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Abstract

Various compositions of sparsely polarized antenna arrays are proposed in this paper to estimate

the direction-of-arrivals (DOAs) and polarizations of multiple coherent sources. These polarized

antenna arrays are composed of one of the following five sparsely-spread sub-array geometries: 1)

four spatially-spread dipoles with three orthogonal orientations, 2) four spatially-spread loops with

three orthogonal orientations, 3) three spatially-spread dipoles and three spatially-spread loops

with orthogonal orientations, 4) three collocated dipole-loop pairs with orthogonal orientations,

and 5) a collocated dipole-triad and a collocated loop-triad. All the dipoles/loops/pairs/triads

in each sub-array can also be sparsely spaced with the inter-antenna spacing far larger than a

half-wavelength. Only one dimensional spatial-smoothing is used in the proposed algorithm to

derive the two-dimensional DOAs and polarizations of multiple cross-correlated signals. From the

simulation results, the sparse array composed of dipole-triads and loop-triads is recommended to

construct a large aperture array, while the sparse arrays composed of only dipoles or only loops are

recommended to efficiently reduce the mutual coupling across the antennas. Practical applications

include distributed arrays and passive radar systems.

Keywords: Antenna array mutual coupling, antenna arrays, aperture antennas, array signal

processing, direction of arrival estimation, polarization.

1. Introduction

This paper proposes various compositions of sparse arrays to estimate the elevation-azimuth

angles and polarizations of coherent sources. These sparse arrays are composed of spatially-spread

dipoles or loops. First, the dipoles/loops with various orientations form a sub-array with the inter-

antenna spacing far larger than a half-wavelength. Second, these sub-arrays are uniformly spaced
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with a fixed distant, which can be far larger than a half-wavelength, too. We term these sparse

arrays, the “bi-sparse arrays”. A novel algorithm is developed to estimate the direction-of-arrivals

and polarizations of coherent sources using these bi-sparse arrays.

For coherent sources direction-finding, various spatial-smoothing (SS) algorithms have been

investigated, e.g: [1–6]. The essence of the SS algorithm is to separate the total array into equivalent

sub-arrays by adopting the invariance of the uniform linear array in order to restore the rank of

the covariance matrix of the received data-vector, after which the conventional eigen-structure

algorithms can be used. The advantage of the spatial-smoothing algorithm is that it can resolve

arbitrary number of coherent sources only if the array has sufficient sensors. The disadvantage of

this algorithm is that it will decrease the array aperture.

For the direction finding and polarization estimation of incident source, various polarized anten-

nas has been used [6–10], such as dipole and/or loop pairs [11], dipole or loop triads [12, 13], dipole

and loop quads [14], and the six-component electromagnetic vector-sensor [8, 15–19]. All of them

are composed of dipoles and/or loops with various orientations to measure the electric field and/or

the magnetic field of the signal. Extensively investigated in the literature is the six-component

electromagnetic vector-sensor.

1.1. Review of Electromagnetic Vector and Polarization

Consider a far-field source S, depicted in Figure 1, emitting a completely polarized transverse

electromagnetic wave, which can be characterized by the electric-field vector e and the magnetic-

field vector h. The polarization of the transverse electromagnetic wave can be characterized by

{ε, τ} defined in the polarization ellipse in Figure 1. For the convenience of representation, with

the relationship between the polarization parameters {θ3, θ4} and {ε, τ} shown in Figure 2 [20], 1,

e and h can be expressed in spherical coordinates as shown in Figure 1 as [8, 9, 21]:

e = sin θ3e
jθ4~vφ + cos θ3~vθ, (1)

h = Zo
(

cos θ3~vφ + sin θ3e
jθ4~vθ

)
, (2)

where Zo is the intrinsic impedance of the transmission medium, ~vm is a unit vector along the

direction of m (see Figure 1). The state of light polarization correspond to various points on

the surface of the Poincare sphere in Figure 2. Poincare used the circular polarization basis,

1If the electromagnetic wave is linearly polarized, θ4 = 0. If the electromagnetic wave is circularly polarized,

θ3 = 45◦ and θ4 = ±90◦ (+ for left circularly polarized and − for right circularly polarized) [20].
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with the latitude representing the relative magnitudes for the left and right circularly polarized

components and the longitude representing the relative phase difference between left and right

circularly polarized components

Equivalently, in Cartesian coordinates after normalization, e and h can be re-expressed as

[8, 9, 21]

e = (cos θ1 sin θ2 sin θ3e
jθ4 − sin θ1 cos θ3)~vx

+(sin θ1 sin θ2 sin θ3e
jθ4 + cos θ1 cos θ3)~vy

− cos θ2 sin θ3e
jθ4~vz, (3)

h = (− sin θ1 sin θ3e
jθ4 − cos θ1 sin θ2 cos θ3))~vx

(cos θ1 sin θ3e
jθ4 − sin θ1 sin θ2 cos θ3)~vy

+ cos θ2 cos θ3~vz, (4)

where {θ1 ∈ [0, 2π), θ2 ∈ [−π/2, π/2]} denotes the azimuth-angle and elevation-angle of the incident

source.

1.2. Coherent Sources Direction-Finding with Electromagnetic Vector-Sensors

An electromagnetic vector-sensor is composed of a triad-triad plus a loop-triad. A dipole-triad

[22, 23] comprises three orthogonally-collocated dipoles which are used to measure the three com-

ponents of the signal’s electric field. A loop-triad [22, 23] comprises three orthogonally-collocated

loops which are used to measure the three components of the signal’s magnetic field. The elec-

tromagnetic vector-sensor can resolve both the polarization and the direction-of-arrival (DOA)

differences of the source [7, 8]. The electromagnetic vector-sensor (array) has been investigated

extensively for direction finding and polarization estimation: [7–10, 15–19, 24–42]. However, much

of the literature models the sources as uncorrelated signals. The algorithms proposed therein will

degrade adversely when the incident sources are correlated in practical applications [1, 6, 43].

For the coherent sources direction-finding with electromagnetic vector-sensor arrays, Rahamim

et al. [43] proposed the polarization-smoothing (PS) algorithm, based on the unique collocated ge-

ometry of the electromagnetic vector-sensor. This PS algorithm restores the rank of the covariance

matrix by adding the covariance matrices of the data sets collected by different antennas in the

vector-sensor. Compared with the spatial-smoothing algorithm described above, the polarization-

smoothing algorithm will not decrease the array aperture. Some improved polarization-smoothing
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algorithms were developed in [44–46]. However, the polarization-smoothing algorithm needs it-

erative search to estimate the DOAs of the sources. Particularly, for the two-dimensional DOA

estimation, this iterative search will have a high computation workload. Furthermore, because

of this polarization-smoothing, the signal subspace of the covariance matrix will not provide the

steering vectors of the sources. This polarization-smoothing approach makes the vector-sensor lose

the vector property.

The spatial-smoothing algorithm has been used in the electromagnetic vector-sensor arrays to

estimate the DOAs and the polarizations of the coherent sources in [47–49]. Because of the unique

geometry of the electromagnetic vector-sensor, when the spatial-smoothing algorithm is adopted,

the inter vector-sensor spacing in the arrays can be larger than a half-wavelength, and a sparse array

is thus formed to enhance the direction finding resolution. Though the SS algorithm will decrease

the array-aperture, the large inter vector-sensor spacing in the sparse array will compensate for

the array aperture decrease. However, since the mutual coupling across the six antennas in the

electromagnetic vector-sensor is a serious problem [50? , 51], all the above studies are difficult to

apply in practical applications. In order to overcome the above problem, sparse arrays are proposed

in this work to bridge the gap in the literature.

Another important research direction is the identifiability of these polarized antenna arrays

[52–57], which investigates the linear dependence of steering vectors of these antenna arrays. For

the bi-sparse arrays proposed in this paper, the identifiability is under development.

1.3. Contributions of This Work

This paper proposes a novel algorithm to estimate the DOAs and the polarizations of the

coherent sources, based on: 1) a sparsely distributed array geometry composed of dipoles or loops,

and 2) the spatial-smoothing algorithm.

In order to reduce the mutual coupling across the six antennas in the electromagnetic vector-

sensor, a spatially-spread electromagnetic vector-sensor composed of three orthogonally oriented

dipoles and three orthogonally oriented loops is proposed in [50]. However, in practical applications,

the responses of the dipole and the loop vary from each other [7]. Hence, the mixed use of dipoles

and loops is not a good choice for engineers. Unlike the spatially-spread dipoles and loops used in

[50, 58, 59], this paper proposes bi-sparse arrays composed of only dipoles or only loops. Because

the dipoles or loops are spatially spread, the arriving angles and polarizations of the sources can

not be estimated by the formulas derived in [12, 22] for the collocated triads. In order to eliminate
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the phase factor arising from the inter-sensor spacing, an additional dipole/loop is employed in the

sub-array with the same orientation as one of the dipoles/loops in the spatially-spread triads. Thus,

the sub-array is a spatially-spread dipole-quad or loop-quad. Following this, the spatially-spread

dipole-quads or loop-quads are uniformly spaced on a line to construct a sparsely linear array.

Finally, a bi-sparse array composed of spatially-spread dipoles or loops is formed. Based on these

bi-sparse arrays, a new spatial-smoothing algorithm is proposed, which can offer the closed-form

estimates of the DOA and polarization of the sources. Only one dimensional spatial-smoothing is

necessary to derive the two dimensional DOAs and polarizations. The inter-sensor spacing phase

factors of the sparse array are used to improve the direction-finding resolutions, and at the same

time to compensate for the array aperture decrease in the spatial-smoothing algorithm.

The specific contributions of this work are summarized as follows:

1) All the inter-sensor spacings in the bi-sparse arrays are far larger than a half-wavelength.

This will offer the following three advantages: a) The inter-sensor spacing in the bi-sparse

array can be used to improve the DOA estimation accuracy; b) The mutual coupling among

the antennas is reduced; c) The inter-sensor spacing will compensate for the array aperture

decrease in the SS algorithm.

2) Only one dimensional SS is utilized to provide the two dimensional DOA and polarization

estimation, and it thus requires no pair algorithm.

3) The closed-form estimation is obtained to avoid the iterative search.

4) The hardware cost is reduced since only dipoles or loops is utilized.

5) The proposed algorithm is extended to the following geometries: a) the vector-sensor array

composed of the non-collocated electromagnetic vector-sensor proposed in [50], b) the vector-

sensor array composed of the spatially-spread dipole-loop pairs with orthogonal orientations,

and c) the vector-sensor array composed of the spatially-spread dipole-triads and loop-triads

proposed in [22].

It is worth noting that the proposed algorithm requires that the sub-arrays are uniformly spaced,

which is not required in the PS algorithm.

This SS algorithm was used in the rectangular array composed of collocated electromagnetic

vector-sensors to estimate the DOA of coherent sources by the propagator method in [48]. A

planar-plus-an-isolated array geometry composed of electromagnetic vector-sensors and a pressure

sensor was used in [60] to estimate the DOA of coherent sources. In contrast, this paper uses the
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bi-sparse array composed of spatially-spread dipoles or loops. The mutual coupling is thus reduced

and the described contributions can be achieved. Unlike [48], the derived algorithm in the present

work will be based on the eigen-decomposition.2 The steering-vectors of the sources are derived

from the signal sub-space of the covariance matrix of the collected data-set. The inter-sensor

spacing phase factors in the sparse array is utilized to offer the fine but ambiguous estimates of the

direction-cosines. Then the disambiguation algorithm is used to derive the fine and unambiguous

estimates of the direction-cosines to enhance the estimation accuracy. Similar scenario has been

used in [64] under a sparsely-distributed acoustic vector-sensor array scenario.

1.4. Organization of This Paper

The remainder of this paper is organized as follows: Section 2 provides the array geometry used

in this work. Section 3 presents the algorithm to derive the closed-form estimation of DOAs and

polarizations of multiple coherent sources. Sections 4-6 extend the proposed algorithm to the other

three array geometries. Section 7 analyzes the Cramér-Rao bounds of the parameter estimation.

Section 8 shows the simulation results to verify the performance of the proposed algorithm. Section

9 concludes the whole paper.

2. Array Geometry

Figures 3-4 depicts the bi-sparse array-geometries proposed in this paper. The bi-sparse array

composed of dipoles is demonstrated in Figure 3, and the bi-sparse array composed of loops is

demonstrated in Figure 4. Four dipoles or loops are displaced along the y-axis with a distance

dy � λ/2, where λ denotes the wavelength of the signal. These four dipoles or loops comprise a

sub-array, and L such sub-arrays are spaced along the x-axis with a distance dx � λ/2.

In a multiple-source scenario with K sources, the responses of the dipoles along each axis for

the kth signal are [7, 8]:

ek
def
=


ex,k

ey,k

ez,k

 def
=


cos θ1,k sin θ2,k sin θ3,ke

jθ4,k − sin θ1,k cos θ3,k

sin θ1,k sin θ2,k sin θ3,ke
jθ4,k + cos θ1,k cos θ3,k

− cos θ2,k sin θ3,ke
jθ4,k

 , (5)

2The propagator method [61] can also be utilized in the proposed array geometry in this paper. For the comparison

of the propagator method and the ESPRIT[62]-based algorithm used for the vector sensor array, please refer to [63].
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where {θ1,k ∈ [0, 2π), θ2,k ∈ [−π/2, π/2]} are the azimuth-angle and elevation-angle of the kth

source, and {θ3,k ∈ [0, π/2], θ4,k ∈ [−π, π)} denote the auxiliary polarization angle and polarization

phase difference of the kth incident signal, respectively (equating to {γ, η} in [7]). The responses

of the loops along each axis for the kth signal are [7, 8]:

hk
def
=


hx,k

hy,k

hz,k

 def
=


− sin θ1,k sin θ3,ke

jθ4,k − cos θ1,k sin θ2,k cos θ3,k

cos θ1,k sin θ3,ke
jθ4,k − sin θ1,k sin θ2,k cos θ3,k

cos θ2,k cos θ3,k

 . (6)

Since the dipoles or loops in Figures 3-4 are spatially-spread, the inter-sensor phase factors will

be introduced in the array-manifold. The array-manifold of the sub-array with four sparsely spaced

dipoles in Figure 3 corresponding to kth source is:

asub,k
def
=


e
−j

2πuy,k
λk

3dyex

e
−j

2πuy,k
λk

2dyey

e
−j

2πuy,k
λk

dyez

ez


, (7)

where uy,k
def
= cos θ2,k sin θ1,k is the direction-cosine of the kth source align to y-axis. The array-

manifold of the sub-array with four sparsely spaced loops in Figure 4 corresponding to kth source

is:

asub,k
def
=


e
−j

2πuy,k
λk

3dyhx

e
−j

2πuy,k
λk

2dyhy

e
−j

2πuy,k
λk

dyhz

hz


. (8)

In these two bi-sparse arrays, only dipoles or loops are used, and so the “vector-cross-product”

algorithm [8] can not be adopted. Thus a new algorithm will be derived below.3

3The two array geometries in Figures 3-4 employ only dipoles or only loops and they just show two possible

permutations of the array configurations. There are still many other different possible permutations to form the

bi-sparse array. In each sub-array, two ez dipoles or two hz loops are used. The additional dipole/loop with the

same orientation with the other dipole/loop is used to decouple the inter-antenna phase factor and it can be replaced

by the dipole/loop with the other two orientations, which means the dipole/loop lies on the x-axis, ez/hz can be

replaced by ex/hx or ey/hy.
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The array-manifold of the demonstrated array in Figures 3-4 for kth source is thus a 4L × 1

vector:

ak = asub,k ⊗ qx,k, (9)

where ⊗ denotes the Kronecker-product operator,

qx,k =
[
1, e−j

2π
λ
dxux,k , · · · , e−j

2π
λ

(L−1)dxux,k
]T
, (10)

with T symbolizing the transposition, and ux,k
def
= cos θ2,k cos θ1,k is the direction-cosine of the kth

source align to x-axis.

3. Proposed Algorithm

In a K-source scenario, the data set measured at time t by the array in Section 2 is:

y(t) =
K∑
k=1

aksk(t) + n(t), (11)

where ak is the steering-vector of the kth source as shown in (9), n(t) is the additive Gaussian-

distributed complex noise, and sk(t) is the kth signal. In the coherent sources scenario, sk(t) =

ηks1(t),∀k = 2, · · · ,K, where ηk is a complex number denoting the correlation between the sources.4

The 4L× 1 steering vector ak in (11) can be expressed as a 4× L matrix as:

Ak =
[
asub,k, asub,ke

−j 2π
λ
dxux,k , . . . ,asub,ke

−j 2π
λ

(L−1)dxux,k
]

=


e
−j

2πuy,k
λk

3dyhx, e
−j

2πuy,k
λk

3dyhxe
−j 2π

λ
dxux,k , . . . , e

−j
2πuy,k
λk

3dyhxe
−j 2π

λ
(L−1)dxux,k

e
−j

2πuy,k
λk

2dyhy, e
−j

2πuy,k
λk

2dyhye
−j 2π

λ
dxux,k , . . . , e

−j
2πuy,k
λk

2dyhye
−j 2π

λ
(L−1)dxux,k

e
−j

2πuy,k
λk

dyhz, e
−j

2πuy,k
λk

dyhze
−j 2π

λ
dxux,k , . . . , e

−j
2πuy,k
λk

dyhze
−j 2π

λ
(L−1)dxux,k

hz, hze
−j 2π

λ
dxux,k , . . . , hze

−j 2π
λ

(L−1)dxux,k


(12)

4The spatial smoothing algorithm has been used in [47–49] with the six-component electromagnetic vector sensor

array. Originality of this paper is to adopt the spatial smoothing algorithm to the spatially spaced polarized vector

sensor array, instead of the collocated electromagnetic vector sensor array, which introduces a lot of mutual coupling.

The mutual coupling is thus reduced because of the large spacing between the adjacent antennas. The fine estimates

of the direction-cosine are obtained from the inter-sensor spacing within one sub-array, not from the spacing between

the electromagnetic vector sensors as in [17, 18].

8



Following this, the measurement data set in (11) can also be represented to a 4× L matrix form:

Y(t)
def
=

K∑
k=1

Aksk(t) + N(t) (13)

=
K∑
k=1

{[
asub,k,asub,ke

−j 2π
λ
dxux,k , · · · ,asub,ke

−j 2π
λ

(L−1)dxux,k
]
sk(t)

}
+ N(t),

where ux,k = cos θ2,k cos θ1,k is the direction-cosine of the kth source align to x-axis. In a multiple

source scenario with correlated sources, the covariance matrices of (11) and (13) will be rank-

deficient. The following will develop a method to solve this problem. The SS algorithm [1] will be

adapted to the data-set in (13).

3.1. Spatial-Smoothing Through Matrix Enhancement

With the similar approach in [3], we can restore the rank of the covariance matrix of (13) by

matrix enhancement. The 4×L matrix in (13) can be partitioned into P overlapped 4×(L−P +1)

sub-matrices:

Yp(t)
def
= Y(t)Jp,∀p = 1, 2, · · ·P, (14)

where Jp is an L× (L− P + 1) selection matrix, and

Jp =



0(p−1)×(L−P+1)

−−−−−−

I(L−P+1)

−−−−−−

0(P−p+1)×(L−P+1)


, (15)

where 0a×b denotes an a × b matrix with all entries equaling to zero, and Ii is an i × i identity

matrix.

In order to simplify the exposition, the following derivation will set P = 2. Then:

Y1(t) =

K∑
k=1

[
asub,k,asub,ke

−j 2π
λ
dxux,k , · · · ,asub,ke

−j 2π
λ

(L−2)dxux,k
]
sk(t) + N1(t), (16)

Y2(t) =

K∑
k=1

[
asub,ke

−j 2π
λ
dxux,k ,asub,ke

−j 2π
λ

2dxux,k , · · · ,asub,ke
−j 2π

λ
(L−1)dxux,k

]
sk(t) + N2(t),(17)

where N1(t) = N(t)J1,N2(t) = N(t)J2.

Construct the following 8× (L− 1) enhancement matrix:

Z(t)
def
=

 Y1(t)

Y2(t)

 . (18)
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3.2. DOA and Polarization Estimation

The Z(t) can now be used to estimate the DOAs and polarizations of the coherent sources.

Consider there are M time samples collected at uniform time-slots t1, t2, · · · , tM . Compute the

covariance matrix of Z by:

R =
1

M

M∑
m=1

Z(tm)ZH(tm), (19)

where H is the Hermitian operator. The steering vectors corresponding to R in (19) are:

A
def
=

 A1

A2

 =

 A1

A1Φx

 , (20)

where A1
def
= [asub,1,asub,2, · · · ,asub,K ], and Φx = diag

[
e
−j 2π

λ1
ux,1dx , e

−j 2π
λ2
ux,2dx , · · · , e−j

2π
λK

ux,Kdx
]
.

Perform the eigen-decomposition of the covariance matrix R:

R = EsΛsE
H
s + EnΛnE

H
n , (21)

where Es is the signal subspace composed of the eigen-vectors associated with the K largest eigen-

values.

Partition the 8 ×K signal subspace Es into two 4 ×K sub-matrices, Es,1,Es,2, where Es,1 is

composed of the top 4 rows, and Es,2 is composed of the bottom 4 rows. In the noiseless case, Es,1

and Es,2 are inter-related with each other by:

Es,2 = Es,1Φx. (22)

In the noisy case, this Φx can be estimated by [62]:

Φ̂x =
(
EH
s,1Es,1

)−1
EH
s,1Es,2. (23)

Similar to [9], there exists a unique K ×K nonsingular matrix T such that [62]:

Es,1 = A1T, (24)

Es,2 = A2T = A1ΦxT. (25)

In the noisy case, this T can be estimated by performing the eigen-decomposition of
(
EH
s,1Es,1

)−1
EH
s,1Es,2.

T̂ is composed of the eigenvectors, and D = diag [σ1, σ2, · · · , σK ] comprises the eigenvalues.
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It is worth noting that D will offer the fine but ambiguous estimates of the sources’ direction-

cosines along the x-axis:

ûfine
x,k = − λk

2πdx
∠σk, (26)

where ∠ denotes the complex angle of the ensuing number.

The steering vectors of the sources can be estimated by [62]:

Â1 = Es,1T̂
−1 + Es,2T̂

−1D−1

= [âsub,1, âsub,2, · · · , âsub,K ] . (27)

Note that Â1 will offer the coarse estimates of the arriving angles. We can obtain from Â1 that

âsub,k = casub,k, where c is an unknown complex number. From âsub,k = casub,k and (7)-(8), the

fine but ambiguous estimates of the sources’ direction-cosines along the y-axis::

ûfine
y,k =

λk
2π

1

dy
∠

(
[âsub,k]4
[âsub,k]3

)
. (28)

Define:

d =

 [âsub,k]1
[âsub,k]3

e
j

2πûfine
y,k
λk

2dy

[âsub,k]2
[âsub,k]3

e
j

2πûfine
y,k
λk

dy

 =


[
ex
ez
,
ey
ez

]T
for the array in Figure 3,[

hx
hz
,
hy
hz

]T
for the array in Figure 4.

(29)

where T denotes the transposition.

From the equations derived in [12, 19], we can get:

θ̂coarse
1,k =

 tan−1
(
−Im{[d]1}
Im{[d]2}

)
, if (Im{[d]2} sin θ4,k) ≥ 0

tan−1
(
−Im{[d]1}
Im{[d]2}

)
+ π, if (Im{[d]2} sin θ4,k) < 0

(30)

θ̂coarse
2,k =

 tan−1
(
−Bθ2,k

)
, if

(
Bθ2,k

)
≤ 0

tan−1
(
−Bθ2,k

)
+ π, if

(
Bθ2,k

)
> 0

(31)

Bθ2,k = Re{[d]1} cos θ̂coarse
1,k + Re{[d]2} sin θ̂coarse

1,k

θ̂4,k = −∠
(

[d]1 sin θ̂coarse
1,k − [d]2 cos θ̂coarse

1,k

)
(32)

θ̂3,k =


cot−1

(
Im{[d]2} cos θ̂coarse

2,k

sin θ̂4,k cos θ̂coarse
1,k

)
, for the array in Figure 3;

tan−1

(
Im{[d]2} cos θ̂coarse

2,k

sin θ̂4,k cos θ̂coarse
1,k

)
, for the array in Figure 4.

(33)

where Re{ } and Im{ } denote the real part and the imaginary part of the entry in { }, respectively.
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5 Thus,

ûcoarse
x,k = cos θ̂coarse

2,k cos θ̂coarse
1,k , (34)

ûcoarse
y,k = cos θ̂coarse

2,k sin θ̂coarse
1,k . (35)

Following this the disambiguation method can be adopted to derive the final estimates of direction-

cosines and so the arriving angles. Using the coarse estimates of direction-cosines in (34)-(35) to

disambiguate the fine estimates in (26) and (28) by the method in [17, 18, 50], we can obtain the

fine and unambiguous (final) estimates of direction-cosines, {ûk, v̂k}:

ûx,k = ûfine
x,k +m◦x,k

λk
dx
, (36)

ûy,k = ûfine
y,k +m◦y,k

λk
dy
, (37)

where {m◦x,k,m◦y,k} are two integers that can be determined by ûcoarse
x,k , ûcoarse

y,k [17, 18, 50],

m◦x,k = argmin
mx,k

∣∣∣∣ûcoarse
x,k − ûfine

x,y −mx,k
λ

dx

∣∣∣∣
m◦y,k = argmin

my,k

∣∣∣∣ûcoarse
y,k − ûfine

y,k −my,k
λ

dy

∣∣∣∣
for

mx,k ∈
{⌈

dx
λ

(−1− ûcoarse
x,k )

⌉
,

⌊
dx
λ

(1− ûcoarse
x,k )

⌋}
,

my,k ∈
{⌈

dy
λ

(−1− ûcoarse
y,k )

⌉
,

⌊
dy
λ

(1− ûcoarse
y,k )

⌋}
.

where dαe refers to the smallest integer not less than α, and bαc refers to the largest integer not

exceeding α.

Lastly, after the unique {ûx,k, ûy,k} has been obtained, the direction-of-arrival of kth incident

source {θ1,k, θ2,k} can be estimated by [9]:

θ̂1,k = ∠ (ûx,k + j ûy,k) , (38)

θ̂2,k = arccos
(√

û2
y,k + û2

x,k

)
. (39)

5Under a finite number of discrete values, we can not estimate the DOA correctly with only dipoles or loops in

Figures 3-4. For example, under the horizontally linear-polarized case, θ3 = θ4 = 0, {ex = − sin θ1, ey = cos θ1, ez =

0, }. In this case, with only the dipoles as in Figure 3a, we can not estimate the elevation-angle θ2. However, these

values occur with probability zero, anyway. Similar discrete values exist in other array geometries.
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Table 1: Summary of the algorithm

1. Determine P and L, based on the coherent source-number K;

2. Construct the enhancement matrix Z(t) as in (18);

3. Compute the covariance matrix R of the matrix Z as in (19);

4. Perform the eigen-decomposition to the covariance matrix R;

5. Derive the steering vectors of the sources from the signal-subspace of R as in (27);

6. Compute ûfine
x,k as in (26);

7. Derive the coarse estimates of arriving angles and then of the direction-cosines, {ûcoarse
x,k , ûcoarse

y,k };

8. Compute ûfine
y,k as in (28) from the inter-sensor spacing phase-factors;

9. Derive the final estimates of direction-cosines by disambiguating the fine estimates;

10. Compute the DOA of each source from (38)-(39) and then the polarization parameters.

The derivation in this section just shows an example with P = 2. In practical applications, this

P depends on the source number K. The conditions to select P and L are:

4 ≥ K, and (L− P + 1) ≥ K. (40)

Thus 2 ≤ P ≤ (L−K + 1). When P > 2, there will be several estimates of the sources’ steering-

vectors. Then the average values can be used to improve the estimation accuracy. In addition,

the Forward/Backward spatial-smoothing technique in [2] can be incorporated with the proposed

algorithm to increase the resolvable source number.

Table 1 summarizes the ten steps to estimate the DOAs and the polarizations of the coherent-

sources. Note that the estimates of the direction-cosines are automatically paired for each source.

Compared with the PS algorithm, the proposed approach is based on the SS algorithm and it

requires that the sub-arrays in the array-geometry are uniformly spaced. However, if the PS

algorithm is used to the array-geometry in this paper, only one-dimensional direction-cosine can be

estimated. Furthermore, the PS algorithm needs iterative search and the inter-sensor spacing should

be less than a half-wavelength. In contrast, the proposed algorithm 1) requires no iterative search,

2) is adopted in the bi-sparse array to reduce the mutual coupling, and 3) offers two-dimensional

direction-cosines with only one dimensional spatial-smoothing.

It is worth nothing that from (36)-(37), if ûx,i = ûx,j + n
λi,j
dx

, where i, j denote the ith source

and jth source, n is an integer and λi,j denotes the wavelength of the coherent sources (ith source

and jth source), (36)-(37) will not present the right estimates of ûx,i, ûx,j . In this source scenario,
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the covariance matrix R of Z in (19) will be rank-deficient, and following this the SS algorithm will

break down.

4. Extend the Proposed Algorithm to the Spatially-Spread Electromagnetic Vector

Sensor Array

The proposed algorithm can be adopted to the spatially-spread electromagnetic vector-sensors

proposed in [50, 65, 66]. Please refer to Figure 5 for the array geometry composed of spatially-

spread electromagnetic vector-sensors (EMVSs) in [50], and the direction-finding algorithm pro-

posed therein can be incorporated with the proposed algorithm in the present paper to resolve

coherent sources. Let the inter-sensor spacing among the dipoles and loops in the sub-array (the

spatially-spread electromagnetic vector-sensor) be equal to dy.
6 The array-manifold of the sub-

array corresponding to kth source is:

asub,k
def
=

 ẽk

h̃k

 def
=



ex,k

e
−j

2πuy,k
λk

dyey,k

e
−j

2πuy,k
λk

2dyez,k

e
−j

2πuy,k
λk

5dyhx,k

e
−j

2πuy,k
λk

4dyhy,k

e
−j

2πuy,k
λk

3dyhz,k


. (41)

With the similar algorithm investigated in Section 3, we can obtain âsub,k = casub,k. It follows that

ˆ̃ek = cẽk,
ˆ̃
hk = ch̃k. The “vector-cross-product” [8, 50] will be:

ˆ̃uk =
ˆ̃ek × ˆ̃

h
∗
k

‖ˆ̃ek × ˆ̃
h
∗
k‖

= e
j

2πuy,k
λk

2dy


ux,k

e
j

2πuy,k
λk

dyuy,k

e
j

2πuy,k
λk

2dyuz,k

 =


cos θ2,k cos θ1,k e

j
2πuy,k
λk

2dy

cos θ2,k sin θ1,k e
j

2πuy,k
λk

3dy

sin θ2,k e
j

2πuy,k
λk

4dy

 . (42)

where ∗ denotes complex conjugation, × symbolizes the vector cross-product operator, ‖ · ‖ repre-

sents the Frobenius norm of the element inside ‖ ‖, and {ux,k, uy,k, uz,k} are the direction-cosines

of the kth source align to x-axis, y-axis, z-axis respectively.

Adopt the proposed algorithm in Section 3 and from (42),

6The inter-sensor spacings can be different in the sub-array of Figure 5, only if to satisfy the conditions in [50].
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1) If θ1,k ∈ [0, π], which means uy,k ≥ 0, then:

úk = ˆ̃uke
−j∠[ˆ̃uk]2 =


ûcoarse
x,k e

−j
2πuy,k
λk

dy

ûcoarse
y,k

ûz,ke
j

2πuy,k
λk

dy

 , (43)

ûcoarse
y,k = [úk]2, (44)

ûcoarse
x,k = [úk]1e

j
2πûcoarse

y,k
λk

dy , (45)

ûfine
y,k =

λk
2π

1

3dy
∠[ˆ̃uk]2. (46)

2) If θ1,k ∈ (π, 2π], which means uy,k < 0, then:

úk = −ˆ̃uke
−j∠[ˆ̃uk]2 =


ûcoarse
x,k e

−j
2πuy,k
λk

dy

ûcoarse
y,k

ûz,ke
j

2πuy,k
λk

dy

 , (47)

ûcoarse
y,k = [úk]2, (48)

ûcoarse
x,k = [úk]1e

j
2πûcoarse

y,k
λk

dy , (49)

ûfine
y,k =

λk
2π

1

3dy

(
∠[ˆ̃uk]2 + π

)
. (50)

The ûfine
x,k can be obtained by the same method in Section 3 as shown in (26). It follows that the

same disambiguation approach can be adopted to get the final estimates of the direction-cosines

and then the direction-of-arrivals. After this, the polarizations of the sources can be estimated by

the formulas derived in [11].

In this array geometry and the following two array geometries, the conditions in (40) will be:

6 ≥ K, and (L− P + 1) ≥ K, (51)

since there are six antennas in each sub-array.

5. Extend the Proposed Algorithm to the Sparsely Spaced Dipole-Loop Pairs

The proposed algorithm can be adopted to the sparsely spaced dipole-loop pairs [11] as shown

in Figure 6. The new bi-sparse array geometry in Figure 6 is composed of dipole-loop pairs of

orthogonal orientations. 7 The array-manifold of the sub-array composed of dipole-loop pairs

7Please note that this geometry is first proposed in this paper and it can be seen as a special case of the non-

collocated electromagnetic vector-sensor proposed in [50]. The two inter-pair spacings can be different in the sub

array of Figure 6.
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corresponding to kth source is:

asub,k
def
=

 ẽk

h̃k

 def
=



ex,k

e
−j

2πuy,k
λk

dyey,k

e
−j

2πuy,k
λk

2dyez,k

e
−j

2πuy,k
λk

2dyhx,k

e
−j

2πuy,k
λk

dyhy,k

hz,k


. (52)

From the proposed algorithm in Section 3, we can obtain âsub,k = casub,k, where c is an unknown

complex number. It follows that ˆ̃ek = cẽk,
ˆ̃
hk = ch̃k. The vector-cross-product result will be:

ˆ̃uk =
ˆ̃ek × ˆ̃

h
∗
k

‖ˆ̃ek × ˆ̃
h
∗
k‖

=


e
−j

2πuy,k
λk

dyux,k

uy,k

e
j

2πuy,k
λk

dyuz,k

 . (53)

Then:

ûcoarse
y,k = [ˆ̃uk]2, (54)

ûcoarse
x,k = [ˆ̃uk]1e

j
2πucoarse

y,k
λk

dy (55)

1) If θ2,k ∈ [0, π/2],

ûfine
y,k =

λk
2π

1

dy
∠[ˆ̃uk]3. (56)

2) If θ2,k ∈ [−π/2, 0),

ûfine
y,k =

λk
2π

1

dy

(
∠[ˆ̃uk]3 + π

)
. (57)

The ûfine
x,k can be obtained by the same method in Section 3 as in (26). It follows that the same

disambiguation approach can be adopted to get the final estimates of the direction-cosines and then

the direction-of-arrivals and the polarizations.

6. Extend the Proposed Algorithm to the Sparsely Spaced Dipole-Triads or Loop-

Triads

Figure 7 depicts the bi-sparse array-geometry composed of dipole-triads and loop-triads. The

dipole-triad and loop-triad are displaced along the y-axis with a distance dy � λ/2. The two triads
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comprises a sub-array [22], and L sub-arrays are spaced along the x-axis with a distance dx � λ/2.

The array-manifold of the sub-array corresponding to kth source in Figure 7 is thus [22]:

asub,k
def
=

 ek

qy,khk

 , (58)

where qy,k = e
−j 2π

λk
uy,kdy . From (58), using the vector-cross-product [22]:

ũk =
ek × (qy,khk)

∗

‖ek × (qy,khk)∗‖
= q∗y,kuk = q∗y,k


ux,k

uy,k

uz,k

 . (59)

From the proposed algorithm in Section 3, we can obtain âsub,k = casub,k.. It follows that

êk = cek, ĥk = chk. From the vector-cross product result, we can get:

ˆ̃uk =
êk × ĥ∗k∥∥∥êk × ĥ∗k

∥∥∥ = q̂∗y,k


ûx,k

ûy,k

ûz,k

 = q̂∗y,kûk. (60)

Note that (60) will offer both the coarse estimates of the sources’ direction-cosines ûk, and the fine

estimates of the sources’ direction-cosines along the y-axis, ûfine
y,k , from q̂y,k. Separately consider the

following two cases:

1) If θ2,k ∈ [0, π/2], which means uz,k ≥ 0, then:

ûk = ˆ̃uke
−j∠[ˆ̃uk]3 =


ûcoarse
x,k

ûcoarse
y,k

ûz,k

 , (61)

ûfine
y,k =

λk
2π

1

dy
∠[ˆ̃uk]3. (62)

2) If θ2,k ∈ [−π/2, 0), which means uz,k ≤ 0, then:

ûk = −ˆ̃uke
−j∠[ˆ̃uk]3 =


ûcoarse
x,k

ûcoarse
y,k

ûz,k

 , (63)

ûfine
y,k =

λk
2π

1

dy

(
∠[ˆ̃uk]3 + π

)
. (64)
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It follows that:

ûcoarse
x,k = [ûk]1, (65)

ûcoarse
y,k = [ûk]2. (66)

The ûfine
x,k can be obtained by the same computation as in (26). It follows that the same disam-

biguation approach can be adopted to get the final estimates of the direction-cosines and then the

direction-of-arrivals and the polarizations.

Based on the sub-arrays used in the proposed bi-sparse arrays, we depict the relationship of

these arrays in Figure 8. Note that the dipole/loop triads/pairs can be seen as special cases of the

spatially-spread electromagnetic vector-sensors (SS-EMVS) in Figure 5 [50].

7. Cramér-Rao Bound Derivation

A far-field unit-power pure-tone is used in this section for the following Cramér-Rao bound

(CRB) derivation. Provided that s(t) = ej(2πf0t+ε) with a prior-known frequency f0 and a prior-

known initial phase ε, with N snapshots uniformly sampled at time-slots {t = t1, t2, · · · , tN}, we

have:

s =
[
ej(2πf0t1+ε), ej(2πf0t2+ε), · · · , ej(2πf0tN+ε)

]T
. (67)

The above sequence is received by the proposed arrays, corrupted with additive noise n(t), which

is assumed to be zero-mean Gaussian, with its diagonal covariance matrix Γ0 = diag[σ2, . . . , σ2],

where σ2 refers to the prior-known noise variance at each constituent antenna, z(t) = as(t) + n(t).

For the arrays in Figures 3-4, the following 4NL× 1 data-vector could be acquired

ζ =
[
zT (t1), zT (t2), · · · , zT (tN )

]T
= s⊗ a︸ ︷︷ ︸

def
=α

+
[
nT (t1),nT (t2), · · · ,nT (tN ),

]T︸ ︷︷ ︸
def
= β

, (68)

where ⊗ denotes the Kronecker product, β is the noise vector with a covariance matrix Γ = Γ0⊗IN ,

with IN denoting an N ×N identity matrix. Hence, ζ is a complex Gaussian distributed process

with mean α and a covariance matrix Γ. Let

ψ
def
= [θ1, θ2, θ3, θ4]T (69)

18



refer to the vector comprising all the concerned unknown parameters. We could derive all the

elements of the 4× 4 Fisher Information Matrix (FIM) by [67]:

J[ψ]i,[ψ]j = 2Re

[(
∂α

∂[ψ]i

)H
Γ−1

(
∂α

∂[ψ]j

)]
, ∀i, j = 1, 2, 3, 4, (70)

where J[ψ]i,[ψ]j refers to the (i, j)th entry of the FIM, and Re[.] denotes the real-value part of the

entry inside [ ]. Then the Cramér-Rao bounds of ψ equal:

CRB([ψ]i) =
[
J−1

]
i,i
, ∀i = 1, 2, 3, 4. (71)

The 4× 4 Fisher Information Matrix can be expressed as:

J =


Jθ1,θ1 Jθ1,θ2 Jθ1,θ3 Jθ1,θ4

Jθ2,θ1 Jθ2,θ2 Jθ2,θ3 Jθ2,θ4

Jθ3,θ1 Jθ3,θ2 Jθ3,θ3 Jθ3,θ4

Jθ4,θ1 Jθ4,θ2 Jθ4,θ3 Jθ4,θ4

 . (72)

The Cramér-Rao bounds for each parameters can be obtained straightforwardly from (71) after we

get the values of J by (70). Similarly, for all the other geometries, the Cramér-Rao bounds can be

derived8.

8. Monte Carlo Simulation

The proposed algorithm’s direction-finding efficacy and extended-aperture capability are demon-

strated by Monte Carlo simulations. The estimates use 100 temporal snapshots and 100 independent

runs. The root mean square error (RMSE) is utilized as the performance measure. The RMSE for

the direction-cosine is defined as:

RMSE =

√√√√ 1

100

100∑
i=1

[
(ûix − ux)2 + (ûiy − uy)2

]
,

where {ûix, ûiy} are the estimates of direction-cosines at ith run. Figures 9 plots the RMSEs of

the direction-cosines and polarization parameters versus signal-to-noise ratio (SNR) in a four-

source scenario with the bi-sparse arrays proposed in Figures 3-4. The four sources share the

same digital frequency f1 = f2 = f3 = f4 = 0.0895 and they are correlated with each other

by s2 = −s1, s3 = (1 + j)s1, s4 = (1 − j)s1. The DOAs and polarizations of the four sources

8For the Gaussian source scenario, please refer to the derivation in [68].
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are set as: (θ1,1, θ2,1, θ3,1, θ4,1) = (20◦, 15◦, 45◦, 90◦), (θ1,2, θ2,2, θ3,2, θ4,2) = (53◦, 33◦, 45◦,−90◦),

(θ1,3, θ2,3, θ3,3, θ4,3) = (81◦, 57◦, 45◦, 90◦), (θ1,4, θ2,4, θ3,4, θ4,4) = (110◦, 70◦, 45◦,−90◦). In the simu-

lation, the inter-sensor spacing dx = dy = 8λ. L = 7 sub-arrays are used and P = 2. Figure 9

clearly demonstrates that all the four correlated sources are accurately resolved by the proposed

algorithm. Figure 13 presents the average RMSEs of the four sources with different L at various

SNR. It can be seen that: a) The RMSEs decrease with the increasing L; b) When SNR increases,

this decreasing trend becomes weak. Figure 14 plots the corresponding RMSEs of the direction-

cosines versus signal-to-noise ratio (SNR) with the array geometries in Figures 5-7 in the same

four-source scenario as in Figure 9.

8.1. Aperture Extension Property Analysis

It is well known that the larger the array-aperture, the better the angular resolution. In order to

investigate the aperture extension property of the proposed algorithm, Figure 15 plots the RMSEs of

direction-cosines versus inter-sensor spacing dx = dy in a two-source scenario, at SNR= 30dB. The

two sources are set as s2 = −s1, and (θ1,1, θ2,1, θ3,1, θ4,1) = (20◦, 15◦, 45◦, 90◦), (θ1,2, θ2,2, θ3,2, θ4,2) =

(55◦, 40◦, 45◦,−90◦). Both the coarse estimates and the final estimates of the direction-cosines are

plotted in the figure. It can be seen that the RMSEs of direction-cosines estimated by the proposed

algorithm decrease with the increase of inter-sensor spacing and they are close to the Cramér-Rao

bounds (CRB). For more investigations of the sparse array, please refer to [17, 18]. It is notable that

there is a breakdown phenomenon in Figure 15. When the inter-sensor spacing dx = dy is beyond

a specific spacing point, the RMSEs of the final estimates will be the same as the coarse estimates.

This is because the coarse estimates will identify the wrong estimation grid at the pre-set SNR

and thus it can not be used to disambiguate the fine estimates. For the details of this breakdown

phenomenon, please refer to [17, 18]. It can be found from Figure 15 that this breakdown spacing

point exists in all the proposed bi-sparse geometries. For the array geometry in Figures 3-4, it

is about 20 − 40λ. For the array geometry in Figures 5-6, it is about 15λ − 20λ. For the array

geometry in Figure 7, it is 100λ. Thus, the array geometry in Figure 7 is recommended to be used

to form a large-aperture sparse array. On the other hand, if only the dipoles or loops are used,

the array geometries in Figures 3-4 are recommended to be utilized in order to further reduce the

mutual coupling since no antennas are collocated.
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8.2. Comparison with the Polarization Smoothing Algorithm

It is worth pointing out that with the demonstrated sparse array in Figures 3-7, the PS algorithm

can not be used to estimate the two-dimensional DOA of the sources. In order to compare the perfor-

mance of the proposed algorithm with the polarization-smoothing algorithm, we adopt an L-shaped

array [44] for the estimation with the polarization-smoothing algorithm. In this L-shaped array,

7 collocated electromagnetic vector-sensors are displaced both on x-axis and y-axis at λ/2 inter-

sensor spacings. The ESPRIT [62] algorithm is incorporated with the PS algorithm to estimate the

DOAs of the sources, named as PS-ESPRIT in Figure 16. Three correlated sources s2 = −s1, s3 =

(1 + j)s1, and (θ1,1, θ2,1, θ3,1, θ4,1) = (15◦, 20◦, 45◦, 90◦), (θ1,2, θ2,2, θ3,2, θ4,2) = (43◦, 53◦, 45◦,−90◦).

(θ1,3, θ2,3, θ3,3, θ4,3) = (57◦, 81◦, 45◦, 90◦), are used in the simulation. Figure 16 shows the simula-

tion results of the PS-ESPRIT algorithm with the L-shaped array and the results of the proposed

algorithm at the demonstrated bi-sparse array in Figures 3-4 with various inter-sensor spacing.

It can be seen from part (a) of Figure 16 that the performance of the PS-ESPRIT algorithm is

better than the proposed algorithm when dx = dy = 0.5λ. However, when dx = dy ≥ 2λ, as

in parts (b)-(c) of Figure 16, the efficacy of the proposed algorithm is improved significantly and

the RMSEs of the proposed algorithm are much lower than their counterparts of the PS-ESPRIT

algorithm, but with fewer antennas. (The L-shaped array needs 13 six-component electromagnetic

vector-sensors (39 dipoles and 39 loops) while the proposed bi-sparse array only needs 28 dipoles or

28 loops.) Therefore, the proposed scheme can reduce the hardware cost substantially in practical

applications.

8.3. Cross-Correlation Effect of the Sources

In order to investigate how the algorithm is affected by the cross-correlation of the sources, two

cross-correlated sources with the same amplitude are used in the following simulation, s2 = ejαs1,

where α denotes the angular difference between the two sources. Figure 17 plots the RMSEs of the

two sources versus α. The array geometry in Figure 7 is used as an example in this simulation. It

can be seen that the RMSE of s1 remains the same with various α, while the RMSE of s2 reaches its

maximum value at α = {70◦, 250◦}, and reaches its minimum value at α = {160◦, 340◦}. Though

the RMSE of s2 changes sinusoidally with α, it remains in a very small region. It can be concluded

that the proposed algorithm depends slimly on the cross-correlation of different sources. 9

9The decorrelation is a priori not uniform whatever the DOA of the sources. Since we use the conventional spatial-

smoothing algorithm, this decorrelation should be the same as the generalized scaler sensor arrays investigated in
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8.4. Comparison of Different Array Geometries

The ESPRIT-based algorithm is incorporated with the demonstrated sparsely-distributed array-

geometry, and unlike the sparse array investigated in [17], which utilized the collocated electromag-

netic vector-sensors, the novelty in this work is a new bi-sparse array-scheme composed of sparsely-

distributed dipoles or loops. The following simulation will demonstrate how the proposed sparsely-

distributed array geometries outperforms the collocated geometry of the six-component electromag-

netic vector-sensor in [44, 48]. The proposed algorithm will be adopted to all the six array geometries

to estimate the DOAs of the two sources, s2 = −s1, and (θ1,1, θ2,1, θ3,1, θ4,1) = (20◦, 15◦, 45◦, 90◦),

(θ1,2, θ2,2, θ3,2, θ4,2) = (110◦, 73◦, 45◦,−90◦). The collocated geometry can be obtained from the

sparsely-distributed array-geometry in Figure 7 by setting dy = 0. Figure 18 plots the RMSEs of

the two sources in the six different geometries. In Figure 18, for the sparsely-distributed array-

geometry, we set dx = dy = 5λ, and for the collocated geometry, we set dx = 5λ, dy = 0. Figure 18

clearly demonstrates that the proposed geometries outperforms the collocated geometry (particu-

larly when SNR≥ 15dB) used in [44, 48].

Table 2 summarized the performances of the proposed arrays. Note that all these arrays are

robust to non coherent sources, in which case, the spatial-smoothing algorithm is not required for

direction finding and polarization estimation. The array size depends on the inter-sensor spacings

of the antennas. Since the SS-EMVS will have 6 individual dipoles/loops, we argue here that it

will have the largest array size. If the forward/backward spatial-smoothing technique [2] is used,

the resolvable coherent source number can be increased. The direction and polarization estimation

precision for these arrays are similar and the resolution depends on the inter-sensor spacings.

If the sources have same polarization states, the arrays can also estimate them correctly, since

the proposed algorithm replies on the directions to identify different sources. The polarization is

estimated after the arriving angles are determined.

9. Concluding Remarks

Motivated by the sub-array idea, we investigate a spatial-smoothing algorithm to estimate the

DOAs and polarizations of coherent sources based on five bi-sparse arrays, which can be composed

of any one of the following five sub-array geometries: (a) four sparsely spaced but orthogonally

oriented dipoles, (b) four sparsely spaced but orthogonally oriented loops, (c) three spatially spread

[1, 2].
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Table 2: Summary of the proposed method for the different arrays (Figures 3-7). L denotes the number of

sub-array unit. For the array size, 1 denotes the largest and 4 denotes the smallest.

Sub-array unit Sensor number
Resolvable coherent

source number
Array size

Robust to

non coherent sources

Dipoles only 4L 4 2 Yes

Loops only 4L 4 2 Yes

SS-EMVS 6L 6 1 Yes

Pairs 6L 6 3 Yes

Triads 6L 6 4 Yes

but orthogonally oriented dipoles and three spatially spread but orthogonally oriented loops, (d)

three dipole-loop pairs with orthogonal orientations, and (e) a dipole-triad and a loop-triad. Both

the spacing between two adjacent sub-arrays and the spacing between two adjacent sensors in the

sub-array are far larger than a half-wavelength of the incident source. Hence, these arrays are called

“bi-sparse arrays”. Compared with the recently developed polarization-smoothing algorithm, the

investigated approach requires no iterative search and can improve the estimation accuracy by

the sparse geometries. Compared with the conventional spatial-smoothing algorithm investigated

for the scalar arrays, the proposed approach can offer two-dimensional (closed-form) DOA and

polarization estimation using only one-dimensional spatial-smoothing. Furthermore, the mutual

coupling is reduced efficiently because of this “bi-sparse” scheme. The bi-sparse array composed

of dipole-triads and loop-triads is recommended to be used to form a large aperture sparse array

and the inter-triad spacing can be about 100 wavelengths. The bi-sparse arrays composed of only

dipoles or only loops are recommended to further reduce the mutual coupling since no antennas

are collocated. For practical applications, the users may need to install these antennas at different

locations (e.g, vehicles) to form distributed arrays since they may occupy a large space. It is worth

noting that we assumed the antennas (dipoles/loops) are calibrated well in the proposed arrays. If

there are some calibration errors, which will introduce model errors of the array system. This will

the future research of the author. Some initial analysis of vector-sensor with model error can be

found in [69, 70].

The proposed arrays and algorithm have been built to process coherent sources. In real ap-

plications, the sources may be de-correlated, in which case, the proposed arrays will perform well

as other polarized antenna arrays (e.g., [19, 50, 51]) and this will obviate the requirement of the
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spatial-smoothing algorithm. For the case of sources with same polarization, the proposed algo-

rithm can also work well since the identifiability of different sources is based on their directions of

arrival. The proposed algorithm first estimates the arriving angles of the source; then these angles

are used to estimate the polarizations of the incident sources associated with the array manifolds.

Looking forward, the identifiability of proposed bi-sparse arrays is an interesting direction. The

linear dependence of the steering vectors of different array geometries vary with the polarization

states of the incident sources. Though haven’t shown in this paper, the research results will be

reported elsewhere.
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Figure 1: Electromagnetic vector and polarization ellipse. The receiver (polarized antenna arrays) is located at

the origin O. S is the source and {θ1 ∈ [0, 2π), θ2 ∈ [−π/2, π/2]} denotes the azimuth-angle and elevation-angle. ~P

denotes the Poynting vector of the electromagnetic wave. ~Vθ and ~Vφ symbolize the horizontal and vertical components

of the electromagnetic wave.
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Figure 3: A possible geometry of the bi-sparse array composed of spatially spaced dipoles.

The inter-dipole spacings among the dipoles are all beyond λ/2.

x
2

dx

2
dy

Sub-array
(Spatially Spread Loops)

#1 #2 #L

y

2
dy

2
dy

xh xh
xh

yh yh yh

zh zh zh

zh zh zh

Figure 4: A possible geometry of the bi-sparse array composed of spatially spaced loops.

The inter-loop spacings among the loops are all beyond λ/2.
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Figure 5: The geometry of the bi-sparse array composed of spatially-spread electromagnetic vector-sensors [50, 65, 66].

The inter-sensor spacings among the dipoles/loops are all beyond λ/2.
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Figure 8: Depiction of the relationship for the proposed bi-sparse arrays based on the used sub-arrays. Note that

the dipole/loop pair array in Figure 6 and dipole/loop triad array in Figure 7 can be seen as special case of the

spatially-spread electromagnetic vector-sensors in Figure 5 by collocating some sensors.
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Figure 9: Estimation RMSEs of direction-cosines ver-

sus SNR in a four-source scenario with the array ge-

ometry in Figure 3.
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Figure 10: Estimation RMSEs of direction-cosines ver-

sus SNR in a four-source scenario with the array ge-

ometry in Figure 4.
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Figure 11: Estimation RMSEs of {θ3,1, · · · , θ3,4} ver-

sus SNR in a four-source scenario with the array ge-

ometry in Figure 3.
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Figure 12: Estimation RMSEs of {θ4,1, · · · , θ4,4} ver-

sus SNR in a four-source scenario with the array ge-

ometry in Figure 3.
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Figure 13: The average RMSEs of direction-cosines versus SNR with different L in a four-source scenario with the

array geometry in Figure 3.
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(a) array geometry in Figure 5
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(b) array geometry in Figure 6
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(c) array geometry in Figure 7

Figure 14: Estimation RMSEs of direction-cosines versus SNR in a four-source scenario with the array geometries in

Figures 5-7.
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(c) array geometry in Figure 6
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Figure 15: The RMSEs of direction-cosines versus inter-sensor spacing dx = dy in a two-source scenario, at SNR=

30dB with array geometries in Figures 3-7.
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(c) dx = dy = 5λ

Figure 16: Estimation RMSEs of direction-cosines versus SNR in a three-source scenario, the PS-ESPRIT algorithm

is adopted in an L-shaped array with 7 collocated electromagnetic vector-sensors on each leg the the inter-sensor

spacing is λ/2. The proposed algorithm is used in the demonstrated sparse array in Figure 3 with different inter-

sensor spacings.
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Figure 17: The RMSEs of direction-cosines versus the correlation between the two sources with dx = dy = 8λ at

SNR= 30dB, using the array geometry in Figure 7.
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(a) source 1
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(b) source 2

Figure 18: The RMSEs of direction-cosines versus SNR for the two sources in a two-source scenario at dx = 5λ.

The collocated geometry denotes that the dipole-triad is collocated with the loop-triad to constitute a collocated

electromagnetic vector-sensor.
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