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Complex Amplitudes Tracking Loop for multipath channel
estimation in OFDM systems over slow to moderate
fading’

Laurent ROS, Hussein HIJAZI and Eric-Pierre SIMEN

Abstract- This paper deals with multipath channel estimation for G@gtnal
Frequency-Division Multiplexing systems under slow to ramte fading conditions.
Most of the conventional methods exploit only the frequedoynain correlation by es-
timating the channel at pilot frequencies, and then intiatpgy the channel frequency
response. More advanced algorithms exploit in additiortithe-domain correlation,
by employing Kalman filters based on the approximation oftthne-varying chan-
nel. Adopting a parametric approach and assuming a prin@yisition of the path
delays, channel estimators have to track the complex amdpfit of the paths. In this
perspective, we propose a less complex algorithm than thrma¢amethods, inspired
by second-order Phase-Locked Loops. An error signal igedegaom the pilot-aided
Least-Squares estimates of the complex amplitudes, amdeigrated by the loop to
carry out the final estimates. We derive closed-form exprasf the mean squared
error of the algorithm and of the optimal loop coefficientssues the channel state,
assuming a Rayleigh channel with Jakes’'Doppler spectrume. €fficiency of our re-
duced complexity algorithm is demonstrated, with an asytiptnean squared error
lower than the first-order auto-regressive Kalman filteporeed in the literature, and

almost the same as a second-order Kalman-based algorithm.
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1. Introduction

Orthogonal Frequency-Division Multiplexing (OFDM) is affiextive technique for
alleviating frequency-selective channel effects in vassl communication systems. In
this technique, a wideband frequency-selective chanwekigerted to a number of par-
allel narrow-band flat fading subchannels which are freentdrtSymbol-Interference
(ISl) and free of Inter-Carrier Interference (ICI) (for riggpble channel time variation
within one OFDM symbol period’). For coherent detection of the information sym-

bols, reliable estimation of the gain of each subchannélérQFDM system is crucial.

1.1. Some approaches to channel estimation in OFDM

Most of the conventional methods work in a symbol-by-syngadieme [3, 4, 5]
by using the correlation of the channel only in the frequedoynain (FD),i.e. the
correlation between subchannels. Generally, they commsestimating the channel at
the pilot subcarrier position and then interpolating it ottee entire frequency grid
[3]. The channel estimation at the pilot frequencies candset on the Least-Squares
(LS) criterion, or, for better performance, on the Lineairlvhum-Mean-Square-Error
(LMMSE) criterion [4]. In [5], Low-Pass Interpolation (LIPhas been shown to per-
form better than all interpolation techniques used in cleheatimation. This channel
estimator will be called conventional LS(FD)-LPI in thisgea.

Though the conventional methods can operate with timeivgrghannels, the in-
formation of the time-domain correlation is not exploitddowever, the channel es-
timation process can be theoretically greatly improved sing the previous OFDM
symbols, according to the on-line Bayesian Cramer-Rao BqB&CRB) analysis in
[6]. Thus, Chen and Zhang proposed in [7] a structure to tthekcomplex gains of
each subchannel by using one Kalman filter (KF) per sub-aflarin practice, only
a subset of pilot-subcarriers is used to perform the pectsainel KF, and the global
frequency response of the channel is still obtained by LRirpolation. This esti-

mator will be hamed Kalman(FD)-LPI in the paper. Other wosk#i exploit time



and frequency correlation for OFDM channel estimation bpgisdditional assump-
tions or different approaches. Assuming the availabilityhe power delay profile, a
data-aided KF estimator (derived from the Expectation-lézation algorithm frame-
work) is employed in [8] to track the discrete-time impulssponse of the channélg
in Time-Domain (TD)). And a low-complexity parameter retlan approach based on
the eigenvalue decomposition of the auto-correlationimafrthe channel (in FD) is
proposed in [9]. It tracks the channel coefficients in the thamt eigenvectors sub-
space basis by KF, and then performs eigenvalues inteipotatcompute the channel
frequency response. This estimator will be denoted Kalk®in this paper.

In the same context of reducing the signal subspace dimens® now focus on
the class of parametric channel estimators. Assuming apathtchannel structure, es-
timation can be reduced to the estimation of certain phypicgagation parameters,
such as multipath delays and multipath Complex Amplitud&ss)) [10, 11, 12, 13, 14].
It is well known that in wireless radio channels, the delayes guasi-constant over a
large number of symbols. Consequently, the number of pattigpath delays can be
very accurately estimated, for example by applying the MBlaximum Description
Length) principle combined with the ESPRIT (Estimation @jr&l Parameters by Ro-
tational Invariance Techniques) method as proposed in @] adopted many times
[11, 13, 14]). Several papers on OFDM channel estimationddbeir works on the
crucial CAs tracking problem, assuming the delays are iamarand perfectly esti-
mated. This approach will be adopted in this paper. In [13wiethave addressed this
issue for the special case of fast time-varying chaninel\ith normalized Doppler
spreadfyT > 102), by using polynomial modeling of the CA time-variation. Wave
also addressed it in [15] for the joint carrier frequencyseffand high speed channel

estimation problem.
1.2. Motivation of the work and contributions

Second-order versus first-order algorithmthe use of KF for channel estimation has
received great attention in recent years in the wirelessnwonication literature. It
is true for most system®.g. MIMO [16, 17] or single-carrier systems [18, 19], as

well as in OFDM systems, as mentioned before [7, 8, 9, 14].tidlaforementioned



works based their KF on the AR approximation of the widelyegoted Rayleigh fad-
ing channel with the Jakes’Doppler spectrum [20], callexl“fRayleigh-Jakes” model
in this paper, as developed in [21]. The first-order Gausskbaassumption (AR1
model) is most often retained [8, 9, 16, 17, 18, 19, 22, 23k Jdrcalled AR1-Kalman
estimators are convenient for the very high mobility casacling to quasi-optimal per-
formance, as seen, for example, in [14, 15]. In these worksRirKalman is actually
used to track the polynomial Basis Expansion Model coefiisiof the high speed
channel. However, in the more common scenario of slow to mateéading with neg-
ligible variation during one symbol (i.ef4T < 1072, asin [7, 8, 16, 17, 18, 19]), the
AR1-Kalman estimators of the literature seem to exhibitrgmerformance compared
to BCRB lower bounds, as seen in [1]-Fig.10. On the other h§2v] shows, in a
single-carrier single-path context, that the MSE perfarogeof a KF can be well im-
proved by switching from the AR1 to a second-order modellfefibtegrated random
walk (IRW) model type) for the approximation of the Jakesgess. Indeed, for low
fqT, the exact channel CA continues in a given direction durengegal symbols, and
a second-order approximation model can generally takesiotount this strong trend

behaviour better than a first-order model [25, 26].

Reduced complexity algorithms compared to Kalm&ifr-based algorithms require
the updating of the coefficients of the algorithm at eachatten (each new OFDM
symbol), and are quite complex as a result. However, reduoatplexity adaptive
algorithms can be obtained, using constant coefficientsy Tan be designed, if an a
priori model of the dynamic of time-varying parametdrs.(hypermodélis available,
such as a Wiener LMS adaptation algorithm ([26]), or as adstessate version of the
KF, since a time-varying KF becomes a time-invariant filféeieconvergence, see [27],
ch 13.5. Such algorithms are generally slower than the Kinduhe convergence, but
can have the same asymptotic performance in tracking madkis family, the classi-

cal Least-Mean-Squared (LMS) algorithm can be regardedstsaaly-state version of



a KF based on a first-order random-walk (RW) model. Secodé+athannel tracking
algorithms described as predictive LMS, or as a steadg-stasion of an IRW model-
based KF, have also been proposed in [25, 26, 28]. Howewsrhtave been developed
for the single-carrier transmission, and without simpteseld-form formulas versus the

channel state for the tuning and performance of the estimiato

Approach and contributionsin this paper, we propose and analyze a low-complexity
on-line recursive algorithm with constant coefficients floe multipath CAs estima-
tion problem under the common slow to moderate channelt@mgscenariofyT <
1072). Itis developed for OFDM systems with comb-type pilotshiritthe framework
of parametric channel estimators, exploiting the avdilgbdf delay related informa-
tion (assuming a primary acquisition as in [10, 13, 14, 16f)tfacking the CA vari-
ations. The proposed algorithm is based on a Complex Ant@gurracking Loop
(CATL) structure. This structure is inspired by secondeurdigital Phase-Locked
Loops (PLL) [29, 30], as well as by the “prediction-correcti principle of the KF
(in the steady-state mode) given the close link betweenvibe([31, 32]). The error
signal that feeds the loop is based on the LS estimate of tthes j@2A, obtained for
each current symbol from the pilot-subcarriers. The preddsS-CATL algorithm can
be seen as an extension for the multipath OFDM case of thexdemuler adaptive al-
gorithms of [25, 26](and also [24]-ch 4.1), using the paraiioestimation framework.

Our main contributions can be summarized below:

e proposition, interpretation, and analytical optimizataf a simple on-line second-
order (multipath) CAs tracking algorithm with almost thersaasymptotic MSE
performance as a second-order KF derived with the same asisuns (paramet-

ric modeling and a priori knowledge), but with a reduced ctaxipy,

e derivation of closed-form expressions usable to tune tleffictents of the CATL
as well as to predict the MSE performance with respect to tteniel state

(Doppler spread, power-delay profile, SNR) under “Raylelghes” assumption.



e evaluation of the benefit of the second-order proposed ithgorcompared to
first-order KF-based reference algorithms or other coneaat (FD interpola-

tion) methods of the literature, for the common slow to matkefading channel.

The paper is organized as follows: Section Il describes yst&esn model and objec-
tives. Section Ill derives the proposed algorithm and italgsis, and the different
results are discussed in Section IV.

Notations: [x]x denotes theth entry of vectorx, and [X]m the [k, mth entry
of matrix X (indices begin from 1).1y is anN x N identity matrix. The notation
diag{x} stands for a diagonal matrix withon its diagonal, diaf)X } is a vector whose
elements are the elements of the diagona{ pand blkdiag X, Y} is a block diagonal
matrix with the matriceX andY on its diagonal. The superscrigts”, ()", |-, and
Tr(-) respectively stand for transpose and Hermitian operati@terminant and trace

operationsJy(-) is the zeroth-order Bessel function of the first kind.

2. System Model

2.1. OFDM Transmission over multipath channel

Let us consider an OFDM system witth subcarriers, and a cyclic prefix length
Ng. The duration of an OFDM symbol i§ = vTs, whereTs is the sampling time
andv =N+ Ng. Let Xy = [Xm [~ N, X[~ Y + 1, -, xm[¥ — 1] be the vector
containing theN QAM symbols for thenth OFDM symbol. After transmission over a

multipath channel and FFT demodulation, the observatigiviesn by [10, 13]:
Yoy = H Xm)+ W) (1)

wherew, is aN x 1 zero-mean complex circular Gaussian noise vector witligov
ance matrixo?l andH ;) is aN x N diagonal matrix with diagonal elements

k=1

L " .
> [aun) xe! "(W*Z)T'} )
=1



L is the total number of propagation paths; )} is thelth CA atnth OFDM symbol
with variances? (with yi-, 04 = 1), andr x Tsis thelth delay @ is not necessarily
an integer, buti < Ng). Thel individual elements of o), } are uncorrelated with

respect to each other. Using (2), the observation modelipe re-written [10] as

Y = diag{x(n)}F o n) + W) 3)

wherea ) = [Ayn); - aL(n)]T andF is anN x L Fourier matrix depending on the delay
distribution, with elements given by = e 127 ~3)1,

We assume the “Rayleigh-Jakes” model [20] for the channigh Boppler frequency

fg. tmeans thé CAs ), are independent wide-sense stationary zero-mean complex

circular Gaussian processes, with correlation coeffisitata time-lag given by

K
Réq) =Elamni"] = 0§.Jo(2mfaTk) (4)

2.2. Pilot Pattern

The N, pilot subcarriers are evenly inserted into tesubcarriers at the positions
P={ps| ps=(s—1)Ls+1, s=1,...,Np} with Lt the distance between two adjacent

pilots. The received pilot subcarriers can be written as
Yoy = Kmem +Wpm) (5)
wherey,, andw, areNp x 1 vectors. TheN, x L matrix Xy, is defined by

fK(n) = diag{xp(n)}Fp (6)



Note thatX, is computed for each OFDM symbol, using knowledge of kpex 1

data pilot vectok,y, and the delay$t } through theNp x L matrix Fp with elements

o =1 1
[Fpliy = e 12121 (7)

2.3. Estimation objectives

We wish to estimate the CAs ) assuming the knowledge of pilots subcarriers
Xp(n) and delays = (1, ..., 1.]T. The estimation is based on the observation model (5)
that can be reformulated gg,) = X (xp(n),q-) Q(n) +Wp(n). We restrict the problem
to the on-line estimation, which means current and previdagervations are available

(i.e. forindicesn,n—1,n—2,...) to estimatex at time indexn.

3. Complex Amplitudes Tracking algorithm

The proposed tracking algorithm, called the LS-CATL algoni, is built from a
general second-order recursive structure (CATL) presemgéow, and from a specific
error signal (based on pilots and LS criterion) that will@pethe error detector of the

structure, presented subsequently.

3.1. Structure of the algorithm: CA Tracking Loop

The estimate ofx(,), denotedy ), is updated at a symbol rate by the computation
of an error signab, ), next filtered by a second-order feedback loop. The reaairsiv

equations of the second-order CATL, using a PLL-type foatiah ([29, 30]), are:

Error detector : v,y = function of{ y,n ; &gpmpn-1) } (8)
Final estimate :&iny = G&pn-1) + H1-V¢(n) 9
Loopfilter : viagmy = Yragin-1) + Ve(n) (10)
Ve(n) = H1Ve(n) + H2-Viag(n) (11)

NC Generator: &ni1n) = &nn-1) + Ve(n) (12)
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Figure 1: Structure of the second-order complex amplitudeking loop, inspired by second-order digital
PLL

wherep, Lo are the (real positive) loop coefficients. Based on thesat&nqns, the
structure of the CATL is shown in Fig. 1. As in a second-ordgitdl PLL [30], we

find in cascade an error detector that delivers error sigggl, a proportional-integral

(P1) loop filterFpL(2) = 1 + lf‘zz,l (or lead-lag filter) parametrized ks andy,, and
a Numerically Controlled (NC) Generator delivering thedicted estimateé(nn_1).
However, the estimates are multiple complex amplitudestead of one real phase in
a PLL (then delivered by a NC Oscillatory, ) is a complex vector in the output of
a “Complex Amplitude Error Detector” (CAED) (vs a real saaia the output of a
phase error detector in a PLL), to be defined in (8) from the m@asuremeny,,
and the predictioidn_1). Also, the final estimaté ) is not directly the prediction
& (nin—1) as in conventional PLL, but is delivered after a correctitgpsaccording to
(9). Thus, an additional branch is added as a dotted linegnFi

Using (9), we can compact the second equation of the loop filte and the NCG

equation (12) by the unique equation (13):



Qnian) = Q(nin) + H2-VLag(n) (13)

showing that the sum accumulator of the error signal wetjhyguy, i.€. . v ag(n) IS

an estimate of thepeed evolutioor slope) ofc, useful to predict the CAs evolution.

3.2. Error signal specific to the LS-CATL algorithm

We now have to define an error signal vector in place of eq.i@pired by PLL, a
good candidate (among several possibilities [1]) is anresignal vectow, ) collinear
(in absence of noise) with the prediction error ve@Qkqn) = cny — &nn—1), in order
to get a detector, which is perfectly linear and free fromeiifiath-interference. In this
perspective, let us first consider the LS-estimatomgf) that permits, among all esti-
matorsé ), Us to minimize the squares errgr, ) — J<<n>d(n>)H.(yp(n) — K (n)&n))
for the current OFDM symbol:

asm = GmYpm) (14)

-1
; H H
with Gy = (XhKw) X (15)

We see from (14)&(15)&(5) that the LS estimator is unbiaseth o s(n) = a(n) +
N whereN(y, is a zero-mean complex Gaussian noise vector. So, we prapase
simply the difference between the LS estimatqrs,) for the rth OFDM block and

the predictionéyn—1), @s an error signal vector in place of (8):
Ve(n) = Gm)Yp(n) ~ &(nin-1) (16)

Thus, this specific error signal vector (16) has a simplelifierm versus the prediction

Error Vectorepreqn) = @(n) — &(njn—1), &S seen while using (14)&(15)&(5):

Ve(n) = Ka-{m) — &(nn-1)} + N (17)
The real coefficienky is the gain factor of the CAED, reduced herekto= 1. And

10



Ny = [Ny - NL(n)]T is the (temporally uncorrelated) zero-mean disturbanedalu
the additive thermal noise,, ;) in the input of the CAED, and represents the so-called
(input) loop noisei(e. in the input of the loop but in theoutputof the CAED). We
haveN ) = G n)Wpn), With a correlation matriE{N(n).N(*r'])} =02 (Fy Fp)fl, and

amean variance (per paig = .5, 05 ):

2
R = g_ AN (18)
p
1 1 -1
; H

whereNp is the number of pilot subcarriers. The (input) loop noisdarece is mini-
mum (.e. ag(min) = ﬁ—i andAn = 1) if Ny, is uncorrelated from one path to another,

i.ewhean Fp is a diagonal matrix. This condition depends on the delastsidution.

3.3. Computational Complexity and comparison with refeesFs

The CATL can be interpreted as a reduced complexity appreacipared to refer-
ence KFs designed for the complete multi-carrier and npath observation model (5)
such as presented in Appendix A (AR1-Kalman and Or2-Kalmbndeed, the CATL
acts in each branch i.e. for each multi-path componeumwt, as a “simplified” IRW
model-based KF. Each KF is “simplified” in the sense it is daed for the simplified
single-carrier and single-path scenario, as in [24], amgédrates only in steady-state
mode. But we have chosen an error signal (16) able to copethétimore compli-
cated multi-carrier and multi-path scenario. This intetation of the CATL structure
is more detailedi(e. derived from the equations) in Appendix B.

Let us determine now the implementation complexity in teafithe number of the
complex multiplications needed for each OFDM symbol for b8rCATL algorithm.
The matrices5 ) (sizeL x Np) andX ) (sizeNp x L) are assumed to be precomputed
and stored, if the delays are invariant for a great number K2 symbols. Then, we

just haveNp x L multiplications for the LS estimate (16) used in the errdeder (8),

11



plus 2. multiplications (or just if u, = 0) in the loop filter (11). Table 1 compares
this complexity to reference KFs presented in Appendix Ais lhoteworthy that the
LS-CATL algorithm is computationally less demanding teiclie than Kalman filters,
since the latter require inversion of matrices of dige< N, for the Kalman gain matrix
computation (A.8), plus multiplications of matrix with sitp x 2L, 2L x 2L, or Np x

N, for the update of the filters coefficients (see (A.6)-(A.10f)e LS-CATL approach
presents finally a linear complexity in terms of the numbepibét subcarriersN,

(O(Np)) versus a cubic complexitﬂ(Ng)) for the reference Kalman algorithms.

Number of complex multiplications per OFDM symbol

2nd-order LS-CATL NpxL + 2L

Or2-Kalman N3 + N2x 3L + Npx (6L2+3L) + 4L2+2L
1st-order LS-CATL NpxL + L

AR1-Kalman N3 + NZx2L + Npx (2L2+2L) + L2+L

Table 1: Complexity of the LS-CATL proposed algorithm (fisstler and second-order versions) compared
to reference KFs (AR1-Kalman and Or2-Kalman, describedppekdix A)

3.4. General properties and theoretical MSE analysis

3.4.1. Second-order closed-loop transfer function

The estimation error of the tracking algorithm is defined as
€(n) = (n) ~ X(njn) (20)

We want to obtain the transfer function between the trueoregarameter and the

estimate. Combining equations (13) and (9), we have:

& (nin) = Qn-1jn-1) + H1-Ve(n) + H2-VLag(n-1) (21)

By using (10), the Z-domain transform of (21) leads to

ozt

a2 -7 Y = [+ 122

Jve(2) (22)

12



Combining the general loop equation (22) with the specifts-flased) error signal (17)

rewritten versus the estimation error as

1

Veln) = T kg L~ S} + 3 N (23)
we obtain in the Z-transform domain:
&(z2) =L(2).a(2) + %.N(z) (24)
whereL(z) is the transfer function of the CATL defined by
Loy — — Them? 25)

(1-z1) + 2 F(2)

with respect td- (z) = p1 + ‘1‘52; Hence, the CATL transfer function can be written

versus the loop coefficientgiy, up) ast

ka[(z— 1)2.p1+ (z—1). (M1 + pho) + 2]
(z—1)?+ (z—1).ka(p1 + p2) + kapiz

L(z) = (26)

or rewritten in a more interpretable form as a function ofibthie natural pulsatioay,

(or natural frequency, = 32), and the damping factaf as

2{on.(1-zH+df

L@ = (1-z1)2+20on(1-z1) + @7
with: (anT)? = 15‘1‘:2“1 (28)
S T (29)

1L(2) is the same in [1] wittBy = ﬁ but differs slightly from the closed-loop transfer furctiof a
2nd-order digital PLL [30, 31], due to the additional bramcldashed line in Fig. 1.

13



And from (28) and (29), one given coupl&{, {) of the second-order low-pass transfer

function can be obtained by tunirigy, 1o) as

1 (anT)*+20anT

B e T ()2 + 2T (30)
_ 1 (wnT)?
K2 = e Tt ()2 + 2ZaonT (1

The strict stability conditions df(z) in (26) or (27) versusifs, L12) are given in [2],
but if we impose that 8< w, < +o and 0< { < 4 in order to preserve a physical
meaning, we deduce from (30)&(31) thakOuy < u1 < 1/kq. We can rewrite_(z)
in the frequency-domain, by makirmg= ePT, with p = j2rif, andf is the frequency
variable. Fig. 2 plots the modulus of the resulting functibfe/?™T). Assuming
slow reaction of the loop during one OFDM symbbl(i.e. f,.T < 1) and for Low
Frequency (LF) regioni fe. for fT < 1, using the approximation ! ~ 1 — p.T), the
transfer function of the digital loop in (27) is close to tieesnd-order low-pass transfer

function of the analog PLLi(e. with an active analog lead-lag loop filter, see [33], ch

):
2J wnp+ P

() p?+2{ anp+ 3

(32)
3.4.2. Mean Squared Error analysis
The estimator is unbiased since the CA estimation efggidefined in (20) is zero-

mean (see (24)). Our aim is to compute the estimation ernavee as

def 1
02 = E.E{e'(':])e(n)} = 02, + 04 (33)
whereo?, is the dynamic error variance, due to the variation of theess, ando?,
is the static error variance, due to the additive thermageoiAccording to (24) and
(20), errore(p,) can be expressed in the Z-domaindfy) = (1-L(2)).(2) — kgl.L(z).N(z).

Then, the two components of variangg can be easily expressed in the frequency-

14
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numerically from (34) assuming Rayleigh-Jakes model (wgh=1,L = 6), and from (35) assumir@ =1
and o3 = 6,25.1072 (top of the figure) org3 = 6,25.10~* (bottom of the figure). Theoretical reference
(dashed line) given from closed-form expressions (36)&(88082,\,, and from (42) foroZ,

domain, as is traditionally done when analyzing the tragkierformance of a PLL

([33]), or of a predictive LMS estimator ([28]). The compone?, results from the
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high-pass filtering1 — L(2)) of the CAsc(y,):

+ ,
0% = [ 7 Fa(f)1-L(e2™T)Faf (34)
ST

with T (f) = .51 1 (f) wherel 4 is the Power Spectrum Density (PSD)af
The component3, results from the low-pass filtering—(gl.L(z)) of the input loop

noiseN(p):

ot 1.,
oh- | () ILE TP (35)
ST

with Mn(f) = .51, M (f) wherel y is the PSD oN;.

The couple {n, {) has to be properly chosen for a good trade-off between tinérga
tracking ability and the reduction in loop noise, for a gi&MR andfyT scenario. Fig.
3 gives results obtained by numerical integrationdgrassuming a “Rayleigh-Jakes”
model for the CA dynamic, and a (temporally uncorrelategdyirioop noise with two
different variance®3. It is shown that fixing{ = % and varyingf, can be a strategy
to obtain the best minimum af?. Our objective now is to give some approximate

closed-form expressions foZ, ando?,, especially for{ = % approximately.

Static error varianceoy. using the whiteness df, with the PSDI'y(f) = ofT,

the equation (35) reduces to

o]
O = Eg.BL (36)
whereB, is the (double-sided normalized) noise equivalent banthwaéithe system:
+ .
BL—Tx / 7 L(em T Pd ¢ (37)
VT

An exact analytical expression & is derived for the exact second-order loop

((26) or (27)) from the method presented by R. WinkelsteifB#{, resulting in

B, — (802 +2](wnT) + 6 (anT)?+ (anT)?

87+ 822+ 4. (anT) + 60 (anT)2 + (@nT )P (38)

16



If f,.T < 1, we can use the approximation (39) which coincides (seg ¢83111) with

the noise equivalent bandwidth of the usual analog secodéer®LL given in (32):

BL ~ 2mf,T.({ + %) (39)

Dynamic error variances?,. the dynamic error variance depends on the Doppler
spectrunT 4 (f) and on|1 — L(el?™T)|2 via the integral form (34). According to (32),
the squared modulus of the error transfer function of themsg@rder loop is

f4
f4—f2f2.(2— 479+ f

11— L(e?"T)]2~ 5 for f < 1/T (40)

On the other hand, the Doppler spectrum for the “Rayleidtegamodel (4)] 4 (f) =
g /L
"fd\/lf(fﬁz
will require that the natural frequency of the second-otdep f, be greater thariy.

for f €] — fq;+fq[, has a bounded support. Therefore, good tracking

Then, we can deduce that only the LF part of the function L(el?™T)|2 is used in
the integral (34), and we can use the LF approximation L(el?™T)|2 ~ (fin)4 for

f < fg < fn < 1/T. This approximation is still accurate fdr~ f, for the special
case{ ~ % (see (40)). It results that the CA dynamic error variagge in (34) can
finally be approximated (fofy < f, < 1/T, and{ ~ %) by

4
0%, ~ Fa(f). (fi) df (41)

For the “Rayleigh-Jakes” model, a variable changefces(f/fq) permits us to eval-

uate (41) analytically as

4
02, (Jakes ~ (g). <‘;—:> GTg (42)

Optimal natural frequencythe dynamic component?, decreases proportionally to
the 4th power off, according to (42), whereas the static compor&gtincreases as

a function of f,, according to (36)&(39). The componeog, (respectivelyo?,) is
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the dominant part of the globaf in the low (respectively largef),/ f4 region, as seen
in dashed line in Fig. 3. Now, if we fiX (around%), we can calculate the natural
frequencyf, that permits us (foffy < f, < 1/T) to minimize the global MSE? in
(33), by searching the zero of the derivativeagfin (33) using (36)&(39)&(42):

fn 31 1 1 o?/L :
(1) (Gakey = (Z'TT'(Z-F%)'M—T'U,ﬁ/kg) (43)

The closed-form expression of the corresponding optimaEMESults in

: AN
osakes =1 () '(E'f"T) (44)
with A:%S-[(H%)-%"r (45)

It is noticeable that the asymptotic performance of the sdemrder CATL in (44)
coincides, forl = \/75 andL = 1, with that of the second-order Kalman in [24]-eq.(39),

derived for the simplified case of single-carrier and singg¢h channels.

3.5. Special case of the first-order CATL

In the special case whege = 0, the on-line estimation algorithm is reduced to a
first-order low-pass filtering of the LS estimator (see (I é1)), such thafy ) =
(1= 1).&n-1n-1) + H1.a s(n)- The transfer function (25) of the system just depends

on a cut-off pulsationy. (or cut-off frequencyf; = %T), and is reduced to

Ka 1
1—kgp

e
(1-z Y+ wT

L(z) = with (eT) = (46)

and then, approximately, (whefa. T < 1) to an analog first-order low-pass transfer

2mfcT

functionL (ePT) ~ m% as can be seenin Fig. 2. We have from (46) that TromeT -

2mfcT

The noise-equivalent bandwidth (37) becornBgs = i

and can be approxi-
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mated byBy ; ~ 1f.T whenf,T < 1. As seen in (46) that — L(e/2™T)|? ~ (fic)2 for
f < fg < fo < 1/T, the dynamic error variance (34) &, (Jake$ ~ (3).(1 2.%5.

c

The minimum global MSE (33) is then reduced, fgr< fc < 1/T, to

1
2\ 3 2 2/3
o2(Jakes = §<&) .(nﬂ.de) (47)

2\ T @
1
2 3
obtained for (:—z)(Jakes = (7—1_[.%.53—//%) (48)
N

It is noticeable that formula (47) of the first-order CATL noides forL = 1 with the
approximate expression of the asymptotic estimation magaf the AR1-Kalman in

[19]-eq.(25), derived for the simplified case of singlerarand single-path channels.

4. Simulations

In this section, the performance of the LS-CATL algorithnevaluated, first con-
fronted with theoretical analysis and natural referenB&RB and KFs using the same
a priori model), and, then, with other algorithms from therture. By default, we
have used a 4QAM-OFDM system, with an FFT dize- 128 subcarrierdy = § = 16
samples for the cyclic prefix, anﬁsl = % x 1.25=1.4MHz These parameters are se-
lected in order to be in concordance with one configuratiothefstandard Mobile
WIMAX Scalable [35], with a subcarrier spacing of 10.94 kHthe number of pilot
subcarriers wad, = 6,8,16, or 32, corresponding to a distance between pilot sub-
carriersLs = 22,16,8, or 4 respectively. The channel model is the Jakes'spectrum
Rayleigh channel model with = 6 paths and a maximum delay,ax = 10 (expressed
as a fraction off) given in [13, 3] and recalled in table 2. The performancevase
ated under a time-varying channel wit§iT < 102 (corresponding to a vehicle speed

Vi < 525 km/hfor f. = 2 GH2), with a default valuefly T = 1073,
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Path number 1 2 3 4 5 6
agl/og (B -3 0 -2 -6 -8 -10
T o 1 2 3 4 10

Table 2: Average powers and (normalized) delays of the alann

ok SNR=0dB
4

SNR =20 dB

MSE

- -0 =
___o__-o

o
10°°¢] —— o (simulation), SNR = 0,20, or 40 dB

+ c§=u§ +crfq (theory)

107 - - -ch(simuIation—no variation)
o ofN(theury)

- ofﬂ (simulation-no noise)

o ofﬂ (theory) i~

Figure 4: Comparison between simulated and theoretical M8E, T for f4T =103, { = 0.5, SNR =0,
20, or 40 dB,N, = 16 for the proposed 2nd-order LS-CATL algorithm. Theowdticalues are given from
(36)&(38) for g2, and from (42) foraZ,.

4.1. Confrontation with theory and with KF-based refereatgorithms

4.1.1. Confrontation with theoretical analysis versy$ f

Fig. 4 gives a comparison between simulated and theoretical variances versus
faT for f4T =102, and SNR =0, 20, or 40 dB for the proposed 2nd-order (LS-CATL)
algorithm, withNp, = 16 pilot subcarriers. The simulated dynamic error variange
was measured by forcing the noigg, to zero, whereas the simulated static error
varianceo?, was measured by maintaining the CAs of the paths to constdnes
equal to their standard deviatioas First of all, we can observe that all the theoretical
curves are very close to the simulated ones. Therefore kb@ssa to the minimum
of the simulated MSE2 corresponds very well to the theoretical optimal naturad fr
quency (in (43), such thdt,/fq (Jakes = 3, 7.4 and 187 respectively folSNR= 0,

20, and 40 dB, witiNp = 16). It is interesting to note that there is a large rangerzdou
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the optimal natural frequency for which the MSE remains \@oge to the minimum
value (for any SNR). Hence, the tuning of the natural freqyef the loop coefficients
does not need to be very accurate.

For the rest of the section, we will use the parameters tteddl round the min-
imum possible MSE for the various algorithms. Tables 3(a) afb) give the CATL

parameters used fdgT = 102 and f4T = 102, with Np = 16 pilot subcarriers.

SNR(dB) 0 5 10 15 20 25 30 35 40
fn/ fq 3 4 5 6 8 10 12 15 20

(theory (43)) 3 3.7 4.7 5.9 7.4 9.4 118 1458 18.7
fe/fq 7 10 15 22 34 50 80 130 200

(theory (48)) 6.7 9.9 145 212 312 45.7 67.1 98.5 145

(a) for fyT =103

SNR(B) 0 5 10 15 20 25 30 35 40
f/fa 2 25 3 4 5 6 8 12 15

(theory (43)) 19 24 3 37 47 59 74 94 118

fe/ fq 3 5 7 10 24 30 50 90 400
(b) for fgT =102

Table 3: Loop parameterf/ fq (2nd-order) andc/ fq (1st-order), folNp = 16 andfyT = 103,102

4.1.2. Comparison with KFs using the same a priori knowlesiggparametric model
We now compare the asymptotic performances to those olbtawta two KFs
directly derived from our OFDM parametric channel modelbagsed estimation prob-
lem defined in section 2.3, and using the same a priori knaydexs the proposed
LS-CATL. The first one is the AR1-Kalman, which uses an AR1 elad approximate
the CA dynamic, and that can be found in [1]-section IV for specific OFDM model
(orin [8]% or [14F after slight adaptations). But, we also consider as a reter¢he

Or2-Kalman, a Kalman based on a second-order model to lagipeoximate the trend

2considering in [8] the Kalman-(forward-only)-initial é@station based on pilots. More precisely [8] is the
Time-Domain channel estimator that estimates the distirate impulse response including both physical
channel (CAs at known positions) and receive filter.

Sadapted for a pilot-aided mode and one polynomial coefficien

21



behaviour of the CAs, as in our second-order CATL. Itis a lahdxtension for multi-
ple carriers and multipath channel of the steady-statearecs the KF in [24]. Details
about the design of these KFs are given in Appendix A, anetélgives the values of

the parameters used, yielding around the minimum possilSE M

fqT = 103 fqT = 10°°
AR1-Kalman Or2-Kalman AR1-Kalman Or2-Kalman
B 0 0.9992 0 098
y 0.9996 09978 09921 09975
€ 4104 9.10°° 8.10°3 8.10%

Table 4: Parameterg( y) used (and relates) for the AR1-Kalman and Or2-Kalman, fdgT = 103,102

Fig. 5(a) and Fig. 5(b) show the evolution of MSE versus SNiRpectively for
fqT =103 and f4T = 10 2. First of all, the MSE of the proposed 2nd-order LS-
CATL algorithm is very close to that obtained by the Or2-Kahmalgorithm. Likewise,
the MSE of the proposed 1st-order LS-CATL algorithm is velnse to that obtained
by the AR1-Kalman algorithm. It is, therefore, gratifying erify that the reduced
complexity proposed algorithm exhibits almost the samemgdgtic variance as the
reference Kalman algorithm, for a same model order. It wasdesired objective as
discussed in the introduction, motivated by some works tpbase estimation [31,
32] or about CA estimation in single-carrier flat fading chah[24](ch. 4.1)[25, 26].
Indeed, the authors of these papers have previously proegdPt L, or time-invariant
CATL-based filters, can be interpreted, if a satisfactonyaiyic model is available, as
forms of KF in steady-state mode, with equivalent MSE asyrtipperformance.

Secondly, we observe that the performance of the (wellduA&R1-Kalman, de-
spite its complexity, does not reach the BRCB in case of stowmobderate channel
variation (more notable fofgT = 1072 than for f4T = 102). We can also inciden-
tally remark an additional degradation (in dashed linefhéf AR1-parameter is tuned
by the standardorrelation matchingcriterion as in [8, 14]i(e. with € = 0 in (A.3),
Appendix A) instead of a minimum variance criterion. Thistlpoint corroborates the

recent results established in [18, 19].
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On the other hand, with a second-order loop (or an Or2-Kajnthe MSE becomes
closer to the BCRB (obtained from [6], see also [2]-ch IV).isThoint reveals the
advantage of a second-order loop versus a first-order io@pvith > = 0) in slow to
moderate fading scenarios. It allows a higher decreaseiM®E that is proportional
to the%1 power of the SNR (in full agreement with the theory (44)),smsrthe§ power
for the first-order algorithms ((47) and [19]).

Fig. 6 shows the evolution of the Bit Error Rate (BER) in theeaf 4-QAM,
16-QAM and 64-QAM modulations for the previous channelreators completed by
a Zero-Forcing (ZF) frequency-domain equalizer. The cleafmequency response is
previously estimated from the CA estimai@g, by fJA{(n) = F& ). The BER results
agree with the previous MSE results, but with a lower diffeebetween the curves
due to the decision process. Hence, the performance witt2rodhorder LS-CATL
algorithm is the same in terms of BER as with the Or2-Kalmad, ia slightly better
(for low SNR regions) than with the AR1-Kalman (and then tisedrder LS-CATL).
The BER performances are close to those found with a ZF espralising perfect

channel knowledge.

4.2. BER comparison with other literature algorithms

Fig. 7 shows forfyT = 102 the BER performances of the proposed LS-CATL
algorithm, using a ZF equalizer and a 4-QAM modulation. Adeown are the perfor-
mances of the previous AR1-Kalman and Or2-Kalman refergriogether with three
estimators that have been suggested in the literature andsiied in the introduction:
the “conventional” LS(FD)-LPI [4], the Kalman(FD)-LPI [¥] and the Kalman-EIG
[9] ®. Note that the latter requires the availability of the powefay profile to per-
form “eigenvalue interpolation” of the channel, unlike th previous algorithms that

performed a “bind” LPI interpolation. It is, first of all, hidy noteworthy that a “first-

“the per-subchannel KF has been adapted to our pilot schexee[3i considered a full block of pilots
Scorresponds to the initial (pilot-based) channel estimiat{o]
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Figure 5: MSE vs SNR fofgT = 1073 (a) andfyT = 102 (b), with N, = 16

category” of algorithms (proposed CATL, Or2-Kalman, AR&lkan and Kalman-

EIG) greatly outperforms the conventional LS(FD)-LPI naatheven if the latter uses

a greater numb&pf pilot subcarriersNl, = 64 versus onl\N, = 8). These results per-

8for the LPI interpolation, the number of pilots must actydillfill Np > 10 here if we impose to satisfy
the sampling theorem (with then a sampling rate in frequetmypainL¢ such that [10]:% > Tr%—:x =10).
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Figure 6: BER comparison for 4-QAM, 16-QAM or 64-QAM modiidats, f4 T = 102 andNp =8
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Figure 7: BER comparison with various literature methodsgiequal or greater number of pilot subcarriers
N, than the proposed method, fiyT = 10°8.

mit us to measure the gain when exploiting time-domain ¢ation, frequency-domain
correlation, as well as knowledge of the delays-relatedrinftion (“first-category”)
versus only frequency correlation (conventional).

When the conventional symbol by symbol LS(FD)-LPI metho@xsended into
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Kalman(FD)-LPI algorithm to improve the estimation of theanel at pilot frequency
positions (before performing the LPI interpolation in fugmcy-domain), we can mea-
sure the increase in performance due to the use of the pabbéynThe benefit of the
time-filtering is mainly observed in low SNR regions, and saptable for the lower
fqT, because of a stronger channel time-correlation. But, eékalting performance
still remains far from that of the “first category” of algdrits, unless ifNp, = 64 pilot
subcarriers are usedé€. a distance_; = 2 between two pilot subcarriers). Hence, the
availability or the non-availability of the delay-relat@gdformation is an assumption
that influences strongly the channel estimator performéadiscussed more in [2] as
well as the effect of an imperfect delay knowledge). We mayp alote that the BER
obtained with the Kalman-EIG is almost the same as with thé-KRIman, for a com-
parable complexity (both algorithms use KF based on the geiRiestate-space model
with N; = 6 dominant eigenvalues tracked in the Kalman-EIG, veksus$ paths CAs
in the AR1-Kalman). In conclusion, among the algorithmsha tfirst category” re-
garding the asymptotic performance, the proposed LS-CAgarahm is the one with

the lowest complexity, as seen in section 3.3 and table 1.

5. Conclusion

A complex amplitude (CA) estimator of the channel paths ®lew to moderate
fading channels has been proposed and analyzed. It candmlylinseful for either
Data Aided or Data Directed single-carrier systems ovefdiding channels. Applied
to OFDM systems with a comb-type pilot sub-carrier arrangemit belongs to the
class of algorithms that perform the tracking of the CAs of @tipath channel from
the information related to path delays. Therefore, it isuassd that an acquisition
procedure has already been put into place to calculate jeélgsl The proposed algo-
rithm is based on a 2nd-order recursive loop, that integrateerror signal created from

the pilot-based LS estimates of the CAs. It allows the tiroedin correlation of the
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channel to be exploited more simply than the Kalman-basetiads, which require
matrix inversion at each iteration. Simulation resultsvghioat the MSE performance
of our 2nd-order algorithm is very close to that of a Kalmatinestor based on a
2nd-order approximation of the actual channel. Moreovar, 2nd-order algorithm
outperforms the more complex Kalman estimator when therladtbased only on a
1st-order Auto-Regressive model. This emphasizes thengéalya of 2nd-order ver-
sus 1st-order methods in the case of slow to moderate fadination (fqT < 1072).
We have given closed-form expressions of the optimal nkftequency of the loop,
and the corresponding minimum MSE (assuming Rayleighslakannel). We have
demonstrated that the MSE of our 2nd-order algorithm dee®proportionally to the
‘3‘ power of the SNR, and increases proportionally to ghpower of the normalized
Doppler frequencfyT. Moreover, BER comparison through simulation has shown
that the proposed algorithm outperforms the basic conveatimethod based on LPI

interpolation in the frequency-domain.

Appendix A. AR1-Kalman (review) and Or2-Kalman filters

We present two KFs as obvious benchmarks for our specifia(petric channel
modeling-based) estimation problem defined in section 3iBce exact linear state
evolution equation for the Jakes’ process is not availahkeflat fading CA dynamic
has to be approximated in the perspective to use KF (withoatantee of optimality).
Let us firstintroduce the general dynamic model, which welhext declined into AR1

and Or2 models, to approximate the variation of one Jakesqss ) by @i

Y.Gin-1)+d(n-1) (A1)

B-&(n-1) + Uin) (A.2)

=2
=
S

I

o
E)
|

wherey and 3 are two positive scalars with values lower or equal to 1, apg is

zero-mean Gaussian complex circular with a variamﬁ;e
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Appendix A.1. AR1-Kalman

The special case of AR1-model correspondgte 0 (no drift) andy < 1. The
specific equations of the AR1-Kalman applied to our OFDM paetiic model can
be found in [1]-section IV. We just want to briefly report heerent results about
the choice ofy for the “Rayleigh-Jakes” channel estimation. For the ARIdglpthe
autocorrelation function of the approximated procesRE-f% def e {&un).&l*(m@} =

2
1‘1”{/2 -yK with theny = Rgll)/Rgl)). Assuming the same variance for the approximated

process and the true proceSe.(Rg?) = agl), the variance of the state noise is directly
fixed by the choice of the AR1-coefficiepasoZ = 04 (1— y?). The standard choice
for y becomesly(27tfyT) if we impose that the auto-correlation functiéag? of the
approximate process perfectly matches the Bessel autelation functiorRé,kl) of the
true Jakes’ process in (4) for l&g {0,1} (orfork € {0,1, ..., p} for a model with order
p). This choice corresponds tacarrelation matching CM) criterion, and is the most
often used in the literature ([8, 9, 14, 16, 22, 23]). Howeiraposing the matching of
the first two tapsl{&%? = RE,(P anngll) = Ré,ll)) for p=1 does not ensure a short distance
between the two auto-correlation functions, and, even kE&sminimum estimation
variance of the AR1-Kalman. This is especially true for IgylT < 1 (see [16], Fig.

1) where the taps for lags 1 and O have very close values (SgieerfqT x 1) =~
1- %1.(271de)2 ~ 1= Jo(2mfyT x 0)), and then the exponential decay of the AR1

autocorrelation functioR%? = 0§| -y is imposed so as to be too slow compared to
the Bessel function deca;vg| -Jo(2rtfyT x k). Thereby, we consider possible lower

values for the AR coefficientas in [18, 19, 21]:

- Jo(Z]deT)

AR1-Kal A.3
e ( alman) (A.3)

wheree¢ is a very small positive amount( 1). Such a slight change can decrease

strongly the estimation variance of the AR1-Kalman as pdoeeently in [18, 19].
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Appendix A.2. Or2-Kalman

For the second-order model, the coefficigngndf are non zero. The special case
y = B = 1 corresponds to the IRW model [24], with just one parameméll) o be
adjusted. But we can keep a more general second-order mdtdivwe coefficientsy
andp to be adjusted with values lower and close to one. In this,dhsestate-noise
variance will be fixed versus the 2 coefficienfs (/) by o7 = Gg (1— B?), where
og = o§| (1+y?) — 2y.Rg,l|> is the variance of the drii®y. In order to more easily tune
the couple of coefficients in section 4 empirically, we use €é§.4) (derived from
(A.1)&(A.2)) that givesy wrt to 8 and the two correlation coefficienféill), Rg?, the

latter being fixed in (A.5) wrifq T by CM criterion (with possible adjustmeat< 1):

(2) (1)
RZ _ R
y = 7& & "'2 (Or2-Kalman) (A.4)
Ry —B.0g
| |
2
@ 9 (2 _ 52
RY = (1+£)Jo(2m‘d.T) and Ry’ = oz Jo(2mfq.2T) (A.5)

To design the KF, the multi-path multi-carrier problem amel CAs evolution have to be
re-formulated in a state-space model. The state vectqpjs-= [aI(n) , a;(n), e a[(n)]T,
wherea ) = [0 (n), d(n)]T includes the CA and the drift for path The state evolution
- : y 1
matrix isM = blkdiag{M1,...,M_}, whereM; = forl =1...L, and the state-
0 B

noise vector isl ) = [0, Uy(p), -, 0, u,_(n)]T. The observation matrix with siaé, x 2L is

Sty =K (n)Z, where the x 2L matrixZ is defined byZ = blkdiag{[1 0],[1 0], ...,[1 0]}
Then, the state evolution (A.1)&(A.2) and the observatibecomes ) = Ma,_1) +
U(n) @ndypm) = Sin)@(n) +Wp(n) from which the Or2-Kalman can be calculated by stan-
dard KF equations [27]:

Time Update Equations:

ann-1) = Map_1n-1) (A.6)

Pon-1 = MPan yM™+U (A7)
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Measurement Update Equations:

-1
Ko = Pan-1Sh (SmPrin-1 S + 0°In,) (A.8)
amny = amn-1) + Ky (Ypm = Sm@mn-1) (A.9)
Pm = Puin-1) = KnSmPpn-1) (A.10)

whereK () is the Kalman gain matrix (with size2< Np) andU = diag{O, o&l, .y 0, U&L }
Appendix B. Interpretation and Kalman-type formulation of the CATL structure

We defineS(nH‘n) andS(n‘n) as thea priori anda posteriorislope estimates of the

CAs, forced to be equal and relatedugn) by:

~

S(nin) = O(ni1n) = M2 Viagm) (B.1)

Then, the recursive equations of the CATL (8)-(12) can beiteam by (8)(9)(B.2)-
(B.4), with the purpose of estimating at each iteration ahposteriori state vector
(&(pjn)» O(njm))» Using thea priori (or predicted) estimatesiyn 1), d(nn_1)), bY:

Measurement Update Equations

vem = functionof{yyn ; &mnn-1) } (8)

Q@ = Gmn-y T H1Ven) (9)

Sy = Onn-1) + HaVe(n (B.2)
Time Update Equations

Gnitm = G + O (B.3)

S = San) (B.4)

where (B.2) has replaced (10), using (B.1), and (B.3)&(Bi@je replaced (11)&(12),
using (9)&(B.1). As in the KF principle, we show the MeasusthUpdate Equa-
tions (correction), and the Time Update Equations (premhigt Actually, the CATL
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equations (9)(B.2)-(B.4) coincide for one given pathith the steady-state equations

of the KF in [24] derived under the assumption of a dynamic IRWdel fora,, but

for a simplified single-carrier and single-path channehst®. The vector s, u2) in

(9)&(B.2) is the steady-state Kalman gain for this simptif@tuation. In other words,

the more complex Or2-Kalman described in Appendix A-(A-63.10) would be re-

duced in steady-state mode to the CATL if the observationeh¢®) were simplified

iN Yp(n) = @(n) +Wp(n), leading to the simple error signa} ;) = Yp(n) — &(njn-1)-
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