
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Deep transfer learning for classification of
time‑delayed Gaussian networks

Chaturvedi, Iti; Ong, Yew Soon; Arumugam, R. V.

2014

Chaturvedi, I., Ong, Y. S., & Arumugam, R. V. (2015). Deep transfer learning for classification
of time‑delayed Gaussian networks. Signal Processing, 110, 250‑262.

https://hdl.handle.net/10356/82815

https://doi.org/10.1016/j.sigpro.2014.09.009

© 2014 Elsevier. This is the author created version of a work that has been peer reviewed
and accepted for publication by Signal Processing, Elsevier. It incorporates referee’s
comments but changes resulting from the publishing process, such as copyediting,
structural formatting, may not be reflected in this document. The published version is
available at: [http://dx.doi.org/10.1016/j.sigpro.2014.09.009].

Downloaded on 29 Mar 2024 10:35:32 SGT

Deep Transfer Learning for Classification of

Time-Delayed Gaussian Networks

Iti Chaturvedia, Ong Yew Soona, R. V. Arumugamb

aSchool of Computer Engineering, Nanyang Technological University, Singapore.
bData Storage Institute, Singapore.

Abstract

In this paper, we propose deep transfer learning for classification of Gaussian

networks with time-delayed regulations. To ensure robust signaling, most

real world problems from related domains have inherent alternate pathways

that can be learned incrementally from a stable form of the baseline. In this

paper, we leverage on this characteristic to address the challenges of com-

plexity and scalability. The key idea is to learn high dimensional network

motifs from low dimensional forms through a process of transfer learning.

In contrast to previous work, we facilitate positive transfer by introducing a

triangular inequality constraint, which provides a measure for the feasibility

of mapping between different motif manifolds. Network motifs from differ-

ent classes of Gaussian networks are used collectively to pre-train a deep

neural network governed by a Lyapunov stability condition. The proposed

framework is validated on time series data sampled from synthetic Gaussian

networks and applied to a real world dataset for the classification of basket-

ball games based on skill level. We observe an improvement in the range

Email addresses: iti@ntu.edu.sg (Iti Chaturvedi), asysong@ntu.edu.sg (Ong Yew
Soon)

Preprint submitted to Signal Processing September 20, 2014

of [15-25]% in accuracy and a saving in the range of [25-600]% in computa-

tional cost on synthetic as well as realistic networks with time-delays when

compared to existing state-of-the-art approaches. In addition, new insights

into meaningful offensive formations in the Basketball games can be derived

from the deep network.

Keywords:

Transfer Learning, Manifold, Time-delays, Variable-order, Gaussian

networks, Deep Neural Networks

Nomenclature

nd = Number of domains or classes

xi(τ) = Expression level of node i at time instant τ

y(τ) = Class label for sample τ

β = Regression co-efficient matrix

ai = Parent set of a node i

θi,ai
= Parameters for node i in the Bayesian network given parent set ai

N = Number of variables in the system

Σ = Covariance matrix of Gaussian node

µ = Mean vector of Gaussian nodes

vi = Node i in the visible layer

hj = Neuron j in the hidden layer

T = Number of data samples

r = The upper-bound of delay

2

Xs = Time series data for class s

l = Index for a hidden layer

fl = Activation function of the hidden layer l

E = Global energy function for a DBN

Wl = Weights of the hidden layer l

α = Learning rate of a DBN

λ = Transformation factor for a motif

4ε = Change in classification precision error

S = Gaussian network

1. Introduction

Time-delayed Gaussian networks (GN) can be derived by estimating the

output measurements of each variable using a multivariate Gaussian func-

tion over the available measurements of input parent variables, such that for

all admissible time-delays, the error of estimation is minimal [1], [2]. The

edges in such a network represent causal interactions in dynamic systems

and provide a basis for signal transduction in pathways. Signal transduction

is transient; hence, the study on dynamics of the transduction is essential.

The classical time series models used ordinary differential equations to

capture complex regulatory dynamics [3], [4], [5]. However, they do not

work well on multivariate data with variable-order delays. In [6], the authors

3

introduced stochastic models; these assume an underlying hidden state of a

dynamic system evolving over time. The earliest stochastic networks were

Boolean, which were built using mutual information among discrete nodes

[7], [8]. In order to predict the causality in networks with Gaussian or mixed

nodes, Bayesian networks have been proposed [9], [10], [11], [12].

State-of-the-art Bayesian network is a directed acyclic graph where vari-

ables are present at the nodes and edges represent causal interactions among

them. Conditional probabilities of nodes given parents are computed from

the time series data. The variable-order Bayesian network is attained by

learning transition networks between three or more structures. Now, expres-

sion of a node depends on the expression of parents from (r > 1) previous

time points [13]. In [14], general tensor discriminant analysis was used to

collectively model such higher-order networks during classification.

Accurately predicting joint multivariate probabilities with Gaussian nodes

requires a lot of computational effort. For very large networks, it is customary

to limit the connectivity of each node using some geometric prior [15]. This

is unrealistic in practice since most real world networks require hub nodes

with very high connectivity, so as to ensure robust signaling [4]. Lastly,

when modeling networks with variable delays, robustness of the prediction

has been established to be heavily reliant on the quality of time samples and

prior knowledge. However, collecting of data from real world networks is

often plagued with practical difficulties and high experimental costs.

Further, the distributed nature of most real world networks, manifests

itself as intense crosstalk between pathways. In particular, states of Gaus-

sian networks are often presumed to be stable, meaning that slight changes

4

in the state of a few parents does not change the expression state of the

child node. This relates to the natural phenomenon of real world complex

networks, where a system retains functionality in spite of turbulences by

maintaining redundancy. Hence, most real world problems have inherent al-

ternate pathways that can be learned incrementally from a stable form of

the baseline. In this paper, we leverage on this characteristic and look at

transfer learning to address the challenges of complexity and scalability.

1.1. Related Work

Domain adaptation aims to generalize one or more source class network(s)

that are easier to learn, to augment the target network, for which data is

scarce. Since data in networks of different classes are distributed differently,

previous authors have collectively used data from the source(s) and the tar-

get class networks to learn shared feature representations [16]. In the case

of networks, we can consider motifs, which are recurrent, or statistically sig-

nificant sub-graphs shared across different classes. Deep neural networks are

ideal for learning a set of shared motifs from different classes of Gaussian

networks [17], [18], [19]. However, simply learning different class networks

together can be detrimental when the networks are unrelated.

Transfer learning has been previously used in the Bayesian frameworks

to estimate the prior covariance matrix of the target network by simply aver-

aging the covariance matrices of previously determined structures in similar

classes of networks [20], [21]. In their approach, the history of past maxi-

mum likelihood (ML) estimates for motifs can be reused by transferring to

suitable new structures of higher dimensions. However, the discriminative

information in the covariance matrices is often lost due to under sampling of

5

data. Previously, the use of normalized divergences was shown to preserve

small differences between classes [22]. Transfer may be transductive which

means across different dynamic systems or inductive which means transfer

among related structures in the same network. The objective function tries

to minimize the loss in prediction accuracy due to the transfer [23]. For ex-

ample, in [24], labeled and unlabeled samples are combined with a trade-off

parameter.

In document classification, instead of assuming all word probabilities are

independent in the target class, transductive transfer learning was used to

estimate the dependencies between words using other source classes with

known labels. Since, the number of possible covariance estimates would

increase exponentially with size of the vocabulary, in [20] the authors learn

the covariance for only a subset of words from the source classes and combine

it with the rest of the vocabulary under a semi-definite constraint. However,

their approach will not be able to capture the underlying structure due to

higher-order dependencies among groups of words that can occur at variable

positions in a document. It will also not be able to transfer effectively among

words that are synonyms and used alternatively across documents. In [25]

the authors tried to address this issue through adaptive learning of higher-

order dependencies in the neighbourhood of a word. Similarly, to account

for lack of data in click-based methods for image ranking in web search, we

can predict clicks for new images using click data from associated images.

In [26], the authors achieved this through learning of manifolds for each

image feature separately using a group of weights and hyper-graphs to model

higher-order dependencies. Multitask learning problems such as compiler

6

programs use inductive transfer learning to model inter-task dependencies

without the need for large amounts of training data [21]. There, again the

authors approximate the prior covariance matrix for the maximum likelihood

estimates from similar or related tasks.

In contrast to previous works on transfer learning, in this paper, we pro-

pose deep transfer learning for classification of Gaussian networks with time-

delayed regulations. We leverage on our knowledge of real world networks,

where a distributed architecture has inherent redundancies in the form of

alternate pathways to ensure robustness of signalling. The core idea is to

transfer maximum likelihood estimates for a small set of computed network

motifs in each class and to subsequently approximate the remaining unknown

motif probabilities. In this way we can reduce the computational effort nec-

essary while learning traditional Gaussian networks. To facilitate this form

of transfer, here we consider a manifold triangular inequality to transfer ML

probabilities selectively from one sub-structure referred to as motif here, to

another.

Motifs with ML that satisfy the threshold computed using transfer learn-

ing are then used to pre-train a deep neural network. We show that the

natural layered architecture of deep networks is able to model variable delays

including long delays when governed by a Lyapunov stability condition. We

refer to the resulting framework as a deep transfer neural network (DTNN).

1.2. Contributions and Paper Outline

Our approach to classify networks from time series data comprises three

stages: (a) Building a training database of sub-structures or motifs with

maximum likelihood probabilities above a threshold. Here, we compute a

7

sub-set of low dimensional motifs for each class of Gaussian networks and

learn the high dimensional motifs through a transfer learning algorithm with

manifold inequality constraint. (b) Pre-train the weights of a deep neural

network collectively with the motifs from different classes of Gaussian net-

works learned in the first step governed by the Lyapunov stability condition.

This is followed by training using time series data from the different classes

of Gaussian networks. Lastly, the deep neural network tries to minimize

the classification error on the training motifs and time samples using the

known class labels. (c) Classify the testing time samples from different class

networks with time delays using the trained deep transfer neural network.

In addition, the structural formations of the hidden neurons in the layers

provide new insights into the GNs.

The following is a summary of the significance and contributions of the

research work presented in this paper:

• We introduce a deep transfer neural network (DTNN) capable of clas-

sifying dynamic systems. From our knowledge, no previous work has

considered deep transfer learning to model time-delays in dynamic sys-

tems.

• To facilitate positive transfer of learned maximum likelihood from source

motif to the target motif with a manifold triangular inequality.

• We consider both inductive learning of related tasks inside a large sys-

tem as well as transductive transfer learning of target motifs from the

source motifs at a much lower computational cost.

• The DTNN is collectively pre-trained using motifs with ML probabili-

8

ties that satisfy the heuristically defined threshold. Due to the sharing

of data in the layers of a deep network, prediction is feasible even with

few time samples.

Validation of the method is then performed using synthetic and real world

datasets. Taking the cue from the approach described in [27], synthetic time

series data were generated from nodes following a Gaussian distribution.

Comparison is then conducted with previously proposed algorithms for clas-

sification. The results obtained showed that the proposed approach outper-

forms all the existing baseline methods considered on the synthetic Gaussian

networks and is able to classify different Gaussian networks with time-delays

with high accuracy. We also performed experiments to measure the trade-off

between the number of nodes in the Gaussian network and the number of

training time samples available. We then conclude that the DTNN requires

much fewer time samples than existing techniques.

Subsequently, we also applied the DTNN on real world video data col-

lected from basketball matches. The behaviours, particularly the trajectories

of five players in basketball matches are considered for classifying a match or

game as a beginner game or a skilled game. From our study, the offensive for-

mations derived for beginner and skilled games were found to be statistically

different.

The organization of the paper is as follows: Section 2 provides the pre-

liminary concepts necessary to understand the present work. In section 3, we

introduce the proposed deep transfer learning and describe the algorithm for

learning the weights of a DTNN framework. Lastly, in section 4, we validate

our method on synthetic and real datasets.

9

2. Preliminaries

In this section, we briefly review the theoretical concepts necessary to

comprehend our proposed algorithm. We begin with a description of regres-

sion models. This is followed by a review of parameter learning in dynamic

Bayesian networks (BN). In contrast to BN, we show that weights in the

deep neural network are learned by maximizing a global energy function.

Notations: Consider a set of nd Gaussian networks (GN) to be classified.

Each GN is a set of N nodes and time series of observations gathered over T

time points for all the nodes. Nodes can take real values from a multivariate

distribution determined by the parent set. In this paper, we presume that

samples are collected over T equally spaced time points. Let the dataset

of samples be X = {xi(τ)}N×T , where xi(τ) represents the sample value of

the i th random variable at time point τ . Lastly, let ai be the set of parent

variables regulating variable i.

2.1. Multivariate Autoregression

A multivariate autoregressive (MVAR) model provides a stochastic frame-

work for learning GN among a set of random variables [28]. We denote the

upper bound of delay in the Gaussian network with r. An r-order MVAR

classifier model with delays is given by:

y(τ) =
1

1 + exp(
∑r

τ ′=1 β
τx(τ − τ ′) + ε(τ))

, (1)

where 0 < y(τ) < 1, and the discretized form ŷ(τ) ∈ {1, 2, . . . , nd} is the

Gaussian network class, βτ = {βτi,j}N×N denotes the matrix of regression

coefficients corresponding to a delay of τ time points, and ε(τ) = (εi(τ))Ni=1

10

denotes i.i.d. zero mean additive Gaussian noise. The regression coefficient

βti,j when i 6= j, represents the interaction between the two nodes: i and j

[29]. The structure of the Gaussian network is obtained via forcing small

coefficients to zero. However, with increasing size and cross talk in the net-

works, it is more efficient to represent GN as a graphical model such as the

Bayesian network.

2.2. Dynamic Bayesian Networks

A Bayesian network is a graphical model that represents a joint multi-

variate probability distribution for a set of random variables [28]. It is a

directed acyclic graph having a structure S and a set of parameters θ that

represent the strengths of connections by conditional probabilities. The BN

decomposes the likelihood of node expressions into a product of conditional

probabilities by assuming independence of non-descendant nodes, given their

parents.

p(X|S,θ) =
∏N

i=1
p(xi|ai, θi,ai

), (2)

where p(xi|ai, θi,ai
) denotes the conditional probability of node expression xi

given its parent node expressions ai, and θi,ai
denotes the ML estimate of the

conditional probabilities. Fig. 1 (a) illustrates the Bayesian network for a

multivariate system with five nodes. Each node is a variable in the state-space

of the system that can be observed or measured. The connections represent

causal dependencies within a single time instant. The observed state vector

of variable i is denoted as xi and the regulation or conditional probability of

variable i given variable j is p(xi|xj). Fig. 1 (b) shows the Gaussian network

that describes a team of five Basketball players. The black nodes denote

11

players of the defending team while the white nodes denote players of the

offending team [30].

The optimal structure S∗ is obtained by maximizing the posterior proba-

bility of S given the data X. From Bayes theorem, the optimal structure S∗

is given by

S∗ = arg max
S

p(S|X) = arg max
S

p(S)p(X|S), (3)

where p(S) is the probability of the network structure and p(X|S) is the

likelihood of the expression data given the network structure.

Given the set of conditional distributions with parameters θ = {θi,ai
}Ni=1,

the likelihood of the data is given by

p(X|S) =

∫
p(X|S,θ)p(θ|S)dθ, (4)

To find the likelihood in (4), and to obtain the optimal structure as in

(3), the data are pre-assumed to be either Gaussian or multinomial [31].

Multinomial models are scalable, however, when the data are continuous,

their accuracy is low [32], [6]. Gaussian BN assumes that the nodes are

multivariate Gaussian. That is, node expression can be described with mean

µ and covariance matrix Σ of size N × N [33]. The joint probability of the

network can be the product of a set of conditional probability distributions

given by:

p(xi|ai) = θi,ai
∼ N

(
µi +

∑
j∈ai

(xj − µj)β, Σ
′
i

)
, (5)

where Σ
′
i = Σi − Σi,ai

Σ−1
ai

ΣT
i,ai

and β denotes the regression coefficient ma-

trix, Σ
′
i is the conditional variance of xi given its parent set ai, Σi,ai

is the

12

covariance between observations of xi and the variables in ai, and Σai
is the

covariance matrix of ai.

The acyclic condition of BN does not allow self- and feedback- regulations

of nodes, which are essential characteristics of GN [34],[35]. Therefore, dy-

namic Bayesian networks (DBN) have recently become popular in building

GN from time series data mainly due to their ability to model causal inter-

actions as well as feedback regulations [36]. The dynamic form of a Bayesian

network is shown in Fig. 1 (c). It assumes a first-order Markov assumption,

that parents from a previous time-instant regulate nodes and learns the tran-

sition network between them. A first-order DBN is defined by a transition

network of interactions between a pair of structures connecting nodes at time

instants τ and τ + 1. In time instant τ + 1, the parents of nodes are those

specified in the time instant τ . Similarly, the structure of an r-order DBN is

represented by a connectivity structure comprising (r + 1) consecutive time

points and N nodes, or a graph of (r + 1)×N nodes.

It is easy to visualize that in a variable-order DBN, the number of nodes

increases exponentially at very high-orders, making it computationally in-

tractable. To circumvent this issue, skip-edges are used. Skip-edges appear

as jump ahead connections, providing a shorter path for propagation of the

conditional probability. The skip-edge probability is decomposed into a sum

of terms for consecutive pairs of nodes with first-order dependencies and the

most likely cascade of interactions can be found using the Viterbi algorithm

[37]. In the next section, we describe the use of deep neural networks for

learning skip-edges efficiently.

13

2.3. Gaussian Deep Neural Networks

Deep neural network (DNN) consists of multiple layers of latent or hidden

neurons, such that each layer takes the form of a simpler model such as the

restricted Boltzmann machines (RBM). RBM is a bipartite graph comprising

two layers of neurons: a visible and a hidden layer; it is restricted so that

the connections among nodes in the same layer are not permitted. Fig. 2 (a)

shows a conventional RBM with two hidden neurons and three nodes in the

visible layer, no edges are available between neurons in the same layer.

To model Gaussian networks with time-delays, the visible layer of the

DNN consists of N nodes, where N is the number of variables in the time-

delayed network. The hidden layers, on the other hand, can have an arbi-

trary number of neurons. The visible nodes now correspond to the Gaussian

Bayesian network described in the previous section capable of representing

time-delays. For example, Fig. 2 (b) shows the state space of an RBM for

Gaussian networks with time delays. It has a single hidden neuron and three

visible nodes. The visible nodes correspond to a Gaussian Bayesian network

with three variables. Here the directed edges are estimated by training the

weights of the connections between visible nodes and hidden neuron from the

training time series data.

To train such a multi-layer system, we must compute the gradient of the

total energy function E with respect to weights in all the layers. The output

xl = f(xl−1,Wl) of each layer l in a DNN is a function of the inputs xl−1

from the previous layer as well as the layer weight Wl.

To learn these weights and maximize the global energy function, the ap-

proximate maximum likelihood contrastive divergence (CD) approach can

14

be used. This method employs each training sample to initialize the visible

layer. Next, it uses the Gibbs sampling algorithm to update the hidden layer

and then reconstruct the visible layer consecutively, until convergence [38].

As an example, here we use a logistic regression model to learn the binary

hidden neurons and each visible unit is assumed to be a sample from a normal

distribution [18]. The continuous state ĥj of the hidden neuron j, with bias

bj, is a weighted sum over all continuous visible nodes v and is given by:

ĥj = bj +
∑
i

viwij, (6)

where wij is the connection weight to hidden neuron j from visible node vi

(see Fig. 2 (a)). The binary state hj of the hidden neuron can be defined by

a sigmoid activation function:

hj =
1

1 + e−ĥj
. (7)

Similarly, in the next iteration, the binary state of each visible node is

reconstructed and labelled as vrecon. Here, we determine the value to the

visible node i, with bias ci, as a random sample from the normal distribution

where the mean is a weighted sum over all binary hidden neurons and is

given by:

v̂i = ci +
∑
j

hiwij, (8)

where wij is the connection weight to hidden neuron j from visible node vi,

(see Fig. 2 (a)). The continuous state vi is a random sample from N (v̂i, σ),

where σ is the variance of all visible nodes. Lastly, the weights are updated

as the difference between the original and reconstructed visible layer using:

15

4wij = α(< vihj >data − < vihj >recon), (9)

where α is the learning rate and < vihj > is the expected frequency with

which visible unit i and hidden unit j are active together when the visible

vectors are sampled from the training set and the hidden units are determined

by (6). Finally, the energy of a DNN can be determined in the final layer

using E = −
∑

i,j vihjwij. When a DNN is trained with data from different

GN, negative transfer might occur due to variable-order time-delays. Hence,

in this paper we propose a deep transfer neural network to classify GN with

time delays where positive transfer is facilitated through pre-training.

3. Deep Transfer Learning Framework

The stability of a real world system depends on the ability of the Gaus-

sian network to switch among different modes in response to environmental

turbulences. Different alternate Gaussian networks are active in related net-

works and at different stages of the response. In this section, we introduce

a novel deep transfer neural network that leverage’s on such natural redun-

dancies in alternate networks to classify GN with time-delays. We achieve

this through inductive as well as transductive transfer of motifs from source

to target manifolds.

When a deep neural network is pre-trained with motifs learned through

transfer, the resulting model is referred to as a deep transfer neural network

(DTNN). In the context of Bayesian networks, a motif has the following

definition:

16

Algorithm 1 Deep Transfer Learning of Gaussian Networks
1: Input 1: Training time series X = {X1, X2, . . . , Xnd} for all nd networks.

2: Input 2: ML parameters of motifs Θ = {θ1, . . . ,θnd} learned via transfer in Algorithm 2.

3: Outputs: Gaussian network class label for each test sample

4: X0 = {θi,ai ≥ γ}, ∀θi,ai ∈ Θ

5: Update: X = {X0 ∪X}

6: Construct the visible layer as a vector of N expression values

7: Construct a minimal network with single hidden neuron

8: Construct the output layer with nd neurons to classify all GNs

9: repeat

10: for s = 0 to nd do

11: for t = 1 to |Xs| do

12: Initialize the visible layer with tth training sample in Xs

13: Update Wl using CD given by (9) ∀l

14: end for

15: end for

16: Compute change in classification precision error 4ε on training data X

17: if 4ε is significant then

18: Add another hidden neuron

19: Initialize weights of the layer to {wi,j}N×N = I

20: else

21: Add another layer with a single neuron

22: end if

23: until Adding a layer does not change precision error

24: Fine-tune weights using known Gaussian network class label of training samples

25: Classify test time samples to Gaussian networks using trained DTNN

17

Definition 1. Network motifs are recurrent or statistically significant sub-

graphs. In our present study, a motif refers to a single node and its parent

nodes. All dependencies are first-order Markovian and are predicted using

(5) from time series data. The ML probability of a motif θi,ai
in a GN is the

conditional probability of the child node i given parent set ai.

To mitigate the effect of negative transfer, we consider a manifold trian-

gular inequality that provides a measure for the feasibility of transfer from

the source to the target manifold. Since, time series for GN can be of variable

lengths, here we consider Kullback-Leibler divergence to transfer ML prob-

abilities of motifs from source to target network. Algorithm 1 details the

deep transfer neural network framework for classification of GN with time

delays. Pre-training is done using motifs with ML that satisfy a threshold,

screened and computed through the transfer learning algorithm described in

the next sub-section.

3.1. Building a training database of motifs through transfer with manifold

inequality constraint

In [39], the author has provided a sufficient condition for mapping between

two differentiable manifolds. They show that, one manifold is a transforma-

tion of the other as long as the triangular inequality is satisfied. Here, we

extend the notion to similar manifolds of the source and the target motifs. In

particular, we consider the sectional curvature c > 0 at an arbitrary point p

in the source manifold, then the following condition should hold for arbitrary

points q and r in the target manifold for feasibility of transfer:

18

d(p, q) + d(q, r) + d(r, p) ≤ 2π/
√
c , d(q, r) ≤ π/

√
c, (10)

where d is the distance in z-dimensional space and z is the dimensionality

of the target motif. The first inequality in (10) ensures that the change

from source manifold to target manifold does not alter the distances between

nodes of the motif, while the second inequality constrains the curvature of

the second manifold so that the diameter of the local sphere in the target

manifold does not exceed π/
√
c [39]. It can be reasoned that the area of

the local sphere in both manifolds is similar. Fig. 3 illustrates the source

motif and the target motif manifolds. We can determine if the manifolds are

mappable using the inequality (10). The inequality constrains the curvature c

at point p in the source manifold and the diameter of sphere passing through

p and two other arbitrary points q and r in the target manifold. Details of

the proof are provided in [39].

Our proposed transfer learning approach comprises two steps. First, we

find a low dimensional representation for both the source and the target mo-

tifs through principal component analysis such that the new motifs are of

equal dimensions. As a second step, we find the transformation factor be-

tween the new motifs of equal dimensions. We model the manifold alignment

function as a linear mapping f : θsi,ai
→ θti,ai

from the source motif to the

target motif.

f(θsi,ai
) = A ∗ θsi,ai

, (11)

where A ∈ Rz×z is a transformation matrix with z as the common dimension

of the manifolds.

19

Rough alignment can be used when the number of data points is different

in the target and source manifolds. Here we assume that both datasets

are Gaussian distributed and we minimize the distance between the two

Gaussians θsi,ai
and θti,ai

known as Kullback-Leibler divergence. As proven in

[40], the corresponding transformation matrix is given by

A = ∧1/2
t ∧−1/2

s , (12)

where ∧s and ∧t are diagonal matrices with eigenvalues of Σss and Σtt, re-

spectively. The first eigenvalue λ corresponding to child node in matrix A is

used to scale the ML probability of source motif to that of the target motif.

In very large networks, the computational bottleneck lies in the estima-

tion of the likelihood of nodes given their parents. Hence, we use the time

series data to only extract a sub-set of probabilities for each node given a pos-

sible parent set. We refer to these sub-structures as motifs. The remaining

sub-structures are then inferred using transfer learning at very low compu-

tational cost governed by the triangular inequality. In the next sub section,

we describe the transfer learning of high dimensional motifs within a single

large network as well as from other source networks.

3.2. Transfer Learning of Motifs

An outline of the procedure for the transfer learning of motifs is summa-

rized in Algorithm 2. The algorithm takes as input the training time series

X = {Xs}nd
s=1 for all nd classes of GNs and learns the corresponding motifs

Θ = {θs}nd
s=1. This requires two steps: (i) First we compute a subset of low

dimensional motifs θs for all classes of Gaussian networks using (5) such that

the number of parents for any node |ai| ≤ d. Motifs with ML probability

20

above threshold γ are used to construct a database M of candidate source

motifs. (ii) Next, we use transfer learning to incrementally learn high dimen-

sional motifs in all classes of GN from the candidate motifs in M . To do

this, we create a new target motif θnewi,ai
by perturbing a node(s) in a candidate

source motif θi,ai
with a node(s) from the class t of the target motif. Next,

the feasibility of mapping between motif θnewi,ai
and motif θi,ai

are determined

using (10). If the triangular inequality holds, then the transformation factor

λ is computed using (12), and the new motif probability is the product of λ

and θi,ai
. The new motif and its probability is then added to the parameter

set θt of the target motif class. This process is repeated for all candidate

source motifs in M and all possible target motifs in class t until the termina-

tion condition is reached. Here, the algorithm terminates when all possible

motifs have been learned or when the computational time available has been

exhausted. In this way, we can save on huge computational cost associated

with learning of high dimensional Gaussian motifs. This process is repeated

for each Gaussian network as the target class and all the Gaussian networks

being the source class. Interestingly, in the case where the class of target

motif and source motif is common the algorithm corresponds to inductive

transfer learning.

3.3. Training a deep neural network with motifs learned through transfer

To begin, the training time samples set X = {X1, X2, . . . , Xnd} is up-

dated to include motifs learnt through transfer (see Algorithm 2). Here

again, we only consider motifs with ML probability above γ to construct a

time series X0. Each training motif shall serve as a new training sample

which is a vector of N expression values. Nodes occurring in a motif are set

21

Algorithm 2 Transfer Learning of Motifs
1: Input : Training and testing time series X = {X1, X2, . . . , Xnd} for all nd class networks

2: Output : ML parameters of motifs Θ = {θ1, . . . ,θnd}

3: for s = 1 to nd do

4: θs = {θi,ai = p(xi|ai), |ai| ≤ d}∀i, ∀ai using (5) and time series Xs.

5: M = {θi,ai ≥ γ}, ∀θi,ai ∈ θs

6: for t = 1 to nd do

7: repeat

8: for m = 1 to |M | do

9: Obtain new parent set anew
i by perturbing node(s) in θmi,ai

with a node(s) in target class

network

10: if {i,anew
i } and {i,am

i } satisfy inequality (10) then

11: λ = solve (12) using {Xt, Xs}

12: ML probability θnew
i,ai

= λ ∗ θmi,ai

13: Update : θt = {θt ∪ θnew
i,ai
}

14: end if

15: end for

16: until Termination condition is reached

17: end for

18: end for

22

to one and expressions of all other nodes were set to zero. Motifs of different

classes of Gaussian networks are used collectively to pre-train a deep neu-

ral network governed by the Lyapunov stability condition. Since the motifs

have already been validated for feasibility of transfer across different classes

of Gaussian networks, the likelihood that the shared motifs learned in the

first hidden layer would facilitate positive than negative transfer is higher.

Interestingly, a DTNN is capable of learning from sub-structures; hence

we can compute as many motifs as the computational time permits. While, it

is desirable to compute all possible motifs, a DTNN can learn well even from a

small sub-set of motifs. We begin with a minimal configuration of a N visible

nodes, a single hidden neuron and nd output neurons to classify the Gaussian

networks (see Algorithm 1). To determine the optimal number of hidden

neurons in a single layer as well as the number of layers, we compute the

change in classification precision error 4ε of the DTNN on training samples.

If there is a significant change in the error 4ε, a new hidden neuron is

added. The layer weights are then relearned and the classification precision

error is recomputed. The process is repeated until no significant change in

precision error is observed with the addition of hidden neurons. When this

happens, a new hidden layer is added. The above progresses iteratively until

further addition of layers of hidden neurons does not change the classification

precision error significantly, and the optimal configuration is arrived.

3.4. Initialization of weights and classification of different Gaussian networks

with time-delays

The contrastive divergence approach will sample motifs with high-frequency

into the upper layers, resulting in the formation of class specific sub-graphs

23

at hidden neurons in the first layer, class specific bigger graphs at hidden

neurons in second hidden layer and so on. However, for Lyapunov stability

it is desirable that the covariance matrix of the complete network is close to

positive semi-definite. Hence, we initialize weights in each hidden layer to a

diagonal matrix which is close to a feasible solution.

The final output layer has nd hidden neurons so that it can classify a

sample input vector among nd classes of Gaussian networks. After training,

the weights are fine-tuned using back propagation algorithm with the known

class label of the training motifs and time samples. The trained DTNN is

then used to classify test time samples from different class of GNs.

3.5. Complexity Analysis

Computing the likelihood of a motif using (5) requires computing the

second-order derivative of the covariance matrix (Hessian), whose complexity

is known to be at least quadratic in the number of dimensions [41]. For a

network of N nodes, the total number of possible motifs can be derived as∑N
i=1NCi

Here, since we only compute the likelihood of partial motifs (i. e., the

low dimensional ones with up to a maximum of K nodes, where K <<< N)

to approximate all the likelihoods, the total number of motifs to be com-

puted becomes
∑K

i=1nCi. Thus, the cost of computation is reduced from

O(
∑N

i=1NCi.i
2) to O(

∑K
i=1NCi.i

2 + δ) where O(i2) is the cost to compute a

single motif of i nodes and δ is the cost of approximation, which is negligible

in comparison.

24

4. Experiments

In this section, the proposed DTNN was applied to two dynamic Gaussian

network classification problems in order to assess its efficacy. The first dataset

was generated synthetically from networks of size N ∈ (10/20) with variable

delays of regulation up to three time points. As considered in literature, we

refer to the 10 node Gaussian network as small, while the 20 node Gaussian

network is an example of a large dynamic system. Following the approach

described in [27], random delays were associated with edges before sampling

time series data from a multivariate Gaussian distribution. The other dataset

was real world time-series collected from Basketball games.

Performance measures such as precision1, recall2, and F-measure3 were

evaluated using true positives (TP), false positives (FP), true negatives (TN),

and false negatives (FN).

Before we discuss the performance of the DTNN on the datasets individ-

ually, we define the parameter settings common to all experiments:

• The likelihood of motifs are extracted from the time series data using

(5) and the transfer learning algorithm.

• Top 20% of motifs are used to determine the threshold γ. Motifs above

this threshold γ are used to construct the training samples for the deep

transfer neural network.

• The learning rate for deep neural network was set to α = 0.001 and

1Precision = TP/(TP + FP)
2Recall = TP/(TP + FN)
3F-measure =2 Precision×Recall

Precision+Recall

25

the maximum number of parents for low-dimensional motifs was set to

d = 3.

• The optimal number of hidden neurons and the number of layers are

determined heuristically by computing the change in classification pre-

cision error on the training samples.

4.1. Deep Transfer Learning of Gaussian Networks

In this section, we discuss the process to derive the topologies of the

target synthetic Gaussian networks that mimic real world problems. First,

we briefly explain how time series datasets are sampled from the synthetic

Gaussian networks. Results on varying network sizes, number of time samples

and computation time are discussed. Lastly, we verify the performances of

our method against several state-of-the-art baseline algorithms.

4.1.1. Generating Synthetic Time Series

In this study, the time series dataset of expressions was generated from

various Gaussian networks with varying number of nodes. The nodes were

assumed to take real values from a multivariate Gaussian distribution. Sim-

ilar to the approach described in [27], two different class Gaussian networks

were considered with the mean of each node set to (+5/−5) and co-variance

between nodes was set to (1/2) in the first time stamp. For all remaining

time stamps, node expressions were sampled from MVAR, using (1).

26

4.1.2. Comparison with State-of-the-art Baseline Algorithms

We compared our method with several state-of-the-art baselines for clas-

sification including MVAR [29], SVM 2 [42] and DNN [20]. Training time

series datasets of length (100/30) were generated from two different Gaus-

sian networks of size (10/20) with up to third-order time delays. Table 1

tabulates the results including TP, precision, recall, and F-measure for clas-

sifying the synthetic Gaussian networks of (10/20) nodes when the number of

training time samples available is (100/30). All the models are evaluated on

a balanced dataset of 20 test samples (10 from each class). Here, we have re-

ported the weighted average of classification precision, recall and F-measure

over both the classes. Further, in order to demonstrate the robustness of our

method we have reported mean and variance over five different test datasets

for each model.

Fig. 4 shows the results on the predicted synthetic Gaussian networks. In

Fig. 4 (a), comparison of the F-measure for the DTNN with the baselines on

the smaller Gaussian network of 10 nodes when (100/30) training time sam-

ples are available is presented. It is shown that in contrast to the baselines,

DTNN exhibits high classification accuracy even when only 30 time samples

are used. In Fig. 4 (b) the F-measures for the larger Gaussian network of 20

nodes is depicted. Here, DTNN outperformed the baseline SVM by over 20%

even when 100 time samples were used. When using a shorter time-series of

length 30, an even bigger margin of 30% improvements in performance was

observed.

2Support Vector Machines (SVM)

27

The percentage of improvements in F-measure as attained by the DTNN

over the baseline algorithms for Gaussian networks of size 10 and 20 when

100 training time samples are available are then summarized in Fig. 4 (c). In

particular, the percentage of improvement in F-measure (PIM)5 as attained

by DTNN over MVAR, SVM and DNN for Gaussian networks of size 10

and 20, are reported. It can be seen that on the larger Gaussian network

of 20 nodes, our method has almost 25% improvements in accuracy over the

baselines. For the Gaussian network of 10 nodes, our method exhibited up-to

15% improvements in accuracy as compared to the baselines.

4.1.3. Computation Time

Table 2 tabulates the wall-clock time incurred to compute the maximum

likelihood probabilities for Gaussian networks of size n ∈ {10/20} nodes,

with and without the use of transfer learning. The second column of Table

2 shows the cost of computing all the 3 node and 4 node motifs. In the third

column, we show the cost of computing only the low dimensional motifs of

3 nodes and approximating the high dimensional motifs of 4 nodes using

transfer learning. It is found that at least 25% savings can be attained when

performing a transfer learning on the 10 nodes Gaussian network. A much

higher savings of over 600% was observed on the larger Gaussian network of

20 nodes.

4.2. Real World Dataset

We also applied our proposed algorithm to a video dataset involving a

small Gaussian network to classify the behaviour of players in a basketball

5PIM = (FDTNN − FM)/FDTNN

28

game as a beginner game or a skilled game using the player trajectories

captured through a camera [43]. Our method exhibited notable results on

this realistic problem. On a real world dataset, the true target Gaussian

network is unknown; hence, we use the classification accuracy on the testing

set as a measure of precision.

4.2.1. Basketball Game

In basketball, it is possible to determine the offensive and defensive teams

using player behavioural tracking [30]. Previously, dynamic BN was used to

classify the entire basketball game as a beginner game or a skilled game [43].

They showed that differences in likelihoods of winning team from the losing

team were statistically different for beginner and skilled games. However,

the variance of their prediction was very large. Here, we show that a DTNN

is able to provide a much better classification measure.

The trajectories of five players during a basketball game can be repre-

sented as a GN network with five nodes. The behaviour of the players or

the time-delayed regulations between the players, such as passing of the ball,

can be modelled as variable-order edges in the Gaussian network. 15 games

of variable durations of each type were used to train the DTNN. The be-

havioural data of beginner players and skilled players in all 15 games is used

to compute the likelihood of low dimensional motifs using (5) and high di-

mensional motifs using transfer learning methodology. Subsequently, the top

20% of both low dimensional and high dimensional motifs then form the

training samples for constructing the DTNN.

The optimal configuration determined by our algorithm was a two layer

DTNN with hidden layers given by [5, 10, 2]. The visible layer has 5 nodes

29

and the first hidden layer had 10 neurons. No significant improvement was

observed with additional layers. We compared the performance of the DTNN

using precision, recall, and F-measure, with the baselines on 20 testing time

samples from both game types. The DTNN was able to correctly classify

all of the test samples; however the other methods showed almost half the

accuracy compared to DTNN.

As an illustration, Fig. 5 depicts the offensive behaviour and formations

involving a team of five players in a game of Basketball. The basket is

shown at the mid-point of the court width. The figurines correspond to five

players in a team. The formations in Fig. 5 (a) to (e) correspond to the

hidden neurons, where weights of the connection to the skilled class in the

final layer are higher than the beginner class neuron. The formations in

Fig. 5 (f) to (j), on the other hand, correspond to hidden neurons where

weights of the connection to the beginner class in final layer are higher than

that of the skilled game neuron. Formations in skilled games show a low

(< 0.5) Pearson correlation measure since the players are spread across the

Basketball court. Contrastingly, the formations of beginner games show a

high (> 0.5) Pearson correlation measure since the players are observed to

be herding near the basket.

5. Conclusions

In this paper, we have proposed a deep transfer neural network to classify

Gaussian networks with time-delays. Our simulation and experimental study

showed that the proposed DTNN outperformed the baseline methods in clas-

sification accuracy. The method also required fewer time samples to classify

30

high-dimensional Gaussian networks. We observed an improvement in the

range of [15-25]% in accuracy and a saving in the range of [25-600]% in com-

putational cost on synthetic as well as realistic networks with time-delays,

when compared to existing state-of-the-art approaches.

Classification of temporal processes using deep neural networks is a chal-

lenging task due to the multi-modal nature of the underlying distribution.

To address this, we pre-trained the deep neural network with high ML motifs

from different classes of Gaussian networks with time-delays computed using

dynamic Bayesian fitness function.

Since, only a small set of low dimensional ML probabilities are computed

while the remaining are approximated by a transfer learning algorithm, we

were able to save on tremendous computational time and achieve improved

network scalability. In order to determine the feasibility of transfer between

low dimensional source motifs and the high dimensional target motifs, we

considered the triangular manifold inequality.

Further, the DTNN learns the shared representation of low dimensional

motifs for all classes of Gaussian networks at the hidden neurons in the first

layer. The higher layers combine these motifs to form bigger structures that

may occur in one or more class of Gaussian networks. Finally, in the last

layer each node corresponds to the complete Gaussian network of a single

class. In this way, there is data sharing across sub-structures and many

fewer time samples are needed for prediction. To ensure stochastic stability

of the complete Gaussian network, the learning of weights is governed by a

Lyapunov stability condition. Last but not the least, it can be observed that

the higher layers in the DTNN can learn long delays by cascading low-order

31

time-delays in the layers below.

In the future the DTNN will be used to classify and bring insight into the

time-varying data access patterns of software programs in large-scale cloud

data centers. Related programs will have several common sub-modules that

may be learned through transfer.

6. Acknowledgement

This work is partially supported by the ASTAR Thematic Strategic Re-

search Programme (TSRP) Grant No. 1121720013 and the Center for Com-

putational Intelligence (C2I) at NTU.

References

[1] N. Friedman, I. Nachman, Gaussian process networks, in: Proceedings of

the Sixteenth Conference Annual Conference on Uncertainty in Artificial

Intelligence (UAI-00), 2000, pp. 211–219.

[2] A. Schwaighofer, M. Dejori, V. Tresp, M. Stetter, Structure learning

with nonparametric decomposable models (2007).

[3] J. D. Hamilton, Time Series Analysis, 1994.

[4] H. Liu, J. Lafferty, L. Wasserman, The nonparanormal: Semiparametric

estimation of high dimensional undirected graphs, J. Mach. Learn. Res.

10 (2009) 2295–2328.

[5] Z. Wu, P. Shi, H. Su, J. Chu, Delay-dependent state estimation for

discrete markovian jump neural networks with time-varying delay, Asian

Journal of Control 13 (6) (2011) 914–924.

32

[6] D. Heckerman, D. Geiger, D. M. Chickering, Learning bayesian net-

works: The combination of knowledge and statistical data, Machine

Learning 20 (3) (1995) 197–243.

[7] P. Li, C. Zhang, E. J. Perkins, P. Gong, Y. Deng, Comparison of prob-

abilistic boolean network and dynamic bayesian network approaches for

inferring gene regulatorynetworks, BMC Bioinformatics 8 (2007) S13–

S20.

[8] T. Akutsu, S. Miyano, S. Kuhara, Algorithms for identifying boolean

networks and related biological networks based on matrix multiplica-

tion and fingerprint function, Journal of Computational Biology 7 (3-4)

(2000) 331–343.

[9] J. Pearl, Probabilistic reasoning in intelligent systems : networks of

plausible inference, The Morgan Kaufmann series in representation and

reasoning., : Morgan Kaufmann Publishers, 1988.

[10] S. Imoto, S. Kim, T. Goto, S. Miyano, S. Aburatani, K. Tashiro,

S. Kuhara, Bayesian network and nonparametric heteroscedastic regres-

sion for nonlinear modeling of genetic network, J Bioinform Comput

Biol 1 (2) (2003) 231–52.

[11] N. Nariai, S. Kim, S. Imoto, S. Miyano, Using protein-protein inter-

actions for refining gene networks estimated from microarray data by

bayesian networks, Pac Symp Biocomput (2004) 336–47.

[12] K. Ota, T. Yamada, Y. Yamanishi, S. Goto, M. Kanehisa, Compre-

33

hensive analysis of delay in transcriptional regulation using expression

profiles, Genome Informatics 14 (2003) 302–303.

[13] Z. Xing, W. Dan, Modeling multiple time units delayed gene regulatory

network using dynamic bayesian network, in: Data Mining Workshops,

2006. ICDM Workshops 2006. Sixth IEEE International Conference on,

2006, pp. 190–195.

[14] D. Tao, X. Li, X. Wu, S. Maybank, General tensor discriminant analysis

and gabor features for gait recognition, Pattern Analysis and Machine

Intelligence, IEEE Transactions on 29 (10) (2007) 1700–1715.

[15] N. Meinshausen, P. Buhlmann, High-dimensional graphs and variable

selection with the Lasso, The Annals of Statistics 34 (3) (2006) 1436–

1462.

[16] M. Chen, Z. Xu, K. Weinberger, F. Sha, Marginalized denoising autoen-

coders for domain adaptation, in: Proceedings of the 29th International

Conference on Machine Learning (ICML-12), ICML ’12, 2012, pp. 767–

774.

[17] H. Lee, R. Grosse, R. Ranganath, A. Y. Ng, Convolutional deep belief

networks for scalable unsupervised learning of hierarchical representa-

tions, in: Proceedings of the 26th Annual International Conference on

Machine Learning, ICML ’09, 2009, pp. 609–616.

[18] G. W. Taylor, G. E. Hinton, S. T. Roweis, Modeling human motion

using binary latent variables, in: B. Schölkopf, J. Platt, T. Hoffman

34

(Eds.), Advances in Neural Information Processing Systems 19, MIT

Press, Cambridge, MA, 2007, pp. 1345–1352.

[19] G. E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for

deep belief nets, Neural Comput. 18 (7) (2006) 1527–1554.

[20] R. Raina, A. Y. Ng, D. Koller, Constructing informative priors using

transfer learning., in: ICML, 2006, pp. 713–720.

[21] E. V. Bonilla, K. M. Chai, C. Williams, Multi-task gaussian process

prediction, in: J. Platt, D. Koller, Y. Singer, S. Roweis (Eds.), Advances

in Neural Information Processing Systems 20, 2008, pp. 153–160.

[22] D. Tao, X. Li, X. Wu, S. Maybank, Geometric mean for subspace selec-

tion, Pattern Analysis and Machine Intelligence, IEEE Transactions on

31 (2) (2009) 260–274. doi:10.1109/TPAMI.2008.70.

[23] C.-W. Seah, I. W. Tsang, Y.-S. Ong, Transductive ordinal regression.,

IEEE Trans. Neural Netw. Learning Syst. 23 (7) (2012) 1074–1086.

[24] J. Yu, J. Cheng, D. Tao, Interactive cartoon reusing by transfer learning,

Signal Processing 92 (9) (2012) 2147 – 2158.

[25] J. Yu, D. Tao, M. Wang, Adaptive hypergraph learning and its appli-

cation in image classification, Image Processing, IEEE Transactions on

21 (7) (2012) 3262–3272.

[26] J. Yu, Y. Rui, D. Tao, Click prediction for web image reranking us-

ing multimodal sparse coding, Image Processing, IEEE Transactions on

23 (5) (2014) 2019–2032.

35

[27] A. K. Seth, A matlab toolbox for granger causal connectivity analysis,

Journal of Neuroscience Methods 186 (2) (2010) 262–273.

[28] A. Prinzie, D. Van den Poel, Dynamic Bayesian Networks for Acquisi-

tion Pattern Analysis: A Financial-Services Cross-Sell Application New

Frontiers in Applied Data Mining, Vol. 5433 of Lecture Notes in Com-

puter Science, Springer Berlin / Heidelberg, 2009, pp. 123–133.

[29] A. C. Rencher, Methods of multivariate analysis, 2nd Edition, 2002.

[30] H.-T. Chen, C.-L. Chou, T.-S. Fu, S.-Y. Lee, B.-S. P. Lin, Recogniz-

ing tactic patterns in broadcast basketball video using player trajec-

tory, Journal of Visual Communication and Image Representation 23 (6)

(2012) 932 – 947.

[31] E. Castillo, J. M. Gutierrez, A. S. Hadi, Expert systems and probabilistic

network models, 1996.

[32] N. Friedman, M. Linial, I. Nachman, D. Pe’er, Using bayesian networks

to analyze expression data, Journal of Computational Biology 7 (3-4)

(2000) 601–620.

[33] E. Castillo, U. Kjrulff, Sensitivity analysis in gaussian bayesian networks

using a symbolic-numerical technique, Reliability Engineering and Sys-

tem Safety 79 (2) (2003) 139 – 148.

[34] J. Wagner, G. Stolovitzky, Stability and time-delay modeling of negative

feedback loops, Proceedings of the IEEE 96 (8) (2008) 1398–1410.

36

[35] J. Wagner, L. Ma, J. J. Rice, W. Hu, A. J. Levine, G. A. Stolovitzky,

p53-mdm2 loop controlled by a balance of its feedback strength and

effective dampening using atm and delayed feedback, Systems Biology,

IEE Proceedings 152 (3) (2005) 109–118.

[36] N. Friedman, K. Murphy, S. Russell, Learning the structure of dynamic

probabilistic networks, Proceedings of the 14th Annual Conference on

Uncertainty in Artificial Intelligence (UAI-98) (1998) 139–14.

[37] G. A. Fink, S. O. service), Markov models for pattern recognition from

theory to applications (2008).

[38] G. E. Hinton, Training products of experts by minimizing contrastive

divergence, Neural Computation 14 (8) (2002) 1771 – 1800.

[39] Y. Machigashira, Manifolds with pinched radial curvature, Proceedings

of the American Mathematical Society 118 (3) (1993) pp. 979–985.

[40] B. Bocsi, L. Csato, J. Peters, Alignment-based transfer learning for robot

models, in: Neural Networks (IJCNN), The 2013 International Joint

Conference on, 2013, pp. 1–7.

[41] D. M. Chickering, D. Heckerman, Efficient approximations for the

marginal likelihood of bayesian networks with hidden variables, in: Ma-

chine Learning, 1997, pp. 29–181.

[42] C.-W. Hsu, C.-J. Lin, A comparison of methods for multiclass support

vector machines, Neural Networks, IEEE Transactions on 13 (2) (2002)

415–425.

37

[43] K. Y. H. Chow Jia Yi, Iti Chaturvedi, An analysis of herding behaviours

in basketball as a function of skill level., in: ECSS, 2013.

38

Table 1: Results of regulations predicted by MVAR, SVM, DNN, and DTNN on synthetic

time series datasets with up to third order delays. Mean and variance of TP, precision,

recall and F-measure over five different test datasets have been reported for training time

series of length (100/30) and Gaussian networks of size (10/20). The first column gives

the number of time samples (T) used. The second column gives the number of nodes (N)

in the target class network.

T #N model TP Precision Recall F-measure

100

10

MVAR 15.67± 1.37 0.79± 0.07 0.78± 0.07 0.78± 0.07

SVM 14.5± 3.39 0.73± 0.18 0.73± 0.18 0.73± 0.18

DNN 13.83± 1.72 0.7± 0.08 0.70± 0.08 0.70± 0.08

DTNN 16± 1.26 0.82± 0.06 0.80± 0.06 0.80± 0.06

20

MVAR 14± 1.67 0.71± 0.08 0.70± 0.08 0.70± 0.09

SVM 12.5± 2.35 0.65± 0.12 0.63± 0.12 0.62± 0.12

DNN 12.17± 1.47 0.62± 0.08 0.61± 0.07 0.61± 0.08

DTNN 16± 1.55 0.82± 0.07 0.78± 0.11 0.79± 0.09

30

10

MVAR 13.33± 0.82 0.67±0.04 0.67±0.04 0.66±0.04

SVM 14.83± 2.14 0.75± 0.1 0.74± 0.11 0.74± 0.1

DNN 12.5± 3.02 0.63± 0.15 0.63± 0.15 0.63± 0.15

DTNN 15.33± 1.21 0.77± 0.06 0.77± 0.06 0.77± 0.06

20

MVAR 10.5± 1.38 0.52± 0.07 0.52± 0.07 0.52± 0.07

SVM 11.67± 1.97 0.62± 0.13 0.58± 0.1 0.57± 0.1

DNN 11.5± 3.89 0.58± 0.2 0.58± 0.19 0.57± 0.2

DTNN 13.17± 1.94 0.66± 0.1 0.69± 0.1 0.67± 0.1

39

Table 2: Computation time required to predict ML probabilities for synthetic Gaussian

networks of size N ∈ {10/20}. The first column gives the number of nodes (N) in the

target class network. The wall clock and time savings is reported for with and without

use of transfer learning in seconds and minutes.

#N No Transfer Transfer Time Savings

10 48 mins 38 mins 25%

20 28 hrs 206 mins 635%

40

�
�

��� �
�

�����

�
�

��� �
�

�����

�
�

��� �
�

�����

�
�

��� �
�

�����

��������

��������

��������

��������

���	����

���	����

��������

��

��
��

��
�	

���

���

���

Figure 1: (a) Bayesian network for a multivariate system with five variables. Each node

represents a Gaussian variable which can take continuous states from a normal distribution

with mean µ and co-variance Σ. The connections represent causal dependencies in a single

time instant. The observed state vector of variable i is denoted as xi and the regulation or

conditional probability of variable i given variable j is given by p(xi|xj). (b) The Gaussian

network describes a team of five Basketball players. The black nodes denote players of the

defending team while the white nodes denote players of the offending team [30]. (c) The

dynamic form of a Bayesian network assumes a first-order Markov assumption, that nodes

are regulated by parents from a previous time-instant and learns the transition network

between them.

41

��� ��� h1

v1 v2 v3

� ��� ���

h1

v1 v2 v3

h2

���������	

���
��������	

Figure 2: State-space diagrams for DNN. Edges can be directed or bi-directional. All

bi-directional edges are learned using contrastive divergence. (a) Conventional RBM with

two hidden neurons and three nodes in the visible layer, no edges are available between

neurons in the same layer. (b) RBM for Gaussian networks with time delays. It has a

single hidden neuron and three visible nodes. The visible nodes correspond to a Gaussian

network with three variables. The directed edges are estimated by training the weights

of the connections between visible nodes and hidden neuron from the training time series

data.

42

�
�

�

�

���������	
����

���� �����	���	
����

����

��������	
��
�
�
�
�����

�����

�����

Figure 3: Illustration of the source motif and the target motif manifolds. We can determine

if the manifolds are mappable using the inequality (10). The inequality constrains the

curvature c at point p in the source manifold and the diameter of sphere passing through

p and two other arbitrary points q and r in the target manifold. Details of the proof are

available in [39].

30 100
0

0.2

0.4

0.6

0.8

Number of Time Samples

F
−

m
ea

su
re

MVAR
SVM
DNN
DTNN

30 100
0

0.2

0.4

0.6

0.8

Number of Time Samples

F
−

m
ea

su
re

MVAR
SVM
DNN
DTNN

10 20
0

0.05

0.1

0.15

0.2

0.25

Number of Nodes

%
in

cr
ea

se
 in

 F
−

m
ea

su
re

 b
y

D
T

N
N

MVAR
SVM
DNN

(a) (b) (c)

Figure 4: Results on the predicted synthetic Gaussian networks. (a) Comparison of the

F-measure for a DTNN with the baselines on the smaller Gaussian network of 10 nodes

when 30 and 100 time samples are available is presented. (b) The F-measures of the

various methods considered on the larger Gaussian network of 20 nodes are depicted. (c)

The percentage of improvements in F-measure as attained by DTNN over MVAR, SVM

and DNN on Gaussian networks of size 10 and 20 when 100 time samples are available,

are depicted.

43

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Court Width

C
ou

rt
 L

en
gt

h

Skilled r=0.422

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Court Width

C
ou

rt
 L

en
gt

h

Beginner r=−0.700

(a) (f)

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Court Width

C
ou

rt
 L

en
gt

h

Skilled r=−0.409

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Court Width

C
ou

rt
 L

en
gt

h

Beginner r=−0.227

(b) (g)

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Court Width

C
ou

rt
 L

en
gt

h

Skilled r=0.457

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Court Width

C
ou

rt
 L

en
gt

h

Beginner r=0.738

(c) (h)

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Court Width

C
ou

rt
 L

en
gt

h

Skilled r=0.747

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Court Width

C
ou

rt
 L

en
gt

h

Beginner r=0.523

(d) (i)

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Court Width

C
ou

rt
 L

en
gt

h

Skilled r=−0.015

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Court Width

C
ou

rt
 L

en
gt

h

Beginner r=−0.994

(e) (j)

Figure 5: The predicted offensive behaviours and formations involving the five-member

teams of Skilled and Beginner players in the game of Basketball are depicted.

44

