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Complex Amplitudes Tracking Loop for multipath channel
estimation in OFDM systems over slow to moderate

fading✩

Laurent ROS, Hussein HIJAZI and Eric-Pierre SIMON,✩✩

Abstract- This paper deals with multipath channel estimation for Orthogonal

Frequency-Division Multiplexing systems under slow to moderate fading conditions.

Most of the conventional methods exploit only the frequency-domain correlation by es-

timating the channel at pilot frequencies, and then interpolating the channel frequency

response. More advanced algorithms exploit in addition thetime-domain correlation,

by employing Kalman filters based on the approximation of thetime-varying chan-

nel. Adopting a parametric approach and assuming a primary acquisition of the path

delays, channel estimators have to track the complex amplitudes of the paths. In this

perspective, we propose a less complex algorithm than the Kalman methods, inspired

by second-order Phase-Locked Loops. An error signal is created from the pilot-aided

Least-Squares estimates of the complex amplitudes, and is integrated by the loop to

carry out the final estimates. We derive closed-form expressions of the mean squared

error of the algorithm and of the optimal loop coefficients versus the channel state,

assuming a Rayleigh channel with Jakes’Doppler spectrum. The efficiency of our re-

duced complexity algorithm is demonstrated, with an asymptotic mean squared error

lower than the first-order auto-regressive Kalman filters reported in the literature, and

almost the same as a second-order Kalman-based algorithm.
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1. Introduction

Orthogonal Frequency-Division Multiplexing (OFDM) is an effective technique for

alleviating frequency-selective channel effects in wireless communication systems. In

this technique, a wideband frequency-selective channel isconverted to a number of par-

allel narrow-band flat fading subchannels which are free of Inter-Symbol-Interference

(ISI) and free of Inter-Carrier Interference (ICI) (for negligible channel time variation

within one OFDM symbol periodT). For coherent detection of the information sym-

bols, reliable estimation of the gain of each subchannel in the OFDM system is crucial.

1.1. Some approaches to channel estimation in OFDM

Most of the conventional methods work in a symbol-by-symbolscheme [3, 4, 5]

by using the correlation of the channel only in the frequency-domain (FD),i.e. the

correlation between subchannels. Generally, they consistin estimating the channel at

the pilot subcarrier position and then interpolating it over the entire frequency grid

[3]. The channel estimation at the pilot frequencies can be based on the Least-Squares

(LS) criterion, or, for better performance, on the Linear-Minimum-Mean-Square-Error

(LMMSE) criterion [4]. In [5], Low-Pass Interpolation (LPI) has been shown to per-

form better than all interpolation techniques used in channel estimation. This channel

estimator will be called conventional LS(FD)-LPI in this paper.

Though the conventional methods can operate with time-varying channels, the in-

formation of the time-domain correlation is not exploited.However, the channel es-

timation process can be theoretically greatly improved by using the previous OFDM

symbols, according to the on-line Bayesian Cramer-Rao Bound (BCRB) analysis in

[6]. Thus, Chen and Zhang proposed in [7] a structure to trackthe complex gains of

each subchannel by using one Kalman filter (KF) per sub-channel. In practice, only

a subset of pilot-subcarriers is used to perform the per-subchannel KF, and the global

frequency response of the channel is still obtained by LPI interpolation. This esti-

mator will be named Kalman(FD)-LPI in the paper. Other worksstill exploit time
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and frequency correlation for OFDM channel estimation by using additional assump-

tions or different approaches. Assuming the availability of the power delay profile, a

data-aided KF estimator (derived from the Expectation-Maximizationalgorithm frame-

work) is employed in [8] to track the discrete-time impulse response of the channel (i.e

in Time-Domain (TD)). And a low-complexity parameter reduction approach based on

the eigenvalue decomposition of the auto-correlation matrix of the channel (in FD) is

proposed in [9]. It tracks the channel coefficients in the dominant eigenvectors sub-

space basis by KF, and then performs eigenvalues interpolation to compute the channel

frequency response. This estimator will be denoted Kalman-EIG in this paper.

In the same context of reducing the signal subspace dimension, we now focus on

the class of parametric channel estimators. Assuming a multipath channel structure, es-

timation can be reduced to the estimation of certain physical propagation parameters,

such as multipath delays and multipath Complex Amplitudes (CAs) [10, 11, 12, 13, 14].

It is well known that in wireless radio channels, the delays are quasi-constant over a

large number of symbols. Consequently, the number of paths and path delays can be

very accurately estimated, for example by applying the MDL (Maximum Description

Length) principle combined with the ESPRIT (Estimation of Signal Parameters by Ro-

tational Invariance Techniques) method as proposed in [10], and adopted many times

[11, 13, 14]). Several papers on OFDM channel estimation focus their works on the

crucial CAs tracking problem, assuming the delays are invariant and perfectly esti-

mated. This approach will be adopted in this paper. In [13, 14] we have addressed this

issue for the special case of fast time-varying channel (i.e. with normalized Doppler

spreadfdT ≥ 10−2), by using polynomial modeling of the CA time-variation. Wehave

also addressed it in [15] for the joint carrier frequency offset and high speed channel

estimation problem.

1.2. Motivation of the work and contributions

Second-order versus first-order algorithms.the use of KF for channel estimation has

received great attention in recent years in the wireless communication literature. It

is true for most systems,e.g. MIMO [16, 17] or single-carrier systems [18, 19], as

well as in OFDM systems, as mentioned before [7, 8, 9, 14]. Allthe aforementioned
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works based their KF on the AR approximation of the widely accepted Rayleigh fad-

ing channel with the Jakes’Doppler spectrum [20], called the “Rayleigh-Jakes” model

in this paper, as developed in [21]. The first-order Gauss-Markov assumption (AR1

model) is most often retained [8, 9, 16, 17, 18, 19, 22, 23]. The so-called AR1-Kalman

estimators are convenient for the very high mobility case, leading to quasi-optimal per-

formance, as seen, for example, in [14, 15]. In these works anAR1-Kalman is actually

used to track the polynomial Basis Expansion Model coefficients of the high speed

channel. However, in the more common scenario of slow to moderate fading with neg-

ligible variation during one symbol (i.e.fdT ≤ 10−2, as in [7, 8, 16, 17, 18, 19]), the

AR1-Kalman estimators of the literature seem to exhibit poor performance compared

to BCRB lower bounds, as seen in [1]-Fig.10. On the other hand, [24] shows, in a

single-carrier single-path context, that the MSE performance of a KF can be well im-

proved by switching from the AR1 to a second-order model (of the integrated random

walk (IRW) model type) for the approximation of the Jakes’process. Indeed, for low

fdT, the exact channel CA continues in a given direction during several symbols, and

a second-order approximation model can generally take intoaccount this strong trend

behaviour better than a first-order model [25, 26].

Reduced complexity algorithms compared to Kalman.KF-based algorithms require

the updating of the coefficients of the algorithm at each iteration (each new OFDM

symbol), and are quite complex as a result. However, reducedcomplexity adaptive

algorithms can be obtained, using constant coefficients. They can be designed, if an a

priori model of the dynamic of time-varying parameters (i.e. hypermodel) is available,

such as a Wiener LMS adaptation algorithm ([26]), or as a steady-state version of the

KF, since a time-varying KF becomes a time-invariant filter after convergence, see [27],

ch 13.5. Such algorithms are generally slower than the KF during the convergence, but

can have the same asymptotic performance in tracking mode. In this family, the classi-

cal Least-Mean-Squared (LMS) algorithm can be regarded as asteady-state version of

4



a KF based on a first-order random-walk (RW) model. Second-order channel tracking

algorithms described as predictive LMS, or as a steady-state version of an IRW model-

based KF, have also been proposed in [25, 26, 28]. However, they have been developed

for the single-carrier transmission, and without simple closed-form formulas versus the

channel state for the tuning and performance of the estimators.

Approach and contributions.in this paper, we propose and analyze a low-complexity

on-line recursive algorithm with constant coefficients forthe multipath CAs estima-

tion problem under the common slow to moderate channel variations scenario (fdT ≤

10−2). It is developed for OFDM systems with comb-type pilots within the framework

of parametric channel estimators, exploiting the availability of delay related informa-

tion (assuming a primary acquisition as in [10, 13, 14, 15]) for tracking the CA vari-

ations. The proposed algorithm is based on a Complex Amplitudes Tracking Loop

(CATL) structure. This structure is inspired by second-order digital Phase-Locked

Loops (PLL) [29, 30], as well as by the “prediction-correction” principle of the KF

(in the steady-state mode) given the close link between the two ([31, 32]). The error

signal that feeds the loop is based on the LS estimate of the paths CA, obtained for

each current symbol from the pilot-subcarriers. The proposed LS-CATL algorithm can

be seen as an extension for the multipath OFDM case of the second-order adaptive al-

gorithms of [25, 26](and also [24]-ch 4.1), using the parametric estimation framework.

Our main contributions can be summarized below:

• proposition, interpretation, and analytical optimization of a simple on-line second-

order (multipath) CAs tracking algorithm with almost the same asymptotic MSE

performance as a second-order KF derived with the same assumptions (paramet-

ric modeling and a priori knowledge), but with a reduced complexity,

• derivation of closed-form expressions usable to tune the coefficients of the CATL

as well as to predict the MSE performance with respect to the channel state

(Doppler spread, power-delay profile, SNR) under “Rayleigh-Jakes” assumption.

5



• evaluation of the benefit of the second-order proposed algorithm compared to

first-order KF-based reference algorithms or other conventional (FD interpola-

tion) methods of the literature, for the common slow to moderate fading channel.

The paper is organized as follows: Section II describes the system model and objec-

tives. Section III derives the proposed algorithm and its analysis, and the different

results are discussed in Section IV.

Notations: [x]k denotes thekth entry of vectorx, and [X]k,m the [k,m]th entry

of matrix X (indices begin from 1).IN is an N× N identity matrix. The notation

diag{x} stands for a diagonal matrix withx on its diagonal, diag{X} is a vector whose

elements are the elements of the diagonal ofX, and blkdiag{X,Y} is a block diagonal

matrix with the matricesX andY on its diagonal. The superscripts(·)T , (·)H , | · |, and

Tr(·) respectively stand for transpose and Hermitian operators,determinant and trace

operations.J0(·) is the zeroth-order Bessel function of the first kind.

2. System Model

2.1. OFDM Transmission over multipath channel

Let us consider an OFDM system withN subcarriers, and a cyclic prefix length

Ng. The duration of an OFDM symbol isT = vTs, whereTs is the sampling time

and v = N+ Ng. Let x(n) =
[

x(n)[−N
2 ],x(n)[−N

2 + 1], ...,x(n)[
N
2 − 1]

]T
be the vector

containing theN QAM symbols for thenth OFDM symbol. After transmission over a

multipath channel and FFT demodulation, the observation isgiven by [10, 13]:

y(n) = H(n) x(n)+w(n) (1)

wherew(n) is aN×1 zero-mean complex circular Gaussian noise vector with covari-

ance matrixσ2IN, andH(n) is aN×N diagonal matrix with diagonal elements

[H(n)]k,k =
1
N

L

∑
l=1

[

αl(n)×e− j2π( k−1
N − 1

2 )τl

]

(2)
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L is the total number of propagation paths,{αl(n)} is thel th CA atnth OFDM symbol

with varianceσ2
αl

(with ∑L
l=1 σ2

αl
= 1), andτl ×Ts is thel th delay (τl is not necessarily

an integer, butτL < Ng). TheL individual elements of{αl(n)} are uncorrelated with

respect to each other. Using (2), the observation model (1) can be re-written [10] as

y(n) = diag{x(n)}F α(n)+w(n) (3)

whereα(n) = [α1(n), ...,αL(n)]
T andF is anN×L Fourier matrix depending on the delay

distribution, with elements given by[F]k,l = e− j2π( k−1
N − 1

2 )τl .

We assume the “Rayleigh-Jakes” model [20] for the channel, with Doppler frequency

fd. It means theL CAsαl(n) are independent wide-sense stationary zero-mean complex

circular Gaussian processes, with correlation coefficients for a time-lagk given by

R(k)
αl

= E[αl(n)αl(n−k)
H ] = σ2

αl
.J0(2π fdTk) (4)

2.2. Pilot Pattern

TheNp pilot subcarriers are evenly inserted into theN subcarriers at the positions

P= {ps | ps= (s−1)L f +1, s= 1, ...,Np} with L f the distance between two adjacent

pilots. The received pilot subcarriers can be written as

yp(n) = K(n)α(n)+wp(n) (5)

whereyp andwp areNp×1 vectors. TheNp×L matrixK(n) is defined by

K(n) = diag{xp(n)}Fp (6)
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Note thatK(n) is computed for each OFDM symbol, using knowledge of theNp× 1

data pilot vectorxp(n) and the delays{τl} through theNp×L matrixFp with elements

[Fp]k,l = e− j2π( pk−1
N − 1

2 )τl (7)

2.3. Estimation objectives

We wish to estimate the CAsα(n) assuming the knowledge of pilots subcarriers

xp(n) and delaysτ = [τ1, ...,τL]
T . The estimation is based on the observation model (5)

that can be reformulated asyp(n) =K
(

xp(n),τ
)

α(n)+wp(n). We restrict the problem

to the on-line estimation, which means current and previousobservations are available

(i.e. for indicesn,n−1,n−2, ...) to estimateα at time indexn.

3. Complex Amplitudes Tracking algorithm

The proposed tracking algorithm, called the LS-CATL algorithm, is built from a

general second-order recursive structure (CATL) presented below, and from a specific

error signal (based on pilots and LS criterion) that will specify the error detector of the

structure, presented subsequently.

3.1. Structure of the algorithm: CA Tracking Loop

The estimate ofα(n), denoted̂α(n|n), is updated at a symbol rate by the computation

of an error signalv
ǫ(n), next filtered by a second-order feedback loop. The recursive

equations of the second-order CATL, using a PLL-type formulation ([29, 30]), are:

Error detector : v
ǫ(n) = function of{ yp(n) ; α̂(n|n−1) } (8)

Final estimate : α̂(n|n) = α̂(n|n−1) + µ1.vǫ(n) (9)

Loop filter : vLag(n) = vLag(n−1) + v
ǫ(n) (10)

v
c(n) = µ1.vǫ(n) + µ2.vLag(n) (11)

NC Generator : α̂(n+1|n) = α̂(n|n−1) + v
c(n) (12)
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Figure 1: Structure of the second-order complex amplitude tracking loop, inspired by second-order digital
PLL

whereµ1, µ2 are the (real positive) loop coefficients. Based on these equations, the

structure of the CATL is shown in Fig. 1. As in a second-order digital PLL [30], we

find in cascade an error detector that delivers error signalv
ǫ(n), a proportional-integral

(PI) loop filterFPLL(z) = µ1+
µ2

1−z−1 (or lead-lag filter) parametrized byµ1 andµ2, and

a Numerically Controlled (NC) Generator delivering the predicted estimateŝα(n|n−1).

However, the estimates are multiple complex amplitudes, instead of one real phase in

a PLL (then delivered by a NC Oscillator).v
ǫ(n) is a complex vector in the output of

a “Complex Amplitude Error Detector” (CAED) (vs a real scalar in the output of a

phase error detector in a PLL), to be defined in (8) from the newmeasurementyp(n)

and the prediction̂α(n|n−1). Also, the final estimatêα(n|n) is not directly the prediction

α̂(n|n−1) as in conventional PLL, but is delivered after a correction step according to

(9). Thus, an additional branch is added as a dotted line in Fig. 1.

Using (9), we can compact the second equation of the loop filter (11) and the NCG

equation (12) by the unique equation (13):
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α̂(n+1|n) = α̂(n|n) + µ2.vLag(n) (13)

showing that the sum accumulator of the error signal weighted by µ2, i.e. µ2.vLag(n), is

an estimate of thespeed evolution(or slope) ofα, useful to predict the CAs evolution.

3.2. Error signal specific to the LS-CATL algorithm

We now have to define an error signal vector in place of eq. (8).Inspired by PLL, a

good candidate (among several possibilities [1]) is an error signal vectorv
ǫ(n) collinear

(in absence of noise) with the prediction error vectorǫPred(n) =α(n)−α̂(n|n−1), in order

to get a detector, which is perfectly linear and free from inter-path-interference. In this

perspective, let us first consider the LS-estimator ofα(n) that permits, among all esti-

matorsα̂(n), us to minimize the squares error(yp(n)−K(n)α̂(n))
H .(yp(n)−K(n)α̂(n))

for the current OFDM symbol:

αLS(n) = G(n)yp(n) (14)

with G(n) =
(

K
H
(n)K(n)

)−1
K

H
(n) (15)

We see from (14)&(15)&(5) that the LS estimator is unbiased,with αLS(n) =α(n)+

N(n) whereN(n) is a zero-mean complex Gaussian noise vector. So, we proposeto use

simply the difference between the LS estimatorαLS(n) for the nth OFDM block and

the prediction,̂α(n|n−1), as an error signal vector in place of (8):

v
ǫ(n) = G(n)yp(n)− α̂(n|n−1) (16)

Thus, this specific error signal vector (16) has a simple linear form versus the prediction

error vectorǫPred(n) =α(n)− α̂(n|n−1), as seen while using (14)&(15)&(5):

v
ǫ(n) = kd.{α(n)− α̂(n|n−1)}+N(n) (17)

The real coefficientkd is the gain factor of the CAED, reduced here tokd = 1. And
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N(n) = [N1(n), ...,NL(n)]
T is the (temporally uncorrelated) zero-mean disturbance due to

the additive thermal noisewp(n) in the input of the CAED, and represents the so-called

(input) loop noise (i.e. in the input of the loop but in theoutputof the CAED). We

haveN(n) = G(n)wp(n), with a correlation matrixE{N(n).N
H
(n)}= σ2.

(

FH
p Fp

)−1
, and

a mean variance (per path,σ2
N = 1

L .∑
L
l=1 σ2

Nl
):

σ2
N =

σ2

Np
×λN (18)

with λN =
1
L
.Tr{

(

1
Np

.FH
p Fp

)−1

} ≥ 1 (19)

whereNp is the number of pilot subcarriers. The (input) loop noise variance is mini-

mum (i.e. σ2
N(min) = σ2

Np
andλN = 1) if N(n) is uncorrelated from one path to another,

i.ewhenFH
p Fp is a diagonal matrix. This condition depends on the delays distribution.

3.3. Computational Complexity and comparison with reference KFs

The CATL can be interpreted as a reduced complexity approachcompared to refer-

ence KFs designed for the complete multi-carrier and multi-path observation model (5)

such as presented in Appendix A (AR1-Kalman and Or2-Kalman). Indeed, the CATL

acts in each branchl , i.e. for each multi-path componentαl , as a “simplified” IRW

model-based KF. Each KF is “simplified” in the sense it is designed for the simplified

single-carrier and single-path scenario, as in [24], and itoperates only in steady-state

mode. But we have chosen an error signal (16) able to cope withthe more compli-

cated multi-carrier and multi-path scenario. This interpretation of the CATL structure

is more detailed (i.e. derived from the equations) in Appendix B.

Let us determine now the implementation complexity in termsof the number of the

complex multiplications needed for each OFDM symbol for ourLS-CATL algorithm.

The matricesG(n) (sizeL×Np) andK(n) (sizeNp×L) are assumed to be precomputed

and stored, if the delays are invariant for a great number of OFDM symbols. Then, we

just haveNp×L multiplications for the LS estimate (16) used in the error detector (8),
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plus 2L multiplications (or justL if µ2 = 0) in the loop filter (11). Table 1 compares

this complexity to reference KFs presented in Appendix A. Itis noteworthy that the

LS-CATL algorithm is computationally less demanding technique than Kalman filters,

since the latter require inversion of matrices of sizeNp×Np for the Kalman gain matrix

computation (A.8), plus multiplications of matrix with size Np×2L, 2L×2L, or Np×

Np for the update of the filters coefficients (see (A.6)-(A.10)). The LS-CATL approach

presents finally a linear complexity in terms of the number ofpilot subcarriersNp

(O(Np)) versus a cubic complexity (O(N3
p)) for the reference Kalman algorithms.

Number of complex multiplications per OFDM symbol

2nd-order LS-CATL Np×L + 2L
Or2-Kalman N3

p + N2
p×3L + Np× (6L2+3L) + 4L2+2L

1st-order LS-CATL Np×L + L
AR1-Kalman N3

p + N2
p ×2L + Np× (2L2+2L) + L2+L

Table 1: Complexity of the LS-CATL proposed algorithm (first-order and second-order versions) compared
to reference KFs (AR1-Kalman and Or2-Kalman, described in Appendix A)

3.4. General properties and theoretical MSE analysis

3.4.1. Second-order closed-loop transfer function

The estimation error of the tracking algorithm is defined as

ǫ(n) =α(n)− α̂(n|n) (20)

We want to obtain the transfer function between the true vector parameter and the

estimate. Combining equations (13) and (9), we have:

α̂(n|n) = α̂(n−1|n−1)+ µ1.vǫ(n)+ µ2.vLag(n−1) (21)

By using (10), the Z-domain transform of (21) leads to

α̂(z).[1− z−1] = [µ1+
µ2.z−1

1− z−1 ].vε(z) (22)
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Combining the general loop equation (22) with the specific (LS-based) error signal (17)

rewritten versus the estimation error as

v
ǫ(n) =

kd

1− kdµ1
.{α(n)− α̂(n|n)}+

1
1− kdµ1

.N(n) (23)

we obtain in the Z-transform domain:

α̂(z) = L(z).α(z)+
L(z)
kd

.N(z) (24)

whereL(z) is the transfer function of the CATL defined by

L(z) =
kd

1−kdµ1
F(z)

(1− z−1) + kd
1−kdµ1

F(z)
(25)

with respect toF(z) = µ1+
µ2.z

−1

1−z−1 . Hence, the CATL transfer function can be written

versus the loop coefficients(µ1,µ2) as1

L(z) =
kd[(z−1)2.µ1+(z−1).(µ1+ µ2)+ µ2]

(z−1)2+(z−1).kd(µ1+ µ2)+ kdµ2
(26)

or rewritten in a more interpretable form as a function of both the natural pulsationωn

(or natural frequencyfn =
ωn
2π ), and the damping factorζ as

L(z) =
2ζωn.(1− z−1)+ω2

n

(1− z−1)2+2ζωn.(1− z−1)+ω2
n

(27)

with: (ωnT)2 =
kdµ2

1− kdµ1
(28)

2ζωnT =
(µ1− µ2)kd

1− kdµ1
(29)

1L(z) is the same in [1] withβd = kd
1−kd.µ1

, but differs slightly from the closed-loop transfer function of a
2nd-order digital PLL [30, 31], due to the additional branchin dashed line in Fig. 1.
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And from (28) and (29), one given couple (ωn,ζ ) of the second-order low-pass transfer

function can be obtained by tuning(µ1,µ2) as

µ1 =
1
kd

.
(ωnT)2+2ζωnT

1+(ωnT)2+2ζωnT
(30)

µ2 =
1
kd

.
(ωnT)2

1+(ωnT)2+2ζωnT
(31)

The strict stability conditions ofL(z) in (26) or (27) versus (µ1,µ2) are given in [2],

but if we impose that 0< ωn < +∞ and 0< ζ < +∞ in order to preserve a physical

meaning, we deduce from (30)&(31) that 0< µ2 < µ1 < 1/kd. We can rewriteL(z)

in the frequency-domain, by makingz= epT, with p= j2π f , and f is the frequency

variable. Fig. 2 plots the modulus of the resulting function, L(ej2π f T). Assuming

slow reaction of the loop during one OFDM symbolT (i.e. fn.T ≪ 1) and for Low

Frequency (LF) region (i.e. for f T ≪ 1, using the approximationz−1 ≈ 1− p.T), the

transfer function of the digital loop in (27) is close to the second-order low-pass transfer

function of the analog PLL (i.e. with an active analog lead-lag loop filter, see [33], ch

II):

L(epT)≈ 2ζωnp+ω2
n

p2+2ζωnp+ω2
n

(32)

3.4.2. Mean Squared Error analysis

The estimator is unbiased since the CA estimation errorǫ(n) defined in (20) is zero-

mean (see (24)). Our aim is to compute the estimation error variance as

σ2
ε

def
=

1
L
.E{ǫH

(n)ǫ(n)}= σ2
εα +σ2

εN (33)

whereσ2
εα is the dynamic error variance, due to the variation of the processα, andσ2

εN

is the static error variance, due to the additive thermal noise. According to (24) and

(20), errorǫ(n) can be expressed in the Z-domain byǫ(z)= (1−L(z)).α(z) − k−1
d .L(z).N(z).

Then, the two components of varianceσ2
ε can be easily expressed in the frequency-
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0.5
0.7
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Figure 3: Network of curves of globalσ2
ε = σ2

εα +σ2
εN (continuous line) versusfn/ fd (for a fixed fdT =

1.10−3) for the second-order LS-CATL with various damping factorsζ = 0.2,0.3,0.5,0.7,1,1.5,2 computed
numerically from (34) assuming Rayleigh-Jakes model (withσ2

α = 1,L = 6), and from (35) assumingk2
d = 1

andσ2
N = 6,25.10−2 (top of the figure) orσ2

N = 6,25.10−4 (bottom of the figure). Theoretical reference
(dashed line) given from closed-form expressions (36)&(38) for σ2

εN, and from (42) forσ2
εα

domain, as is traditionally done when analyzing the tracking performance of a PLL

([33]), or of a predictive LMS estimator ([28]). The component σ2
εα results from the
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high-pass filtering(1−L(z)) of the CAsα(n):

σ2
εα =

∫ + 1
2T

− 1
2T

Γα ( f ).|1−L(ej2π f T)|2d f (34)

with Γα( f ) = 1
L .∑

L
l=1 Γαl ( f ) whereΓαl is the Power Spectrum Density (PSD) ofαl .

The componentσ2
εN results from the low-pass filtering (−k−1

d .L(z)) of the input loop

noiseN(n):

σ2
εN =

∫ + 1
2T

− 1
2T

ΓN( f ).
1

k2
d

.|L(ej2π f T)|2d f (35)

with ΓN( f ) = 1
L .∑

L
l=1 ΓNl ( f ) whereΓNl is the PSD ofNl .

The couple (fn,ζ ) has to be properly chosen for a good trade-off between the gain in

tracking ability and the reduction in loop noise, for a givenSNR andfdT scenario. Fig.

3 gives results obtained by numerical integration forσ2
ε assuming a “Rayleigh-Jakes”

model for the CA dynamic, and a (temporally uncorrelated) input loop noise with two

different variancesσ2
N. It is shown that fixingζ = 1

2 and varyingfn can be a strategy

to obtain the best minimum ofσ2
ε . Our objective now is to give some approximate

closed-form expressions forσ2
εα andσ2

εN, especially forζ = 1
2, approximately.

Static error varianceσ2
εN. using the whiteness ofNl(n) with the PSDΓN( f ) = σ2

NT,

the equation (35) reduces to

σ2
εN =

σ2
N

k2
d

.BL (36)

whereBL is the (double-sided normalized) noise equivalent bandwidth of the system:

BL = T ×
∫ + 1

2T

− 1
2T

|L(ej2π f T)|2d f (37)

An exact analytical expression ofBL is derived for the exact second-order loop

((26) or (27)) from the method presented by R. Winkelstein in[34], resulting in

BL =
[8ζ 2+2](ωnT)+6ζ (ωnT)2+(ωnT)3

8ζ +[8ζ 2+4].(ωnT)+6ζ .(ωnT)2+(ωnT)3 (38)
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If fn.T ≪ 1, we can use the approximation (39) which coincides (see [33], ch. III) with

the noise equivalent bandwidth of the usual analog second-order PLL given in (32):

BL ≈ 2π fnT.(ζ +
1

4ζ
) (39)

Dynamic error varianceσ2
εα . the dynamic error variance depends on the Doppler

spectrumΓα( f ) and on|1−L(ej2π f T)|2 via the integral form (34). According to (32),

the squared modulus of the error transfer function of the second-order loop is

|1−L(ej2π f T)|2 ≈ f 4

f 4
n − f 2 f 2

n .(2−4ζ 2)+ f 4 for f ≪ 1/T (40)

On the other hand, the Doppler spectrum for the “Rayleigh-Jakes” model (4),Γα( f ) =

σ2
α/L

π fd
√

1−( f
fd
)2

for f ∈]− fd;+ fd[, has a bounded support. Therefore, good tracking

will require that the natural frequency of the second-orderloop fn be greater thanfd.

Then, we can deduce that only the LF part of the function|1−L(ej2π f T)|2 is used in

the integral (34), and we can use the LF approximation|1− L(ej2π f T)|2 ≈ ( f
fn
)4 for

f ≤ fd ≪ fn ≪ 1/T. This approximation is still accurate forf ≈ fn for the special

caseζ ≈ 1
2 (see (40)). It results that the CA dynamic error varianceσ2

εα in (34) can

finally be approximated (forfd < fn ≪ 1/T, andζ ≈ 1
2) by

σ2
εα ≈

∫ + fd

− fd
Γα( f ).

(

f
fn

)4

d f (41)

For the “Rayleigh-Jakes” model, a variable change cosθ = ( f/ fd) permits us to eval-

uate (41) analytically as

σ2
εα (Jakes)≈ (

3
8
).

(

fd
fn

)4

.
σ2

α
L

(42)

Optimal natural frequency.the dynamic componentσ2
εα decreases proportionally to

the 4th power offn according to (42), whereas the static componentσ2
εN increases as

a function of fn, according to (36)&(39). The componentσ2
εα (respectivelyσ2

εN) is
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the dominant part of the globalσ2
ε in the low (respectively large)fn/ fd region, as seen

in dashed line in Fig. 3. Now, if we fixζ (around1
2), we can calculate the natural

frequencyfn that permits us (forfd < fn ≪ 1/T) to minimize the global MSEσ2
ε in

(33), by searching the zero of the derivative ofσ2
ε in (33) using (36)&(39)&(42):

(
fn
fd
)(Jakes) =

(

3
4
.
1
π
.

1

(ζ + 1
4ζ )

.
1

fdT
.

σ2
α/L

σ2
N/k2

d

)
1
5

(43)

The closed-form expression of the corresponding optimal MSE results in

σ2
ε (Jakes) = λ ·

(

σ2
α

L

)

1
5

·
(

σ2
N

k2
d

· fdT

)4/5

(44)

with λ =
15
8

·
[

(ζ +
1

4ζ
) · 4π

3

] 4
5

(45)

It is noticeable that the asymptotic performance of the second-order CATL in (44)

coincides, forζ =
√

2
2 andL = 1, with that of the second-order Kalman in [24]-eq.(39),

derived for the simplified case of single-carrier and single-path channels.

3.5. Special case of the first-order CATL

In the special case whereµ2 = 0, the on-line estimation algorithm is reduced to a

first-order low-pass filtering of the LS estimator (see (17) and (21)), such that̂α(n|n) =

(1−µ1).α̂(n−1|n−1)+µ1.αLS(n). The transfer function (25) of the system just depends

on a cut-off pulsationωc (or cut-off frequencyfc =
ωc
2π ), and is reduced to

L(z) =
ωcT

(1− z−1)+ωcT
with (ωcT) =

kdµ1

1− kdµ1
(46)

and then, approximately, (whenfc.T ≪ 1) to an analog first-order low-pass transfer

functionL(epT)≈ ωc
p+ωc

, as can be seen in Fig. 2. We have from (46) thatµ1 =
2π fcT

1+2π fcT .

The noise-equivalent bandwidth (37) becomesBL1 = 2π fcT
2 + 2π fcT , and can be approxi-
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mated byBL1 ≈ π fcT when fcT ≪ 1. As seen in (46) that|1−L(ej2π f T)|2 ≈ ( f
fc
)2 for

f ≤ fd ≤ fc ≪ 1/T, the dynamic error variance (34) isσ2
εα(Jakes) ≈ (1

2).(
fd
fc
)2.

σ2
α
L .

The minimum global MSE (33) is then reduced, forfd < fc ≪ 1/T, to

σ2
ε (Jakes) =

3
2
.

(

σ2
α

L

)

1
3

.

(

π .
σ2

N

k2
d

. fdT

)2/3

(47)

obtained for (
fc
fd
)(Jakes) =

(

1
π
.

1
fdT

.
σ2

α/L

σ2
N/k2

d

)

1
3

(48)

It is noticeable that formula (47) of the first-order CATL coincides forL = 1 with the

approximate expression of the asymptotic estimation variance of the AR1-Kalman in

[19]-eq.(25), derived for the simplified case of single-carrier and single-path channels.

4. Simulations

In this section, the performance of the LS-CATL algorithm isevaluated, first con-

fronted with theoretical analysis and natural references (BCRB and KFs using the same

a priori model), and, then, with other algorithms from the literature. By default, we

have used a 4QAM-OFDM system, with an FFT sizeN= 128 subcarriers,Ng =
N
8 = 16

samples for the cyclic prefix, and1Ts
= 28

25×1.25= 1.4MHz. These parameters are se-

lected in order to be in concordance with one configuration ofthe standard Mobile

WiMAX Scalable [35], with a subcarrier spacing of 10.94 kHz.The number of pilot

subcarriers wasNp = 6,8,16, or 32, corresponding to a distance between pilot sub-

carriersL f = 22,16,8, or 4 respectively. The channel model is the Jakes’spectrum

Rayleigh channel model withL = 6 paths and a maximum delayτmax= 10 (expressed

as a fraction ofTs) given in [13, 3] and recalled in table 2. The performance is evalu-

ated under a time-varying channel withfdT ≤ 10−2 (corresponding to a vehicle speed

Vm ≤ 52.5 km/h for fc = 2 GHz), with a default valuefdT = 10−3.
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Path numberl 1 2 3 4 5 6

σ2
α l/σ2

α (dB) −3 0 −2 −6 −8 −10
τl 0 1 2 3 4 10

Table 2: Average powers and (normalized) delays of the channel
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Figure 4: Comparison between simulated and theoretical MSEs vs fnT for fdT = 10−3, ζ = 0.5, SNR = 0,
20, or 40 dB,Np = 16 for the proposed 2nd-order LS-CATL algorithm. Theoretical values are given from
(36)&(38) for σ2

εN, and from (42) forσ2
εα .

4.1. Confrontation with theory and with KF-based referencealgorithms

4.1.1. Confrontation with theoretical analysis versus fnT

Fig. 4 gives a comparison between simulated and theoreticalerror variances versus

fnT for fdT = 10−3, and SNR = 0, 20, or 40 dB for the proposed 2nd-order (LS-CATL)

algorithm, withNp = 16 pilot subcarriers. The simulated dynamic error varianceσ2
εα

was measured by forcing the noisewp(n) to zero, whereas the simulated static error

varianceσ2
εN was measured by maintaining the CAs of the paths to constant values

equal to their standard deviationsσl . First of all, we can observe that all the theoretical

curves are very close to the simulated ones. Therefore, the abscissa to the minimum

of the simulated MSEσ2
ε corresponds very well to the theoretical optimal natural fre-

quency (in (43), such thatfn/ fd (Jakes) = 3, 7.4 and 18.7 respectively forSNR= 0,

20, and 40 dB, withNp = 16). It is interesting to note that there is a large range around
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the optimal natural frequency for which the MSE remains veryclose to the minimum

value (for any SNR). Hence, the tuning of the natural frequency of the loop coefficients

does not need to be very accurate.

For the rest of the section, we will use the parameters that yield around the min-

imum possible MSE for the various algorithms. Tables 3(a) and 3(b) give the CATL

parameters used forfdT = 10−3 and fdT = 10−2, with Np = 16 pilot subcarriers.

SNR(dB) 0 5 10 15 20 25 30 35 40

fn/ fd 3 4 5 6 8 10 12 15 20
(theory (43)) 3 3.7 4.7 5.9 7.4 9.4 11.8 14.8 18.7

fc/ fd 7 10 15 22 34 50 80 130 200
(theory (48)) 6.7 9.9 14.5 21.2 31.2 45.7 67.1 98.5 145

(a) for fdT = 10−3

SNR(dB) 0 5 10 15 20 25 30 35 40

fn/ fd 2 2.5 3 4 5 6 8 12 15
(theory (43)) 1.9 2.4 3 3.7 4.7 5.9 7.4 9.4 11.8

fc/ fd 3 5 7 10 24 30 50 90 400
(b) for fdT = 10−2

Table 3: Loop parametersfn/ fd (2nd-order) andfc/ fd (1st-order), forNp = 16 andfdT = 10−3, 10−2.

4.1.2. Comparison with KFs using the same a priori knowledgeand parametric model

We now compare the asymptotic performances to those obtained with two KFs

directly derived from our OFDM parametric channel modeling-based estimation prob-

lem defined in section 2.3, and using the same a priori knowledge as the proposed

LS-CATL. The first one is the AR1-Kalman, which uses an AR1 model to approximate

the CA dynamic, and that can be found in [1]-section IV for ourspecific OFDM model

(or in [8]2 or [14]3 after slight adaptations). But, we also consider as a reference the

Or2-Kalman, a Kalman based on a second-order model to betterapproximate the trend

2considering in [8] the Kalman-(forward-only)-initial estimation based on pilots. More precisely [8] is the
Time-Domain channel estimator that estimates the discrete-time impulse response including both physical
channel (CAs at known positionsτ ) and receive filter.

3adapted for a pilot-aided mode and one polynomial coefficient.
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behaviour of the CAs, as in our second-order CATL. It is a kindof extension for multi-

ple carriers and multipath channel of the steady-state version of the KF in [24]. Details

about the design of these KFs are given in Appendix A, and table 4 gives the values of

the parameters used, yielding around the minimum possible MSE.

fdT = 10−3 fdT = 10−2

AR1-Kalman Or2-Kalman AR1-Kalman Or2-Kalman

β 0 0.9992 0 0.98
γ 0.9996 0.9978 0.9921 0.9975
ε 4.10−4 9.10−6 8.10−3 8.10−4

Table 4: Parameters (β , γ) used (and relatedε) for the AR1-Kalman and Or2-Kalman, forfdT = 10−3,10−2

Fig. 5(a) and Fig. 5(b) show the evolution of MSE versus SNR, respectively for

fdT = 10−3 and fdT = 10−2. First of all, the MSE of the proposed 2nd-order LS-

CATL algorithm is very close to that obtained by the Or2-Kalman algorithm. Likewise,

the MSE of the proposed 1st-order LS-CATL algorithm is very close to that obtained

by the AR1-Kalman algorithm. It is, therefore, gratifying to verify that the reduced

complexity proposed algorithm exhibits almost the same asymptotic variance as the

reference Kalman algorithm, for a same model order. It was our desired objective as

discussed in the introduction, motivated by some works about phase estimation [31,

32] or about CA estimation in single-carrier flat fading channel [24](ch. 4.1)[25, 26].

Indeed, the authors of these papers have previously proved that PLL, or time-invariant

CATL-based filters, can be interpreted, if a satisfactory dynamic model is available, as

forms of KF in steady-state mode, with equivalent MSE asymptotic performance.

Secondly, we observe that the performance of the (well-tuned) AR1-Kalman, de-

spite its complexity, does not reach the BRCB in case of slow to moderate channel

variation (more notable forfdT = 10−3 than for fdT = 10−2). We can also inciden-

tally remark an additional degradation (in dashed line), ifthe AR1-parameter is tuned

by the standardcorrelation matchingcriterion as in [8, 14] (i.e. with ε = 0 in (A.3),

Appendix A) instead of a minimum variance criterion. This last point corroborates the

recent results established in [18, 19].
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On the other hand, with a second-order loop (or an Or2-Kalman), the MSE becomes

closer to the BCRB (obtained from [6], see also [2]-ch IV). This point reveals the

advantage of a second-order loop versus a first-order loop (i.e. with µ2 = 0) in slow to

moderate fading scenarios. It allows a higher decrease in the MSE that is proportional

to the 4
5 power of the SNR (in full agreement with the theory (44)), versus the2

3 power

for the first-order algorithms ((47) and [19]).

Fig. 6 shows the evolution of the Bit Error Rate (BER) in the case of 4-QAM,

16-QAM and 64-QAM modulations for the previous channel estimators completed by

a Zero-Forcing (ZF) frequency-domain equalizer. The channel frequency response is

previously estimated from the CA estimatesα̂(n) by Ĥ(n) = Fα̂(n). The BER results

agree with the previous MSE results, but with a lower difference between the curves

due to the decision process. Hence, the performance with our2nd-order LS-CATL

algorithm is the same in terms of BER as with the Or2-Kalman, and is slightly better

(for low SNR regions) than with the AR1-Kalman (and then the 1st-order LS-CATL).

The BER performances are close to those found with a ZF equalizer using perfect

channel knowledge.

4.2. BER comparison with other literature algorithms

Fig. 7 shows forfdT = 10−3 the BER performances of the proposed LS-CATL

algorithm, using a ZF equalizer and a 4-QAM modulation. Alsoshown are the perfor-

mances of the previous AR1-Kalman and Or2-Kalman references, together with three

estimators that have been suggested in the literature and discussed in the introduction:

the “conventional” LS(FD)-LPI [4], the Kalman(FD)-LPI [7]4, and the Kalman-EIG

[9] 5. Note that the latter requires the availability of the power-delay profile to per-

form “eigenvalue interpolation” of the channel, unlike thetwo previous algorithms that

performed a “bind” LPI interpolation. It is, first of all, highly noteworthy that a “first-

4the per-subchannel KF has been adapted to our pilot scheme since [7] considered a full block of pilots
5corresponds to the initial (pilot-based) channel estimator in [9]
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Figure 5: MSE vs SNR forfdT = 10−3 (a) andfdT = 10−2 (b), with Np = 16

category” of algorithms (proposed CATL, Or2-Kalman, AR1-Kalman and Kalman-

EIG) greatly outperforms the conventional LS(FD)-LPI method, even if the latter uses

a greater number6 of pilot subcarriers (Np = 64 versus onlyNp = 8). These results per-

6for the LPI interpolation, the number of pilots must actually fulfill Np ≥ 10 here if we impose to satisfy
the sampling theorem (with then a sampling rate in frequency-domainL f such that [10]: N

L f
≥ τmax

Ts
= 10 ).
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Figure 7: BER comparison with various literature methods using equal or greater number of pilot subcarriers
Np than the proposed method, forfdT = 10−3.

mit us to measure the gain when exploiting time-domain correlation, frequency-domain

correlation, as well as knowledge of the delays-related information (“first-category”)

versus only frequency correlation (conventional).

When the conventional symbol by symbol LS(FD)-LPI method isextended into
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Kalman(FD)-LPI algorithm to improve the estimation of the channel at pilot frequency

positions (before performing the LPI interpolation in frequency-domain), we can mea-

sure the increase in performance due to the use of the past symbols. The benefit of the

time-filtering is mainly observed in low SNR regions, and more notable for the lower

fdT, because of a stronger channel time-correlation. But, the resulting performance

still remains far from that of the “first category” of algorithms, unless ifNp = 64 pilot

subcarriers are used (i.e. a distanceL f = 2 between two pilot subcarriers). Hence, the

availability or the non-availability of the delay-relatedinformation is an assumption

that influences strongly the channel estimator performance(as discussed more in [2] as

well as the effect of an imperfect delay knowledge). We may also note that the BER

obtained with the Kalman-EIG is almost the same as with the AR1-Kalman, for a com-

parable complexity (both algorithms use KF based on the sameAR1 state-space model

with Nc = 6 dominant eigenvalues tracked in the Kalman-EIG, versusL = 6 paths CAs

in the AR1-Kalman). In conclusion, among the algorithms in the “first category” re-

garding the asymptotic performance, the proposed LS-CATL algorithm is the one with

the lowest complexity, as seen in section 3.3 and table 1.

5. Conclusion

A complex amplitude (CA) estimator of the channel paths overslow to moderate

fading channels has been proposed and analyzed. It can be directly useful for either

Data Aided or Data Directed single-carrier systems over flatfading channels. Applied

to OFDM systems with a comb-type pilot sub-carrier arrangement, it belongs to the

class of algorithms that perform the tracking of the CAs of a multipath channel from

the information related to path delays. Therefore, it is assumed that an acquisition

procedure has already been put into place to calculate path delays. The proposed algo-

rithm is based on a 2nd-order recursive loop, that integrates an error signal created from

the pilot-based LS estimates of the CAs. It allows the time-domain correlation of the
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channel to be exploited more simply than the Kalman-based methods, which require

matrix inversion at each iteration. Simulation results show that the MSE performance

of our 2nd-order algorithm is very close to that of a Kalman estimator based on a

2nd-order approximation of the actual channel. Moreover, our 2nd-order algorithm

outperforms the more complex Kalman estimator when the latter is based only on a

1st-order Auto-Regressive model. This emphasizes the advantage of 2nd-order ver-

sus 1st-order methods in the case of slow to moderate fading variation (fdT ≤ 10−2).

We have given closed-form expressions of the optimal natural frequency of the loop,

and the corresponding minimum MSE (assuming Rayleigh-Jakes channel). We have

demonstrated that the MSE of our 2nd-order algorithm decreases proportionally to the

4
5 power of the SNR, and increases proportionally to the4

5 power of the normalized

Doppler frequencyfdT. Moreover, BER comparison through simulation has shown

that the proposed algorithm outperforms the basic conventional method based on LPI

interpolation in the frequency-domain.

Appendix A. AR1-Kalman (review) and Or2-Kalman filters

We present two KFs as obvious benchmarks for our specific (parametric channel

modeling-based) estimation problem defined in section 2.3.Since exact linear state

evolution equation for the Jakes’ process is not available,the flat fading CA dynamic

has to be approximated in the perspective to use KF (without guarantee of optimality).

Let us first introduce the general dynamic model, which will be next declined into AR1

and Or2 models, to approximate the variation of one Jakes’processαl(n) by α̃l(n) :

α̃l(n) = γ.α̃l(n−1)+ δl(n−1) (A.1)

δl(n) = β .δl(n−1)+ul(n) (A.2)

whereγ andβ are two positive scalars with values lower or equal to 1, andul(n) is

zero-mean Gaussian complex circular with a varianceσ2
ul

.
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Appendix A.1. AR1-Kalman

The special case of AR1-model corresponds toβ = 0 (no drift) andγ < 1. The

specific equations of the AR1-Kalman applied to our OFDM parametric model can

be found in [1]-section IV. We just want to briefly report hererecent results about

the choice ofγ for the “Rayleigh-Jakes” channel estimation. For the AR1 model, the

autocorrelation function of the approximated process isR(k)
α̃l

def
= E

{

α̃l(n).α̃∗
l(n−k)

}

=

σ2
ul

1−γ2 · γ |k| with thenγ = R(1)
α̃l
/R(0)

α̃l
. Assuming the same variance for the approximated

process and the true process (i.e. R(0)
α̃l

= σ2
αl

), the variance of the state noise is directly

fixed by the choice of the AR1-coefficientγ asσ2
ul
= σ2

αl
(1− γ2). The standard choice

for γ becomesJ0(2π fdT) if we impose that the auto-correlation functionR(k)
α̃l

of the

approximate process perfectly matches the Bessel auto-correlation functionR(k)
αl

of the

true Jakes’ process in (4) for lagk∈{0,1} (or fork∈{0,1, ..., p} for a model with order

p). This choice corresponds to acorrelation matching(CM) criterion, and is the most

often used in the literature ([8, 9, 14, 16, 22, 23]). However, imposing the matching of

the first two taps (R(0)
α̃l

=R(0)
αl

andR(1)
α̃l

=R(1)
αl

) for p= 1 does not ensure a short distance

between the two auto-correlation functions, and, even less, the minimum estimation

variance of the AR1-Kalman. This is especially true for lowfdT ≪ 1 (see [16], Fig.

1) where the taps for lags 1 and 0 have very close values (sinceJ0(2π fdT × 1) ≈

1− 1
4.(2π fdT)2 ≈ 1 = J0(2π fdT × 0)), and then the exponential decay of the AR1

autocorrelation functionR(k)
α̃l

= σ2
αl
· γ |k| is imposed so as to be too slow compared to

the Bessel function decay,σ2
αl
· J0(2π fdT × k). Thereby, we consider possible lower

values for the AR coefficientγ as in [18, 19, 21]:

γ =
J0(2π fdT)

1+ ε
(AR1-Kalman) (A.3)

whereε is a very small positive amount (≪ 1). Such a slight change can decrease

strongly the estimation variance of the AR1-Kalman as proved recently in [18, 19].
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Appendix A.2. Or2-Kalman

For the second-order model, the coefficientsγ andβ are non zero. The special case

γ = β = 1 corresponds to the IRW model [24], with just one parameter (σ2
ul

) to be

adjusted. But we can keep a more general second-order model with two coefficientsγ

andβ to be adjusted with values lower and close to one. In this case, the state-noise

variance will be fixed versus the 2 coefficients (β , γ) by σ2
ul
= σ2

δl
(1− β 2), where

σ2
δl
= σ2

αl
(1+ γ2)−2γ.R(1)

α̃l
is the variance of the driftδl . In order to more easily tune

the couple of coefficients in section 4 empirically, we use eq. (A.4) (derived from

(A.1)&(A.2)) that givesγ wrt to β and the two correlation coefficientsR(1)
α̃l

, R(2)
α̃l

, the

latter being fixed in (A.5) wrtfdT by CM criterion (with possible adjustmentε ≪ 1):

γ =
R(2)

α̃l
−βR(1)

α̃l

R(1)
α̃l

−β .σ2
αl

(Or2-Kalman) (A.4)

R(1)
α̃l

=
σ2

αl

(1+ ε)
J0(2π fd.T) and R(2)

α̃l
= σ2

αl
J0(2π fd.2T) (A.5)

To design the KF, the multi-path multi-carrier problem and the CAs evolution have to be

re-formulated in a state-space model. The state vector isa(n) = [aT
1(n),a

T
2(n), ...,a

T
L(n)]

T ,

whereal(n) = [α̃l(n),δl(n)]
T includes the CA and the drift for pathl . The state evolution

matrix isM = blkdiag{M1, ...,ML}, whereM l =







γ 1

0 β






for l = 1...L, and the state-

noise vector isu(n) = [0,u1(n), ...,0,uL(n)]
T . The observation matrix with sizeNp×2L is

S(n)=K(n)Z, where theL×2L matrixZ is defined byZ =blkdiag{[1 0], [1 0], ..., [1 0]}.

Then, the state evolution (A.1)&(A.2) and the observation (5) becomea(n)=Ma(n−1)+

u(n) andyp(n) =S(n)a(n)+wp(n) from which the Or2-Kalman can be calculated by stan-

dard KF equations [27]:

Time Update Equations:

â(n|n−1) = M â(n−1|n−1) (A.6)

P(n|n−1) = MP(n−1|n−1)M
H +U (A.7)
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Measurement Update Equations:

K (n) = P(n|n−1)S
H
(n)

(

S(n)P(n|n−1)S
H
(n)+σ2INp

)−1 (A.8)

â(n|n) = â(n|n−1) + K (n)

(

yp(n)−S(n)â(n|n−1)
)

(A.9)

P(n|n) = P(n|n−1) − K (n)S(n)P(n|n−1) (A.10)

whereK (n) is the Kalman gain matrix (with size 2L×Np) andU= diag
{

0,σ2
u1
, ...,0,σ2

uL

}

.

Appendix B. Interpretation and Kalman-type formulation of the CATL structure

We defineδ̂(n+1|n) andδ̂(n|n) as thea priori anda posteriorislope estimates of the

CAs, forced to be equal and related tovLag(n) by:

δ̂(n|n) = δ̂(n+1|n) = µ2 ·vLag(n) (B.1)

Then, the recursive equations of the CATL (8)-(12) can be rewritten by (8)(9)(B.2)-

(B.4), with the purpose of estimating at each iteration thea posteriori state vector

(α̂(n|n), δ̂(n|n)), using thea priori (or predicted) estimates (α̂(n|n−1), δ̂(n|n−1)), by:

Measurement Update Equations

v
ǫ(n) = function of{ yp(n) ; α̂(n|n−1) } (8)

α̂(n|n) = α̂(n|n−1) + µ1.vǫ(n) (9)

δ̂(n|n) = δ̂(n|n−1) + µ2.vǫ(n) (B.2)

Time Update Equations
α̂(n+1|n) = α̂(n|n) + δ̂(n|n) (B.3)

δ̂(n+1|n) = δ̂(n|n) (B.4)

where (B.2) has replaced (10), using (B.1), and (B.3)&(B.4)have replaced (11)&(12),

using (9)&(B.1). As in the KF principle, we show the Measurement Update Equa-

tions (correction), and the Time Update Equations (prediction). Actually, the CATL
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equations (9)(B.2)-(B.4) coincide for one given pathl with the steady-state equations

of the KF in [24] derived under the assumption of a dynamic IRWmodel forαl , but

for a simplified single-carrier and single-path channel scenario. The vector (µ1,µ2) in

(9)&(B.2) is the steady-state Kalman gain for this simplified situation. In other words,

the more complex Or2-Kalman described in Appendix A-(A.6)−(A.10) would be re-

duced in steady-state mode to the CATL if the observation model (5) were simplified

in yp(n) =α(n)+wp(n), leading to the simple error signalv
ǫ(n) = yp(n)− α̂(n|n−1).
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