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Abstract

Localisation of a source of a toxic release of biochemical aerosols in

the atmosphere is a problem of great importance for public safety. Two

main practical difficulties are encountered in this problem: the lack

of knowledge of the likelihood function of measurements collected by

biochemical sensors, and the plethora of candidate dispersion models,

developed under various assumptions (e.g. meteorological conditions,

terrain). Aiming to overcome these two difficulties, the paper proposes

a likelihood-free approximate Bayesian computation method, which

simultaneously uses a set of candidate dispersion models, to localise

the source. This estimation framework is implemented via the Monte

Carlo method and tested using two experimental datasets.

1 Introduction

The threat of accidental or deliberate release of toxic (bio or chemical)

aerosols into the atmosphere, has been well documented [1]. Wind, as the
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dominant transport mechanism in the atmosphere, can generate strong tur-

bulent motion, causing the released aerosol to disperse as a plume whose

spread increases with the downwind distance [2]. For the sake of public

safety, it is of utmost importance to rapidly detect and localise a source

of toxic release so that the mitigation actions can be carried out promptly.

Ideally, the environment should be monitored continuously by a network of

spatially distributed sensors to measure the concentration of toxic aerosols

at various locations. This paper is devoted to the problem of source lo-

calisation using the concentration measurements collected by such a sensor

network.

Two major difficulties are encountered in the described context of source

localisation. The first is the choice of the most suitable dispersion model;

the second is the lack of a precise and accurate probabilistic description of

concentration measurements. Both difficulties are elaborated below.

A dispersion model describes, via mathematical equations, the physical

processes that govern the atmospheric dispersion of the released material

within the plume. The primary purpose of a dispersion model is to calcu-

late the mean concentration of emitted material at given sensor locations.

A plethora of dispersion models are in use today [3] to account for spe-

cific weather conditions, terrain, source hight, etc. The problem of selecting

the most suitable dispersion model using statistical signal processing tech-

niques [4] is largely neglected by the atmospheric research community. The

only somewhat relevant reference is [5], which applies a single dispersion

(Lagrange stochastic) model under multiple source assumptions in order to

estimate the number of active sources of a toxic release.

Many references have been published on the topic of biochemical source

localisation, under an adopted suitable dispersion model. The standard

solutions are based on optimisation techniques, such as the nonlinear least

squares [6], that are known to fail due to local minima or poor convergence.

A version of the least-squares is used in [7] with minimisation carried out

via simulated annealing. The alternatives are Bayesian techniques. Keats

et al. [8] solved the chemical source localisation problem for the case of a

transient release in the Bayesian framework using Markov chain Monte Carlo
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(MCMC) and assuming Gaussian likelihood function of measurements. A

similar approach was adopted in [9]. Bayesian framework with Gaussian

likelihood of measurements was also applied in [10] to localise a biochemical

source in urban environments. A version of the MCMC was proposed in

[11], but assuming the log-normal likelihood function of measurements.

The Bayesian approaches, such as [8, 9, 10, 11, 5], are preferred than

the optimisation techniques, because they result in the posterior density

function of the source location, thereby providing an uncertainty measure

to any point estimate derived from it. However, the Bayesian approaches

referenced above, require a precise specification of the probabilistic model of

the likelihood function (e.g. Gaussian, log-normal, with their parameters).

Note that errors in the measurements are not only due to sensor noise but

also due to the modeling inaccuracies, both of which in practice are very

difficult to specify precisely. A large part of the difficulty arises from the

fact that most approaches to source estimation have involved the use of

ensemble mean concentration models of atmospheric tracer dispersion, but

in reality, sensors are exposed to widely fluctuating concentration fields in

both space and time, that are also stochastically non-stationary. This brings

us to the second difficulty mentioned above: the lack of precise and accurate

probabilistic descriptions of concentration measurements.

In this paper we develop a framework which overcomes both of the afore-

mentioned difficulties: a likelihood-free approximate Bayesian computation

(ABC) method for the localisation of a biochemical source in the combina-

tion with the selection of the most suitable model from a set of candidate

dispersion models. This estimation framework is implemented via the Monte

Carlo method and tested using two experimental datasets.

The paper is organised as follows. Section 2 describes the problem in

a formal manner and also introduces a solution framework in the form of

the multiple-model ABC rejection sampler. Section 3 presents the adopted

dispersion models for source localisation. Section 4 describes the proposed

adaptive iterative multi-model ABC sampler. Section 5 presents the nu-

merical results, obtained using the experimental datasets. Finally, the main

findings of this study are summarised in Section 6.
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2 Background

2.1 Problem formulation

Let us assume that the system (the atmospheric tracer dispersion) obeys

one of a finite number of models. A discrete random variable m denotes

the model, whose domain M ⊂ N has cardinality M = |M| ≥ 1. Each

model m ∈ M is parameterised by a vector θm ∈ Θm, where Θm ⊆ R
m is

the corresponding parameter space. The models, in general, are not nested

[4], although the intersection of parameter spaces Θ = Θ1 ∩ · · · ∩ ΘM is

non-empty; Θ represents the space of the core parameters which includes

the coordinates of source location.

Let a concentration measurement from sensor s = 1, . . . , S (sensor loca-

tions are known) be denoted ζs. All sensor measurements are stacked into

a vector z = [ζ1, . . . , ζS ]
⊺.

The problem is cast in the Bayesian framework. Let πθm(θm|m) denote

the prior distribution over the parameter space Θm, with m = 1, . . . ,M .

The posterior distribution of the parameter vector θm follows from the Bayes

theorem:

p(θm|m, z) =
ℓ(z|θm,m)πθm(θm|m)

p(z|m)
(1)

where ℓ(z|θm,m) is the likelihood function and

p(z|m) =

∫

Θm

p(z|θm,m)πθm(θm|m)dθm (2)

is the marginal probability of measurement z given model m.

Let πm(m) denote the prior distribution over the candidate modelsM.

Then the posterior distribution over the models is also obtained using the

Bayes theorem as:

p(m|z) =
p(z|m)πm(m)

∑

m∈M p(z|m)πm(m)
. (3)

Our ultimate goal is the posterior of the core parameter vector θ ∈ Θ, which

can be obtained via model averaging [12],

p(θ|z) =
∑

m∈M

p(θm|m, z)p(m|z), (4)
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where p(θ|m, z) is the posterior (1) over the subspace Θ ⊆ Θm.

2.2 Approximate Bayesian computation

ABC constitutes a class of Bayesian-type algorithms developed for the esti-

mation of a parameter vector in situations where the likelihood function is

intractable or unknown [13]. For the case we consider, with multiple can-

didate models, the expressions for likelihoods ℓ(z|θm,m), which feature in

(1), are unknown. ABC methods replace the unknown likelihood ℓ(z|θm,m)

with the comparison between the observed measurement and the measure-

ment synthesized using the model m ∈ M. The simplest ABC algorithm

is the ABC rejection sampler [14]. In the context of parameter estimation

with multiple models, the ABC rejection sampler draws N samples from an

approximation of the joint posterior p(θm,m|z) = p(θm|m, z)p(m|z). The

pseudo-code of the ABC rejection sampler for multiple models is presented

in Alg.1.

Algorithm 1 Multiple-model ABC rejection sampler

1: Input: z; ǫ; N

2: Initialise: X1 = · · · = XM = ∅

3: repeat

4: Draw m∗ from πm(m)

5: Draw θ
∗
m from πθm∗

(θm)

6: Simulate measurement z∗ using model m∗ and parameter θ∗
m

7: Compute distance d∗ = D(z, z∗)

8: if d∗ ≤ ǫ then

9: Xm∗ = Xm∗ ∪ {θ∗
m}

10: end if

11: until
∑M

m=1 |Xm| = N

12: Output: X1, · · · ,XM

Distance d = D(z, z∗) between the measurement vector and the synthe-

sized data using model m∗ is compared to the tolerance ǫ > 0 in line 8 of

Alg.1. The output of Alg.1 is a posterior p(θm,m|d(z, z∗) ≤ ǫ) approximated
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by M sets of random samples:

Xm = {θ(i)
m }1≤i≤Lm , (m = 1, . . . ,M) (5)

such that
∑M

m=1 Lm = N . Using (5) one can approximate the joint posterior

p(θm,m|z) = p(θm|m, z)p(m|z) with:

p(m|z) ≈
Lm

N
(6)

p(θm|m, z) ≈
1

Lm

Lm
∑

i=1

δ(θm − θ
(i)
m ) (7)

where δ(x) is the Dirac delta function. The accuracy of approximation

improves with larger N and smaller ǫ.

3 Dispersion models

This section describes M = 3 candidate dispersion models to be used in

source localisation. The first two models are based on the Gaussian plume

model [1, 2, 15] while the third model is referred to as the stretch exponential

model [16, 17, 18].

Gaussian plume models adopt a Gaussian distribution of the plume in

the vertical and horizontal directions under steady state conditions. These

models are a solution of the equation of tracer transport with constant wind

velocity (advection-diffusion equation). By convention, the wind velocity

vector coincides with the x axis, while the spread of the plume in y and z

directions is determined by the respective standard deviations σy and σz,

commonly referred to as the Pasquill-Gifford sigmas [2, 15].

Consider a biochemical source of the release rate Q0 located at coordi-

nates (x0, y0, z0). According to the Gaussian plume model, the mean concen-

tration of the released material at the location of the sth sensor (xs, ys, zs)

is given by [2, 15]

Cs =
Q0

2πσysσzsU
e
−

(ys−y0)
2

2σ2
ys

[

e
−

(zs−z0)
2

2σ2
zs + e

−
(zs+z0)

2

2σ2
zs

]

(8)
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if xs > x0 and zero otherwise. Notation U stands for the mean wind speed.

Note that the Pasquill-Gifford sigmas, σys and σzs , in (8) are assigned the

sensor index s, because they are computed at coordinate xs. The simplest

model for σys and σzs is based on the linear relationship with the downwind

distance, i.e.

σys = σ0 +
σv
U

(xs − x0), (9)

σzs = σ0 +
σw
U

(xs − x0). (10)

Explanation of the terms that feature in (9)-(10): σ0 is the size of the source

(in units of length); σv and σw are environmental parameters which account

for the fluctuations in transverse and vertical velocities, respectively (in units

of velocity). The first model we adopt for source localisation (referred to as

m = 1) is the Gaussian plume model (8) with the spreads given by (9) and

(10). The parameter vector for model m = 1 consist of 7 parameters, that

is:

θ1 =
[

x0 y0 z0 σ0 B α β
]

⊺

, (11)

where B = Q0/U , α = σv/U and β = σw/U .

While the first dispersion model is very simple, it is unable to handle

different canopy properties (average height, roughness, porosity). Model

m = 2 is adopted to overcome this shortcoming. It is also based on (8)

and (10), but the spread in y direction, σys , is a nonlinear function of the

downwind distance from the source:

σys = σ0 +
σv
U

ρ

(

xs − x0
ρ

)γ

. (12)

The exponent γ and the scale ρ (usually referred to as effective roughness) in

(12) explicitly capture the canopy characteristics. The exponent γ may also

change with meteorological conditions; its theoretical value for turbulent

dispersion is γ = 1/2. The parameter vector for model m = 2 thus consists

of 9 parameters:

θ2 =
[

x0 y0 z0 σ0 B α β ρ γ
]

⊺

. (13)
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The Gaussian plume dispersion models have two well-known deficien-

cies [2]. The assumption of constant wind speed does not even hold ap-

proximately for ground releases (i.e. z0 = 0), and so vertical wind speed

profiles are usually employed, such as the logarithmic wall-law from turbu-

lent similarity theory, or the commonly used power-law profile [19, 20]. Use

of these more physically realistic terms in the advection-diffusion equation

imply fundamentally different solutions that are not of a Gaussian nature.

More accurate analysis implies an “effective” plume convection velocity [18]

that should be a function of downstream distance xs, but this increases

significantly the dimension of the parameter space. Also, under different

meteorological conditions the functional form given by (8) can vary in the

manner that expression for σys in (12) cannot fully capture.

The third dispersion model adopted for source localisation is the stretch

exponential (SE) model. This model is included because it is capable, at

least in theory, to overcome the aforementioned limitations of the Gaus-

sian plume model. The SE model is a solution of the equation for tracer

transport with a power-law wind velocity and turbulent diffusivity profiles,

and is therefore more general that the Gaussian plume model. It enables

an explicit, and rather simple, parameterisation of various meteorological

condition and canopy characteristics. The pure SE model is only strictly

applicable for ground-level sources. For z > 0, modified Bessel function so-

lutions apply, which become difficult to handle for inverse source modelling

applications.

For the current paper, we take a leading asymptotic term from these

solutions, so that the mean concentration at the location of the sth sensor

is given by [16, 17, 18]

Cs =
B

2ρ2

(

ρ

xs − x0

)τ [

exp

{

−
zrs − zr0

σr
z

}

+ exp

{

−
zrs + zr0

σr
z

}]

e
−

(ys−y0)
2

2σ2
ys

(14)
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where

σys = σ0 + αρ

(

xs − x0
ρ

)1/2

(15)

σzs = σ0 + φρr2/r
(

xs − x0
ρ

)1/r

(16)

with r = 1 + 2µ and τ = 1/2 + (1 + µ)/(1 + 2µ) such that 0 ≤ µ ≤ 1.

Parameters B, α and ρ have already been defined. Parameter φ is similar

to parameter β in (11) and (13). Parameter r is introduced to capture the

variability of meteorological conditions. It defines the functional form of the

vertical concentration profile: for r = 1, this profile is exponential, while

for r = 2 it is Gaussian. Parameter τ describes the mean concentration

decay along the plume centreline and captures the variability of meteoro-

logical conditions (but is also affected by the type of canopy). According to

the SE model, r and τ are related (both depend on µ). However, this rela-

tionship is valid only for an idealized flow with a power-law profile over the

flat underlying surface (in this case µ is the exponent in the wind velocity

profile). In order to make the model more flexible, we adopt a relationship

τ = ν + (1 + µ)/(1 + 2µ), where ν is a free parameter whose prior proba-

bility has the mean value equal to 1/2. Equation (14) is the first term of

an expansion of the exact solution for the mean concentration at downwind

distance, much greater than the plume spread.

In summary, the SE model consists of 10 parameters; its parameter

vector is specified as follows:

θ3 =
[

x0 y0 z0 σ0 B α φ ρ µ ν
]

⊺

. (17)

As it was mentioned in Sec.2.1, the parameter spaces of the three models

are not nested.

4 Adaptive iterative multiple-model ABC sampler

The ABC rejection sampler described in Alg.1 is very inefficient due to

its low acceptance rate. Several improvements of the ABC rejection have
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been proposed in the single model case, such as the ABC MCMC sam-

pler [21] and a few versions of the ABC sequential Monte Carlo (SMC)

sampler [22, 23, 24]. Following [23], we propose an iterative Monte Carlo

multiple-model ABC sampler, whose basic steps are described by Alg. 2.

The key feature of this algorithm is that it performs the ABC rejection

scheme using a monotonically decreasing sequence of tolerance levels ǫ1 >

ǫ2 > . . . ǫT ≥ 0, until the final tolerance is reached. The sequence of tol-

erances ǫt, t = 1, 2 . . . , T is computed by the algorithm, from the mea-

surement vector z, hence the number of iterations T is not know in ad-

vance. For a given model m, sampling is initially carried out from the prior

πθm(θm), followed by sampling from a sequence of intermediate distribu-

tions p(θm|m,d(z, z∗) ≤ ǫt), t = 1, 2, . . . , which gradually approach the

target distribution p(θm|m,d(z, z∗) ≤ ǫT). The theoretical justification of

the proposed iterative scheme, presented in [23], is based on the sequential

importance sampling (SIS) paradigm.

There are two differences between our proposed Alg. 2 and the algorithm

reported in [23], both of which reflect the adaptive nature of the former: (i)

our algorithm does not require the sequence of tolerances ǫ1, ǫ2, · · · , ǫT to

be specified as an input (it works it out from the data z); (ii) The proposal

distribution for each sample and at each iteration is computed adaptively,

in a manner similar to population Monte Carlo techniques [25].

Algorithm 2 : Adaptive iterative multiple-model ABC rejection sampler

1: Input: z; ∆; N ;

2: [{X 0
m}1≤m≤M , ǫ1] = Init-Iter(z, N)

3: t = 0; ǫ0 ←∞

4: while (ǫt − ǫt+1) > ∆ do

5: t = t+ 1

6: [{X t
m}1≤m≤M , ǫt+1] = Repeated-Iter({X t−1

m }1≤m≤M , ǫt, z, N)

7: end while

8: Output: {X t
m}1≤m≤M

The initial iteration of Alg. 2 (line 2) creates M initial sample sets

{X 0
m}1≤m≤M from the priors πm, πθm , m = 1, . . . ,M , and computes the
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first tolerance level ǫ1. The repeated iteration, line 6, performs the rejection

sampling at a given tolerance and also computes the tolerance level for the

next iteration. The “while loop” (lines 4-7) is terminated when the difference

between the two consecutive tolerances is below a certain threshold ∆.

Since the algorithm is based on SIS, both the initial and the subsequent

samples {X t
m}1≤m≤M , t = 0, 1, .. are weighted. Hence (5) now takes the

form:

X t
m =

{(

w(i,t)
m ,θ(i,t)

m

)}

1≤i≤Lt
m

, (m = 1, . . . ,M ; t = 0, 1, . . . ) (18)

where importance weights w
(i,t)
m are normalised, that is

∑Lt
m

i=1 w
(i,t)
m = 1.

The steps of the initial iteration are given by Alg.3. The tolerance ǫ1 is

computed in line 10 as an order statistic ϕ of sample distances d1, · · · , dN .

Algorithm 3 : [{X 0
m}1≤m≤M , ǫ1] = Init-Iter(z, N)

1: Input: z; N

2: X 0
1 = · · · = X 0

M = ∅

3: for i = 1, . . . , N do

4: Draw m ∼ πm

5: Draw θ
∗ ∼ πθm

6: Simulate measurement z∗ using model m with parameter θ∗

7: Compute distance di = D(z, z∗)

8: X 0
m = X 0

m ∪ {(w = 1,θ∗)}

9: end for

10: ǫ1 = ϕ(d1, . . . , dN )

11: for j = 1, . . . ,M do

12: Normalise weights in X 0
j

13: end for

14: Output: X 0
1 , · · · ,X

0
M , ǫ1

Finally, the pseudo-code of the repeated iteration is given in Alg.4. The

while-loop between lines 4 to 17 carries out rejection sampling. The model

m is drawn from the prior in line 5, followed by the selection of the sample

index k in line 7. This selection is based on the weights in X t−1
m . A candidate
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sample θ
∗ is drawn from the proposal distribution qm(θm|θ

(k,t−1)
m ) in line 8.

The proposal is adopted as a normal distribution, whose mean is θ
(k,t−1)
m

and the covariance matrix is related to the sample covariance of the sample

X t−1
m . The practical implementation of line 8 is as follows: θ

∗ = θ
(k,t−1)
m +

λhΣε, where 0 < λ < 1 is a parameter of the algorithm, h is the optimal

bandwidth of the multivariate Gaussian kernel [26, Eq.(12.2.7)], Σ is the

square-root of the empirical covariance matrix of X t−1
m and ε is a sample

from the standard normal distribution. The computation of an unnormalised

weight for an accepted sample in line 12, is carried out in the manner of [23].

The output tolerance ǫt+1 is again computed as an order statistic ϕ of the

sample d1, . . . , dN .

Recall that out goal is to localise the source. Denote by vector ℓ =

[x0 y0]
⊺ ∈ L the coordinates of the source. The space of source coordinates

is clearly a subspace of the core parameter space. From the output of Alg.2,

expressed by (18) at the last iteration t = T , we can extract M sets of

random samples over the subspace L:

Ltm =
{(

w(i,t)
m , ℓ(i,t)m

)}

1≤i≤Lt
m

, (m = 1, . . . ,M ; t = T ). (19)

According to (4), the posterior density of source location is then approxi-

mated by Ltm as follows:

p(ℓ|z) ≈
M
∑

m=1

Lm

N

Lm
∑

i=1

w(i,t)
m δ(ℓ− ℓ(i,t)m ) (20)

5 Numerical analysis

5.1 Experimental datasets

Algorithm evaluation was carried out using two experimental datasets col-

lected by COANDA Research & Development Corporation. The experi-

ments were carried out using their large recirculating water channel, spe-

cially designed for dispersion modelling. The water channel is 10 m long,

1.5 m wide and 0.9 m deep. The floor of the water channel was covered with

a metal mesh of height 4 mm to give surface roughness.
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Algorithm 4 :[{X t
m}1≤m≤M , ǫt+1] = Repeated-Iter({X t−1

m }1≤m≤M , ǫt, z, N)

1: Input: {X t−1
m }1≤m≤M , ǫt, z, N

2: X t
1 = · · · = X t

M = ∅

3: n = 0

4: while n < N do

5: Draw m ∼ πm

6: Lm = |X t−1
m |

7: Select index k ∈ {1, . . . , Lm} with P(k = j) = w
(j,t−1)
m

8: Draw θ
∗ ∼ qm(·|θ

(k,t−1)
m )

9: Simulate measurement z∗ using model m with θ
∗

10: Compute distance d∗ = D(z, z∗)

11: if d∗ ≤ ǫt then

12: Weight w̃∗ =
πθm (θ

∗

)
∑Lm

i=1 wi,t−1
m qm(θ

∗

|θ
(i,t−1)
m )

13: Accept: Xm = Xm ∪ {(w̃
∗,θ∗)}

14: n = n+ 1

15: dn = d∗

16: end if

17: end while

18: ǫt+1 = ϕ(d1, · · · , dN )

19: for m = 1, . . . ,M do

20: Normalise weights in X t
m

21: end for

22: Output: {X t
m}1≤m≤M , ǫt+1
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The source was releasing fluorescein dye, at a constant rate, from a

narrow vertical tube, placed z0 = 4 mm above the bottom of the channel

at coordinates x0 = −373.5 mm, y0 = 0 mm. Concentration data were

collected at several downstream positions using 1D laser induced fluorescence

linescan system, at the rate of 300 lines per second, for a total sampling time

of 1000 seconds [27].

Two experimental datasets are used for algorithm evaluation (both are

available as supplementary material of this submission). Dataset 1 was col-

lected in the absence of any obstacles (mimicking an open terrain scenario).

Dataset 2 was collected in the presence of 10 mm high obstacles, placed

on a regular grid, thus mimicking an urban scenario. Both datasets were

extracted from the full recordings averaged over 100 seconds, and consist

of S = 48 sensor measurements (four rows of 12 sensors) at downstream

positions. The top-down view of the experimental setup for both cases is

shown in Fig.1. The source location at coordinates (−373.5, 0) is marked

by a red asterisk. The position of sensors is indicated by blue circles whose

radius is proportional (on the log-scale) to the corresponding concentration

measurement. The height of all sensors in both setups was zs = 9.3 mm, for

s = 1, . . . , 48.

5.2 Priors and parameters

We adopted the prior over M = 3 models to be uniform, that is πm(1) =

πm(2) = πm(3) = 1/3.

The priors for various parameters included in vectors θ1, θ2 and θ3,

specified by (11), (13) and (17), respectively, were adopted as follows (all

units of length are millimeters):

π(x0) = U(−1000, 0),

π(z0) = G(1.333, 3),

π(B) = G(2, 2.5),

π(β) = G(1.667, 0.15),

π(φ) = G(1.667, 0.15),

π(µ) = B(1.5, 3),

π(y0) = U(−500, 500),

π(σ0) = G(15.5, 0.03),

π(α) = G(3, 0.5),

π(ρ) = G(6, 1),

π(γ) = B(3, 3),

π(ν) = B(6, 6).
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Figure 1: Top-down view of the experimental setup: (a) dataset 1, (b)

dataset 2. Location of the source is marked by a red asterisk at (−373.5, 0).

Sensor locations indicated by blue circles, whose radius is proportional (on

the log-scale) to the corresponding concentration measurement. The rect-

angles in (b) indicate the contours of the obstacles

Here U(a, b) is the uniform distribution, with limits a and b, G(k, η) is the

Gamma distribution with shape k and scale η, and B(p, q) is the Beta dis-

tribution with parameters p and q.

The proposed ABC sampler described by Alg.2, was executed using

N = 1000 samples. The distance D between the actual measurement

z = [ζ1, . . . , ζS]
⊺ and the synthesised “measurement”, using model m, de-

noted z∗ = [C1(θm), . . . , CS(θm)]⊺, was adopted as:

d(z, z∗) =
S
∑

s=1

(ζs − Cs(θm))2. (21)

Statistics ϕ, which computes the tolerance level for the next iteration, was

adopted to be the 128th smallest value of samples d1, . . . , dN=1000. The

parameter λ, used in the proposal qm, was set to λ = 0.4. The termination

threshold was adopted as ∆ = 2 · 10−10.
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5.3 Results

The results for dataset 1 are presented first. The tolerance levels computed

by the proposed ABC sampler are shown in Fig.2.(a). It took t = 10 it-

erations to reach the final tolerance level of ǫT = 4.04 · 10−9. The average

acceptance rate, over all iterations, was 2.8%. The model probabilities,

p(m|z) are shown at each iteration in Fig.2.(b). After the initial iteration

(t = 0), the probabilities of all three models are approximately 1/3. Subse-

quently, while the tolerance levels were high, the three probabilities fluctuate

until the iteration t = 7. After that, the probability of model m = 1 drops

to zero, while the probability of models m = 2 grows to about 0.85. The

probability of model m = 3 drops, but never goes to zero.
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Figure 2: Tolerance levels and model probabilities over iterations (dataset

1): (a) ǫt; (b) p(m|z).

Fig.3 shows the scatter plot of random samples Ltm which approximate

the posterior density p(ℓ|z) of (20), at iterations (a) t = 1, (b) t = 4, (c)

t = 7 and (d) t = 10. The true source location is marked by a red asterisk.

Localisation of the source clearly improves with iterations, as the tolerance

levels get smaller.

Finally, Figs.4.(a) and (b) display the final posterior distribution after

the iteration t = 10, marginalised to x, and y axes, respectively. The density

estimates from the random sample are obtained using the kernel density
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Figure 3: Scatter plots of random samples Ltm in the (x, y) plane (dataset 1).

The samples approximate the posterior density p(ℓ|z). Scatter plots shown

after iteration: (a) t = 1, (b) t = 4, (c) t = 7, (d) t = 10. The true source

location is marked with a red asterisk.

estimation (KDE) [28]. The true source coordinates are marked by the solid

vertical lines.

The first observation is that the estimated marginal posteriors are re-

markably accurate (considering that the prior was a uniform density with

the span of 1000 mm) and include the true source location. The second

observation is that the estimation is significantly better for the coordinate

y0, than for x0, which is in accordance with the theoretical analysis carried

out using the Carmer-Rao bound [29].

The dataset 2 was collected in a more challenging setup with obstacles.

The results for dataset 2 are shown in Figs. 5, 6 and 7. Fig.5.(a) shows

the computed tolerance levels over all iterations: note that it took t = 12

iterations to reach the final tolerance level of ǫT = 2.75 · 10−9. The aver-

age acceptance rate, for all iterations, was 2.9%. The model probabilities,
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Figure 4: Estimated posterior density of the source location (dataset 1): (a)

x axis, (b) y axis. The true values are indicated by the vertical solid lines.

p(m|z) are plotted in Fig.5.(b). We can observe that after iterations 7,8 and

9, m = 1 appears to be the preferred model. However, at iteration 10, its

probability drops to zero. As in the case of dataset 1, the probabilities of

models m = 2 and m = 3 remain non-zero at the lowest tolerance levels. It

has already been noted that stretched exponential solutions may not be the

most appropriate model for these datasets, even though the model has some

physical motivation [27]. The analysis presented here reinforces these find-

ings, and highlights the fact that more complex, higher-dimensional models

are not necessarily better in describing inherently stochastic phenomena.

Fig.6 displays the scatter plot of random samples Ltm at iterations: (a)

t = 3, (b) t = 6, (c) t = 9 and (d) t = 12. The true source location is

marked by a red asterisk. Once again, localisation of the source improves

with iterations. However, a close inspection of the final localisation posterior

p(ℓ|z), shown in Fig.6.(d), reveals that this posterior is bi-modal. This can be

seen from Figs.7 which displays the final posterior distribution marginalised

to x, and y axes, respectively. The two modes, clearly seen in Fig.7.(a),

correspond to models m = 2 and m = 3, after iteration t = 12. They

both appear to be biased: the stronger mode is due to model m = 3 (the

probability of this model is higher at t = 12, see see Fig.5.(b)); it peaks

approximately at x̂0 ≈ −350.
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Figure 5: Tolerance levels and model probabilities over iterations (dataset

2): (a) ǫt; (b) p(m|z).

We can make the following observations with respect to the results ob-

tained using dataset 2. First, none of the models seem to be correct since

the estimation of the x0 coordinate appears to be biased. Second, the use of

multiple-models was beneficial, because the support of the posterior contains

the true source location (albeit in the tail of one of the modes).

Finally, a remark on the proposed iterative multiple-model ABC sampler:

this algorithm falls into the category of anytime algorithms [30], because it

returns a valid approximate solution (i.e. approximate posterior) even if it

is interrupted before the termination criterion is reached.

6 Summary

The paper presents a robust method for localisation of a biochemical source.

In the absence of an accurate model of the measurement likelihood, a likelihood-

free approximate Bayesian computation (ABC) approach is adopted. Fur-

thermore, since there is no universal dispersion model applicable for all sit-

uations (terrain, meteorological conditions), a multiple-model approach is

proposed, whereby all candidate models are active in parallel and assigned

the probability of being correct. The proposed method computes adaptively
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Figure 6: Scatter plots of random samples Ltm in the (x, y) plane (dataset 2).

The samples approximate the posterior density p(ℓ|z). Scatter plots shown

after iteration: (a) t = 3, (b) t = 6, (c) t = 9, (d) t = 12. The true source

location is marked with a red asterisk.

the tolerance levels which are required for ABC sampling. The method has

been tested using two experimental datasets (one in the open terrain, the

other with obstacles) using three dispersion models (two Gaussian plume

models and the stretch exponential model). Source localisation was very

accurate using the open terrain dataset. The dataset with obstacles pre-

sented a significant challenge, resulting in a bi-modal posterior distribution

of source location. Future work will investigate other dispersion models and

the performance of source localisation using binary sensors.
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