the squared error for each instant, then as it was observed
that the error was approximately stationary after k = 1000,
the sample mean squared error was also averaged resulting in
an estimate of the asymptotic MSE. Based on the obtained
values of the MSE a simulated loss was evaluated. The results
for the 7 types of noise and σw = 0.001 are shown in Fig. 5.

As expected, the results have the same form of the theoret-
ical loss given in Fig. 3. To verify the results for different σw,
the loss was evaluated through simulation also for σw = 0.1
in the Gaussian (GG with β = 2) and Cauchy cases (ST with
β = 1). The results are shown in Fig. 6, where the theoretical
losses for these cases are also shown. It is clear from the results
that Xk might move slowly to give a performance close to the
theoretical results, but it is also interesting that the simulated
loss seems to have the same decreasing rate as a function of
NB when compared to the theoretical results. This means that
the dependence on Iq of the MSE seems to still be correct and
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Fig. 5. Wiener process. Simulated quantization performance loss for a
Wiener process Xk with σw = 0.001, different types of noise and number
of quantization bits.
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Fig. 6. Wiener process. Comparison of simulated and theoretical losses in
the Gaussian and Cauchy noise cases when estimating a wiener process with
σw = 0.1 or σw = 0.001.

it indicates that even in a faster regime for Xk, the thresholds
can be set by maximizing Iq .

4) Simulated loss - Wiener process with drift: for Xk with
drift, Wk was simulated with mean and standard deviations
uk = σw = 10−4, which represents a slow linear drift with
small random fluctuations, the initial conditions were set to
be X0 = X̂ = 0 and the drift estimator was set with constant
gain γuk = 10−5. Its initial condition was set to the true uk
to reduce the transient time and consequently the simulation
time. As uk is constant, the loss evaluation was done in the
same form as for Xk without drift, based on averaging through
realizations and time. The results for the Gaussian and Cauchy
cases are shown in Fig. 7.

The small offset between simulated and theoretical results is
produced by the joint estimation of uk. Note that keeping γuk
to a small constant allows to adaptively follow slow variations
in uk. The convergence to the simulated loss in Fig. 7 was also
obtained for simulations with errors in the initial conditions
but in this case the transient regime was very long, indicating
that other schemes might be considered when the theoretical
performance is needed in a short period of time. Multi-step
adaptive algorithms could be used for faster convergence to the
theoretical performance but they would need a precise model
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Fig. 7. Wiener process with drift. Comparison of simulated and theoretical
losses in the Gaussian and Cauchy noise cases for estimating a Wiener process
with constant mean drift uk = 10−4 and standard deviation σw = 10−4.

for the evolution of the drift which is not considered here.

VI. CONCLUSIONS

In this work an adaptive estimation algorithm based on
quantized observations was proposed. Based on observations
with additive noise and quantized with adjustable offset and
gain, the objective was to estimate with a low complexity
online adaptive algorithm a scalar parameter that could follow
one of three models, constant, Wiener process and Wiener
process with drift. Under the hypothesis that the noise PDF
is symmetric and strictly decreasing, and that quantizer is
also symmetric, by using Lyapunov theory it was shown that
for the optimal quantizer output coefficients, the algorithm is
asymptotically stable. It was also shown that the asymptotic
performance in terms of mean squared error could be opti-
mized by using static update coefficients that depend only
on the shape of the observation noise and on the quantizer
thresholds.

Performance results were obtained based on the optimal
choice of the quantizer output levels. It was observed that
the effect of quantization on performance could be quanti-
fied by the Fisher information of the quantized observations.
Thus, this clearly indicates that the quantizer thresholds must
be placed to maximize the Fisher information. It was also
observed that for the three models, the loss of performance
of the algorithm w.r.t. the optimal continuous measurement is
given by a function of the ratio of the corresponding Fisher
informations.

For testing the results, two different families of noise were
considered, generalized Gaussian noise and Student’s-t noise,
both under uniform quantization. First, the theoretical loss was
evaluated for different numbers of quantization intervals. The
results indicate that with only a few quantization bits (4 and
5) the adaptive algorithm performance is very close to the
continuous observation case and it was observed that uniform
quantization seems to penalize more estimation performance
under heavy tailed distributions.

Estimation in the three possible scenarios was simulated and
the results validated the accuracy of the theoretical approxima-
tions. In the constant case it was observed that the algorithm
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performance was very close to the Cramér–Rao bound, in the
Wiener process case it was observed that the theoretical results
are very accurate for small increments of the Wiener process
and in the drift case it was seen that by accepting a small
increase in the mean squared error it is possible to estimate
jointly the drift.

Another interesting result is that a varying parameter has a
loss of performance smaller than a constant parameter, thus a
type of dithering effect seems to be present. In this case, the
variations of the input signal makes the tracking performance
of the estimator to get close to the continuous measurement
performance.

The fact that the number of quantization bits does not
influence much the performance of estimation leads to con-
clude that it seems more reasonable to focus on using more
sensors than using high resolution quantizers for increasing
performance. Consequently, this motivates the use of sensor
network approaches.

As the Fisher information for quantized measurements plays
a central role in the performance of the algorithms, the study
of its properties as a function of the noise type and quantizer
thresholds seems to be a subject for future work. A possible
approach for the study of its general behavior would be to
consider high resolution approximations.

Finally, as in practice sensor noise scale parameter and
Wiener process increment standard deviation can be unknown
and slowly variable, it would be also interesting to study
how the algorithm design and performance would change by
estimating all these parameters jointly.
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