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Abstract

In this paper, we propose a feature-based method for spectrum sensing of OFDM

signals from sub-Nyquist samples over a single band. We exploit the structure of the

covariance matrix of OFDM signals to convert an underdetermined set of covariance-

based equations to an overdetermined one. The statistical properties of sample covari-

ance matrix are analyzed and then based on that an approximate Generalized Likeli-

hood Ratio Test (GLRT) for detection of OFDM signals from sub-Nyquist samples is

derived. The method is also extended to the frequency-selective channels.

1 Introduction

Cognitive Radio (CR) is emerging as a promising technology for improving the efficiency of

radio spectrum use in wireless communication systems (Mitola and Maguire, 1999). Spec-

trum sensing (SS) is the most vital task in CR defined as identifying spectrum holes by
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sensing the radio spectrum and utilizing them without causing interference to primary users

(PUs) (Haykin et al., 2009). Of special interest in this regard is sensing of OFDM signals

(Chaudhari et al., 2009; Axell and Larsson, 2011). OFDM is one of the most effective mul-

ticarrier techniques for broadband wireless communications which is employed by many of

the current and emerging wireless technologies.

On the other hand, due to the limitations of today’s analog-to-digital converter (ADC)

circuits which cannot support very high bandwidth and need excessive memory and pro-

hibitive energy costs for implementing digital signal processing systems (Cohen et al., 2011),

it may be very costly and even impractical to sense the signal based on Nyquist-rate sam-

ples. This has motivated researchers to study sub-Nyquist methods for wideband spec-

trum sensing in CR networks; see, e.g., (Mishali and Eldar, 2011; Tian and Giannakis, 2007;

Tian et al., 2012; Polo et al., 2009; Tian, 2011; Leus and Tian, 2011; Ariananda and Leus,

2011; Cohen et al., 2011; Sun et al., 2012; Rebeiz et al., 2012). But to the best of our knowl-

edge, there has been less efforts targeting the detection of OFDM signals from sub-Nyquist

samples. In this paper, we propose a new feature-based approach for sensing an OFDM

signal occupying a single band from sub-Nyquist samples.

Related research and previous work: The problem of OFDM sensing using second-

order statistics has been already studied in, e.g., (Chaudhari et al., 2009; Axell and Larsson,

2011; Bokharaiee et al., 2011; Al-Habashna et al., 2012). All of these methods in some way

exploit the correlation induced by CP to sense the presence of OFDM signal, but perform the

detection based on Nyquist rate samples which, as discussed earlier, might need expensive

ADCs espeially for wideband signals.

During the past several years, the problem of spectrum sensing from sub-Nyquist samples

has attracted a lot of attention. While many of the approaches proposed so far rely on the

sparsity in the frequency domain arising from spectrum underutilization Tian and Giannakis

(2007); Tian (2008); Polo et al. (2009); Sun et al. (2013), there has also been methods which
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do not necessarily need sparseness in the spectrum to work Tian et al. (2012); Tian (2011);

Leus and Tian (2011); Ariananda and Leus (2011); Razavi et al. (2013); Cohen et al. (2011);

Rebeiz et al. (2012). For instance, the methods proposed in Tian et al. (2012); Tian (2011);

Leus and Tian (2011); Cohen et al. (2011); Rebeiz et al. (2012); Razavi et al. (2013) are

based on recovering the Spectral Correlation Function (SCF) of the signal from sub-Nyquist

samples. All of these methods need sparsity in the SCF for detecting the signal. Since the

SCF matrix of the Nyquist-sampled OFDM signal (see, e.g., (Tian et al., 2012, Equation

(10))) is nonzero everywhere, then it is not possible to use these methods for recovering

the SCF of OFDM signals from sub-Nyquist samples as they need sparsity in the SCF for

recovering it using Compressive Sensing (CS) algorithms or converting the underdetermined

set of equations to an overdetermined one. The methods proposed in Ariananda and Leus

(2011) and (Tian et al., 2012, Section IV) reconstruct the Power Spectral Density (PSD)

from sub-Nyquist samples and then decide on the presence of signal based on the recov-

ered PSD. Similar to conventional energy detection methods Yucek and Arslan (2009), the

main challenges with these methods are selecting the threshold and poor performance in

low signal-to-noise ratios. In Razavi et al. (2013), we detected an OFDM signal over a sin-

gle band from sub-Nyquist samples. Although this method assume that the whole band is

occupied by the OFDM signal, but we inject the sparsity to SCF using a cyclostationary

signature Adrat et al. (2009); Sutton et al. (2008) embedded in the signal to assist with the

detection procedure. This might be of help in the problem of rendezvous and cognitive net-

work identification Razavi et al. (2014), but it cannot be used in detecting primary users, as

primary users usually do not care about secondary users and therefore do not assist them

via injecting a signature in their own signals to facilitate the spectrum sensing task.

Our contribution: In this paper, we propose a new feature-based approach for sensing

OFDM signals from sub-Nyquist samples over a single band entirely occupied by the sig-

nal. In other words, we do not assume any sparsity in the spectrum. Instead, the method

exploits the features of covariance matrix of OFDM signals stemming from the insertion of
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cyclic prefix (CP). These features, as we will show later, will help us to convert the un-

derdetermined set of two-dimensional (2-D) equations which relates the available covariance

matrix of sub-Nyquist samples to the unavailable covariance matrix of Nyquist samples, to

an overdetermined one-dimensional (1-D) one. Then, based on the statistical properties of

the sample covariance, an approximate GLRT-based detector is derived. The method is also

extended to the case of frequency-selective channels.

Paper organization: The rest of the paper is organized as follows. In Section 2 the

system model over Gaussian channels is given and the problem is formulated. In Section 3

the relevant statistical properties of sample covariance matrix are studied and a covariance-

domain linear system is derived. The approximate GLRT-based detector is introduced and

formulated in Section 4. In Section 5 we extend the results to the frequency-selective channel

case. Finally, we study the performance of the proposed method by simulation experiments

in Section 6. Conclusions are drawn in Section 7 and some details of the derivations are

given in the Appendix.

Notations and Mathematical Preliminaries: Throughout this paper matrices and vec-

tors are denoted by capital and small boldface letters, respectively. = denotes the equality

and , denotes the definition. E is reserved for statistical expectation operator, Cov(x,y)

represents the covariance matrix between random vectors x and y, and ⊗ denotes the Kro-

necker product. IP and 0P,Q represent, respectively, P×P identity matrix and P×Q full-zero

matrix. For an arbitrary M × N matrix A, [A]i,j denotes the (i, j)-th entry of the matrix

and ai, i = 1, 2, . . . , N denotes its i-th column. vec(A) is the vectorization of A defined as

vec(A) , [aT
1 , . . . , a

T
N ]

T . Furthermore, if M = N , then vech(A), known as half-vectorization

of A, is the N(N+1)
2

×1 vector which is obtained by column-wise stacking of only the elements

on and below the main diagonal. It can be proven that for an N×N matrix A (Seber, 2008,

Chapter 11)

vech(A) = ΩNvec(A), (1)
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where

ΩN ,

























I
(0)
N 0N,N 0N,N . . . 0N,N

0N−1,N I
(1)
N 0N−1,N . . . 0N−1,N

0N−2,N 0N−1,N I
(2)
N . . . 0N−2,N

...
...

...
. . .

...

01,N 01,N 01,N . . . I
(N−1)
N

























, (2)

where I
(i)
N denotes an identity matrix whose first i rows are discarded. Remark that I

(0)
N = IN .

Moreover, if A is a symmetric matrix, then (Seber, 2008, Chapter 11)

vec(A) = ΓNvech(A), (3)

where Γ is an (N2)× (N(N + 1)/2) matrix with entries ((i− 1)N + j, (j − 1)(N − j/2) + i)

and ((j−1)N + i, (j−1)(N − j/2)+ i) for 1 ≤ j ≤ i ≤ N equal to 1 and the rest of elements

equal to zero. Remark that ΩNΓN = IN(N+1)/2.

Furthermore, for any three arbitrary matrices A, B, and C of suitable sizes, we have the

following two equalities (Seber, 2008, Chapter 11)

vec(ABCT ) = (C⊗A)vec(B). (4)

and

ABCT =
∑

i

∑

j

[B]i,jaic
T
j , (5)

where ai and cj are i-th and j-th columns of A and C, respectively.
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2 System Model over Gaussian Channels

Consider a secondary user (SU) with the goal to detect the presence of an OFDM signal.

Denoting the received signal by x(t), we can formulate the problem as deciding between the

following two hypotheses











H0 : x(t) = n(t)

H1 : x(t) = s(t) + n(t)
(6)

where s(t) is an OFDM signal and n(t) ∼ CN (0, σ2
n) . If the number of subcarriers is large

enough, from central limit theory we have s(t) ∼ CN (0, σ2
s). Suppose next that we have

sampled the signal x(t) at a sub-Nyquist rate to collect compressive samples z(t). Matrix-

wise, this can be described as1

z(k) = Ax(k), k = 1, 2, . . . , NB, (7)

where z(k) , [z[kM ], z[kM +1], . . . , z[kM +M − 1]]T consists of sub-Nyquist (compressive)

samples, x(k) , [x[kN ], x[kN+1], . . . , x[kN+N−1]]T consists of (unavailable) Nyquist sam-

ples, NB is the total number of taken frames, and A is the M ×N real-valued measurement

matrix. ρ , M
N

< 1 is called compression (or downsampling) ratio.

Now, the task of a sub-Nyquist OFDM detector is to decide whether the OFDM signal exists

or not, based on sub-Nyquist measurements {z(k)}NB

k=1.

It can be easily seen that Rz = ARxA
T where the N × N matrix Rx , E(x(k)xH(k))

and M ×M matrix Rz , E(z(k)zH(k)) are covariance matrices of x and z, respectively. Let

us denote the useful symbol length of the considered OFDM signal by T , the cyclic prefix

1We remark here that there are two main strategies for sub-Nyquist sampling of a signal Mishali et al.
(2011): Random Demodulator (RD), also known as Analog-to-Information Converter (AIC), Tropp et al.
(2010); Kirolos et al. (2006), and Modulated Wideband Converter (MWC) Mishali and Eldar (2010). Both
of these strategies can be mathematically formulated as in (7) Mishali et al. (2011).
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length by Tcp and the total OFDM symbol length by Tsym = T + Tcp which are all assumed

to be known to the cognitive user. Assume that the basic sample duration is normalized to

1. Then by setting N = Tsym, matrix Rx of the noisy OFDM signal (i.e. x(t) under H1) can

be written as

[Rx]i,j =























σ2
s + σ2

n if i = j,

σ2
s if |i− j| = T,

0 otherwise.

(8)

On the other hand, under H0 we have

[Rx]i,j =











σ2
n if i = j,

0 otherwise.
(9)

To encompass the descriptions of Rx under H0 and H1, we present it by

Rx = τ0IN + τsΛ, (10)

where IN is the N ×N identity matrix and Λ is defined as

[Λ]i,j ,











1 if |i− j| = T,

0 otherwise,
(11)

and then distinguish between H0 and H1 as











H0 : (τ0, τs) = (σ2
n, 0),

H1 : (τ0, τs) = (σ2
n + σ2

s , σ
2
s).

(12)
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Since in both cases of (12) we have τ0 = τs + σ2
n, therefore (12) can be simplified as











H0 : τs = 0,

H1 : τs 6= 0.
(13)

In other words, the problem of detection of OFDM signal can be re-expressed as identifying

whether in the general description of Rx in (10) the parameter τs is zero or not.

In practice, covariance matrices are not readily available and hence we substitute them by

sample covariance matrices R̄x , 1
NB

∑NB

k=1 x(k)x
H(k) and R̄z =

1
NB

∑NB

k=1 z(k)z
H(k), where

NB is the number of frames used for the computations. It is easy to see that

R̄z = AR̄xA
T . (14)

In the next sections we will show how the sub-Nyquist sample covariance matrix R̄z can be

used to perform the hypothesis testing in (6) based on the observation made in (13).

3 Covariance-Based Linear Equations for OFDM De-

tection

The sample covariance matrix R̄x can in general be written as the sum of covariance matrix

Rx and an error term W stemming from the finite-sample effects. From now on, we call W

the finite-sample noise and express this as

R̄x = Rx +W. (15)

It is easy to verify that Ex(R̄x) = Rx under both H0 and H1, and therefore conclude that

Ex(W) = 0. Furthermore, from (Goldberger, 1991, Chapters 9-10) we know that the entries
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ofW have asymptotic Normal distribution. The following theorem then states the covariance

of entries of W. Parts of this theorem can also be found in Axell and Larsson (2011).

Theorem 1. Suppose that wi,j and wp,q are two arbitrary entries of W below or on main

diagonal (i.e. i ≥ j, p ≥ q). Then

E(wi,jwp,q|H0) =











τ2
0

2NB
if (i, j) = (p, q)

0 otherwise,
(16)

where τ0 , σ2
n, and

E(wi,jwp,q|H1) =































































τ2
0

NB
if (i, j) = (p, q), i− j = 0,

τ2s+τ2
0

2NB
if (i, j) = (p, q), i− j = T,

τ2
0

2NB
if (i, j) = (p, q), i− j /∈ {0, T}

τ0τs
NB

if i = j = p = q + T

0 otherwise,

(17)

where τ0 , σ2
n + σ2

s and τs , σ2
s .

Proof. Proof is deferred to Appendix.

Inserting next (15) in (14) yields

R̄z = ARxA
T +AWAT . (18)

Notice that since Rx and A are both real-valued, the signal part of (18) is real-valued and

the imaginary part only includes the effect of finite-sample error W. In fact, we can simply

change (18) to a real-valued equation by keeping only the real part of R̄z and throwing away

the uninformative imaginary part. To avoid introducing extra notations, from now on we
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assume that (18) represents a real-valued matrix equation.

The problem of sensing OFDM signal can then be restated as testing whether in 2-D linear

model (18) we have Rx = τ0I or Rx = τ0I + τsΛ for some nonzero unknown parameters τ0

and τs. The first problem in this regard is that (18) represents an underdetermined linear

system of equations. To solve this issue, we first apply the vech operator to (18) and use

(1), (3), (4) and (10) to obtain

r̄z = ΩM(A⊗A)(τ0vec(I) + τsvec(Λ)) +ΩM(A⊗A)ΓNw, (19)

where r̄z = vech(R̄z) and w = vech(W). From (4) and (5) it is easy to verify that (A ⊗

A)vec(I) =
N
∑

i=1

(ai ⊗ ai) and (A ⊗ A)vec(Λ) =
N
∑

i=T+1

(ai−T ⊗ ai + ai ⊗ ai−T ) and therefore

rewrite (19) as

r̄z = τsbs + τ0b0 + v

= Bθ + v (20)

where b0 , ΩM

N
∑

i=1

(ai ⊗ ai) and bs , ΩM

N
∑

i=T+1

(ai−T ⊗ ai + ai ⊗ ai−T ), B , [b0 bs],

θ , [τ0 τs]
T , v , Kw is the additive noise vector, and K , ΩM(A⊗A)ΓN .

Now, the problem of OFDM signal detection can be expressed as testing whether in the

classical linear model (20) the second entry of parameter vector θ is zero or not. We formulate

this in the next section.

We remark here that since in linear regression equation (20) the number of unknown param-

eters is two and the number of equations is M(M +1)/2, any M ≥ 2 is theoretically enough

for estimating τs and performing the test.
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4 Approximate Generalized Likelihood Ratio Test

To derive the GLRT-based detector, we first notice that the noise vector v in (20) is not

white. Therefore the first step is to whiten the noise by multiplying both sides of (20) by

Σ−1/2
v , where

Σv = KΣwK
T , (21)

and Σw is the covariance matrix of w = vech(W). Remark that as proved in Theorem 1, Σw,

and therefore Σv, does not expose the same expression under H0 and H1. Hence, to simplify

the test, in this section we formulate an GLRT-based detector based on approximating

Σv with a hypothesis-independent covariance matrix which compromises the properties of

covariance matrices under the two hypotheses.

We first adopt a hypothesis-independent approximation for the entries of Σw as follows

E(wi,jwp,q) =























2c if (i, j) = (p, q), i− j = 0,

c if (i, j) = (p, q), i− j 6= 0

0 otherwise,

(22)

where c is an unknown constant. Remark that E(wi,jwp,q) in (22) shares properties with

both E(wi,jwp,q|H0) in (16) and E(wi,jwp,q|H1) in (17): like (16) it is zero for (i, j) 6= (p, q),

but then for (i, j) = (p, q) it is like (17) with τs ≪ τ0. Equation (22) then implies that Σw

has the following form

Σw = c∆, (23)

where ∆ is an N(N+1)
2

diagonal matrix with diagonal elements in locations 1, 1 + (N),

1 + (N) + (N − 1), 1 + (N) + (N − 1) + (N − 2), ... being equal to 2 and the rest are equal

to 1. In fact, the diagonal elements having value 2 correspond to the first case of (22) and
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the rest correspond to its second case. The third case of (22) implies that Σw is diagonal.

Now, multiplying both sides of (20) by Γ = (K∆KT )−1/2 yields:

r̃z = B̃θ + ṽ, (24)

where r̃z , Γr̄z, B̃ , ΓB, and ṽ , Γv. Based on this, the problem of OFDM detection can

be expressed as doing hypothesis testing problem (13) for linear system (24) in which the

additive noise has distribution ṽ ∼ N (0, cI) with some unknown variance c. The GLRT-

based detector for this problem can then be written as (Kay, 1998, Theorem 9.1)

T (r̃z) ,
(N ′ − 2)(Dθ̂1)

T [D(B̃T B̃)−1DT ]−1(Dθ̂1)

r̃Tz

(

I− B̃(B̃T B̃)−1B̃T
)

r̃z

H1

≷
H0

γ′ (25)

where N ′ , M(M+1)
2

denotes the number of distinct equations, D , [0 1], and θ̂1 =

(B̃T B̃)−1B̃T r̃z is the maximum likelihood estimate of θ under H1. Furthermore, the proba-

bility of false alarm (PFA) and probability of detection (PD) of the approximate GLRT-based

detector are given by

PFA = QF
1,N′

−2
(γ′), (26)

PD = QF
1,N′

−2
(λ)(γ

′), (27)

where the noncentrality parameter takes the form

λ =
(Dθ1)

T [D(B̃T B̃)−1DT ]−1(Dθ1)

c
, (28)

where θ1 is the true value of θ under H1.
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5 Extension to Frequency-Selective Fading Channels

In this section we extend the results obtained in the previous sections to the case of wideband

frequency-selective channel. Assume that the multipath channel between the PU transmitter

and the SU receiver has the model H(z) = h0+h1z
−1+ . . .+hLz

−L. Putting the tap weights

in (L + 1) × 1 vector h , [h0, h1, . . . , hL]
T and denoting the k-th OFDM block of length

Tsym = N as sk , [sk(1), sk(2), . . . , sk(N)] where sk(n) , s[(k − 1)N + n], we have

xk = Skh+ n, k = 1, 2, . . . , NB, (29)

where Sk is a Toeplitz N × (L+ 1) matrix defined as

Sk ,

























sk(1) sk−1(N) sk−1(N − 1) . . . sk−1(N − L+ 1)

sk(2) sk(1) sk−1(N) . . . sk−1(N − L+ 2)

sk(3) sk(2) sk(1) . . . sk−1(N − L+ 3)

. . . . . . . . . . . . . . .

sk(N) sk(N − 1) sk(N − 2) . . . sk(N − L)

























. (30)

Denoting the i-th column of Sk by sk,i we can write

sk,i = Ji
dsk + JN−i

u sk−1, (31)

where Jd and Ju are respectively down-shift matrix and up-shift matrix whose (i, j)-th

elements are [Jd]i,j , δi,j+1 and [Ju]i,j , δi+1,j where δi,j denotes the Kronecker delta.

Remark that Jd = JT
u .
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From (Seber, 2008, Theorem 21.6) and since E(Sk) = 0N,L+1 we can next write

Rx = E(Skhh
HSH

k ) + σ2
0I

=

L
∑

i=0

L
∑

j=0

hih
∗
jCov(sk,i, sk,j) + σ2

0I. (32)

From (31), Cov(sk,i, sk,j) can be computed as

Cov(sk,i, sk,j) = σ2
s

(

Ji
d(Λ+ I)Jj

u + JN−i
u (Λ+ I)JN−j

d

)

(33)

Denoting ci,j , vec
(

Ji
d(Λ+ I)Jj

u + JN−i
u (Λ+ I)JN−j

d

)

, we can write

vec(Rx) =

L
∑

i=0

L
∑

j=0

hih
∗
jci,j + σ2

0vec(I)

= [Cs, vec(I)]







h̃

σ2
0






, (34)

where Cs is defined as the N2 × (L+ 1)2 matrix whose (j(L+ 1) + i+ 1)-th column is ci,j

(remark that 0 ≤ i, j ≤ L) and h̃ is defined as the vector whose (j(L+ 1) + i+ 1)-th entry

is σ2
shih

∗
j .

Putting (34) in (18) and vectorizing the resulting equation yields

r̄z = Bmθm + v (35)

where Bm , ΩM(A ⊗ A)[Cs, vec(I)], θm , [h̃T , σ2
0]

T , and v , ΩM(A ⊗ A)ΓNvech(W).

Then the problem of OFDM detection can be expressed as performing the following test for
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the linear model of (35)











H0 : Dmθm = 0,

H1 : Dmθm 6= 0,
(36)

where Dm = [I(L+1)2 , 0(L+1)2,1]. The rest of the test formulation is similar to the Gaussian

case discussed in 4.

6 Simulation Examples

In this section we study the performance of the proposed sub-Nyquist OFDM detector by

simulation examples. For simplicity, we consider an OFDM system with IFFT size 32 which

means T = 32. The cyclic prefix length is chosen as Tcp = T/4 = 8 and subcarrier symbols

are assumed to be drawn from a 16-QAM constellation with unit energy. The elements of the

measurement matrix A are drawn from N (0, 1) and its columns are normalized to have unit

norm. We emphasize that these chosen values are just examples for carrying out numerical

simulations, and are not as such related to the fundamentals of the derived detectors in any

way.

Before proceeding with the simulation examples, we briefly discuss the parameters which

affect the performance based on the formulation of the problem given in previous sections.

We first recall that the linear equation used for detecting the OFDM signal is (18). Therefore

the parameters which affect the detection are those affecting the solution of this 2-D linear

regression problem. The first parameter is the number of independent equations in (18), i.e.,

M(M + 1)/2. For a fixed Nyquist frame size N , this parameter is uniquely specified by the

compression ratio ρ. The second and third parameters are those which affect the power of

finite sample error W. Formulas (16)-(17) clearly show that, for a given signal power σ2
s , this

is determined by NB; the number of blocks taken for computing Rz, and σ2
n; the variance
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of noise, or equivalently, signal to noise ratio. The first two experiments in this section are

devised based on the above observations. Besides, the exactness of the approximation we

adopted in Section 4 will be studied by simulation results. As mentioned in Section 1 there

is no method in the literature specifically designed for single-band OFDM detection from

sub-Nyquist samples. Therefore, to compare our method with some existing methods, we

choose the method proposed in (Tian et al., 2012, Section IV) which recovers the PSD of a

general stationary signal from sub-Nyquist samples.

The third experiment studies the performance of the method over frequency-selective chan-

nels.

6.1 Influence of the compression ratio

In the first experiment we study the effect of compression ratio on detection performance.

For this experiment, the detector deploys NB = 100 OFDM symbols. Figure 1 illustrates the

probability of detection of the proposed method as a function of signal-to-noise ratio (SNR)

for different compression ratios ρ ∈ {0.2, 0.4, 0.6, 0.8, 1} when the threshold is set to obtain

PFA = 0.05. To check also the exactness of the approximation adopted in Section 4, we

compute the threshold γ′ both from the true PFA calculated from the simulated data in the

absence of OFDM signal (solid lines with circle markers) and from formula (26) (dotted lines

with diamond marker). The results of the PSD recovery method introduced in Tian et al.

(2012) are shown by dashed lines with square markers. For this method the threshold has

been computed from the true PFA.

The first observation from 1 is that, as we expect, the performance of the proposed method

enhances with increasing the compression ratio. Interestingly, with heavy compression ratio

of 0.2, the detection probability is still above 95% at an SNR of 0 dB. Notice that since the

number of independent covariance-based equations is of order O(M2), a compression ratio
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of ρ , M/N = 0.2 implies that the effective compression ratio (in covariance domain) is

only about 0.22 = 0.04 or 4%. Also, as it can be observed, the proposed method provides a

much better performance compared to the general PSD recovery method of (Tian et al., 2012,

Section IV). This can be seen also from Figure 2 where the Receiver Operating Characteristic

(ROC) curves of both methods have been depicted.

Furthermore, the unnoticeable difference between the curves with threshold computed from

true PFA and the ones with threshold computed from (26) in Figure 1 verifies the exactness

of the approximation adopted in Section 4.

6.2 Influence of the number of blocks

In the second experiment we study the effect of number of blocks taken for computing the

covariance matrix, NB, on detection performance. As it can be seen from Figure 3 increasing

NB improves the performance of the detector. In fact, in asymptotic case when NB → ∞

we have R̄x = 1
NB

∑NB

l=1(x(l)x(l)
H) = E(xxH) = Rx which means W = 0. Similar to the

previous experiment, it can be also observed that the performance of the proposed method

shows significance improvement over the PSD recovery method of Tian et al. (2012). This

can be seen also from Fiure 4 where the ROC curves of both methods have been illustrated.

Again, the unnoticeable difference between the solid lines (true PFA) and their corresponding

dotted lines (target PFA) in Figure 3 confirms the exactness of the approximation we used

in Section 4.
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6.3 Performance of the proposed method over frequency-selective

channels

The third experiment studies the effect of frequency-selective channels on the performance of

the proposed method. The method is applied on three different channel lengths with identical

energy; i.e.
∑L

l=0 |hl|
2 is identical for all L = 0, 1, 2. The OFDM signal characteristics as

well as the probability of false-alarm are set to the same values as in the two previous

examples. As it can be observed from Figure 5 the frequency selectivity slightly deteriorates

the performance but reliable sensing can still be achieved even at low SNRs.

7 Concluding Remarks

A method for sensing OFDM signals from sub-Nyquist samples was proposed. The proposed

method exploits the unique characteristics of the covariance matrix of OFDM signal to

perform the spectrum sensing task. Based on the statistical properties of the covariance

matrix we developed an approximate GLRT-based detector. The proposed method was

also extended to the case of frequency-selective channels. The simulation results verify the

theoretical observations. The results also illustrate that highly efficient sensing can still be

obtained, in terms of probability of detection and false alarm, despite of low compression

ratios and low SNRs. This can open up new possibilities for sensing devices with low-cost

analog hardware and A/D interface deploying sub-Nyquist observations.
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Appendix: Proof of Theorem 1

The proof of (16) is trivial. Here we only prove (17). Let us define ri,j , Real
(

[R̄x]i,j

)

, and

denote the real part of xi by x́i and its imaginary part by x̀i. Since

ri,j = Real(
1

NB

NB
∑

l=1

(xi(l)x
∗
j (l)))

=
1

NB

NB
∑

l=1

(x́i(l)x́j(l) + x̀i(l)x̀j(l)),

we can write

ri,jrp,q = 1
NB

2

NB
∑

l=1

NB
∑

l′=1

(

[x́i(l)x́j(l) + x̀i(l)x̀j(l)]

[x́p(l
′)x́q(l

′) + x̀p(l
′)x̀q(l

′)]
)

= T1 + T2,

(37)

where T1 and T2 are defined as follows

T1 , 1
NB

2

NB
∑

l=1

NB
∑

l′=1
l′ 6=l

(

[x́i(l)x́j(l) + x̀i(l)x̀j(l)]

[x́p(l
′)x́q(l

′) + x̀p(l
′)x̀q(l

′)]
)

,

T2 , 1
NB

2

NB
∑

l=1

(

[x́i(l)x́j(l) + x̀i(l)x̀j(l)]

[x́p(l)x́q(l) + x̀p(l)x̀q(l)]
)

The reason for partitioning (37) to T1 and T2 is that in T1 the two multiplicative terms

inside the double summation are independent since they belong to different frames l and l′,
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while in T2 they belong to the same frame and depending on indices i, j, p, and q might be

dependent. Due to independence of multiplicative terms, E(T1|H1) is easy to compute as

E(T1|H1) =







































NB−1
NB

τ 20 if (i− j, p− q) = (0, 0)

NB−1
NB

τ0τs if (i− j, p− q) ∈ {(0, T ), (T, 0)}

NB−1
NB

τ 2s if (i− j, p− q) = (T, T )

0 otherwise.

(38)

Furthermore, after some more scrutinized manipulations, E(T2|H1) can be expressed as

E(T2|H1) =



















































































































2
NB

τ 20 if (i, j) = (p, q), i− j = 0,

1
2NB

(τ 20 + 3τ 2s ) if (i, j) = (p, q), i− j = T,

1
2NB

τ 20 if (i, j) = (p, q), i− j /∈ {0, T},

2
NB

τ0τs if i = j = p = q + T,

1
NB

τ 20 if (i− j, p− q) = (0, 0), i 6= p

1
NB

τ 2s if (i− j, p− q) = (T, T ), i 6= p

1
NB

τ0τs if (i− j, p− q) ∈ {(0, T ), (T, 0)},

i 6= p

0 otherwise.

(39)
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Summing (38) and (39) will yield then

E(ri,jrp,q|H1) =















































































































τ 20 +
τ2
0

NB
if (i, j) = (p, q), i− j = 0,

τ 2s +
τ2
0
+τ2s

2NB
if (i, j) = (p, q), i− j = T,

τ2
0

2NB
if (i, j) = (p, q), i− j /∈ {0, T},

τ0τs +
τ0τs
NB

if i = j = p = q + T,

τ 20 if (i− j, p− q) = (0, 0), i 6= p

τ 2s if (i− j, p− q) = (T, T ), i 6= p

τ0τs if (i− j, p− q) ∈ {(0, T ),

, (T, 0)}, i 6= p

0 otherwise.

(40)

Subtracting E(ri,j|H1)E(rp,q|H1) from (40) and remarking that wi,j and ri,j have identical

variances, (17) is concluded.

References

M. Adrat, J. Leduc, S. Couturier, M. Antweiler, and H. Elders-Boll. 2nd order cyclostation-

arity of ofdm signals: Impact of pilot tones and cyclic prefix. In IEEE ICC 2009, pages

1–5, June 2009.

Ala’ Al-Habashna, Octavia A Dobre, Ramachandran Venkatesan, and Dimitrie C Popescu.

Second-order cyclostationarity of mobile wimax and lte ofdm signals and application to

spectrum awareness in cognitive radio systems. Selected Topics in Signal Processing, IEEE

Journal of, 6(1):26–42, 2012.

Dyonisius Dony Ariananda and Geert Leus. Wideband power spectrum sensing using sub-

21



nyquist sampling. In Signal Processing Advances in Wireless Communications (SPAWC),

2011 IEEE 12th International Workshop on, pages 101–105. IEEE, 2011.

E. Axell and E. G. Larsson. Optimal and sub-optimal spectrum sensing of ofdm signals in

known and unknown noise variance. Selected Areas in Communications, IEEE Journal

on, 29(2):290–304, 2011.

Simin Bokharaiee, Ha H Nguyen, and Ed Shwedyk. Blind spectrum sensing for ofdm-based

cognitive radio systems. Vehicular Technology, IEEE Transactions on, 60(3):858–871,

2011.

S. Chaudhari, V. Koivunen, and H. V. Poor. Autocorrelation-based decentralized sequential

detection of ofdm signals in cognitive radios. Signal Processing, IEEE Transactions on,

57(7):2690–2700, 2009.

D. Cohen, E. Rebeiz, V. Jain, Y. C. Eldar, and D. Cabric. Cyclostationary feature detection

from sub-Nyquist samples. In IEEE CAMSAP, pages 333–336, 2011.

A. S. Goldberger. A Course in Econometrics. Harvard University Press, 1991.

S. Haykin, D.J. Thomson, and J.H. Reed. Spectrum sensing for cognitive radio. Proceedings

of the IEEE, 97(5):849 –877, May 2009.

S.M. Kay. Fundamentals of statistical signal processing: detection theory. Prentice Hall,

1998.

Sami Kirolos, Jason Laska, Michael Wakin, Marco Duarte, Dror Baron, Tamer Ragheb,

Yehia Massoud, and Richard Baraniuk. Analog-to-information conversion via random

demodulation. In Design, Applications, Integration and Software, 2006 IEEE Dallas/CAS

Workshop on, pages 71–74. IEEE, 2006.

Geert Leus and Zhi Tian. Recovering second-order statistics from compressive measurements.

22



In Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011 4th

IEEE International Workshop on, pages 337–340. IEEE, 2011.

M. Mishali and Y.C. Eldar. From theory to practice: Sub-Nyquist sampling of sparse wide-

band analog signals. Selected Topics in Signal Processing, IEEE Journal of, 4(2):375 –391,

April 2010.

M. Mishali and Y.C. Eldar. Wideband spectrum sensing at sub-Nyquist rates. Signal Pro-

cessing Magazine, IEEE, 28(4):102 –135, July 2011.

Moshe Mishali, Yonina C Eldar, and Asaf J Elron. Xampling: Signal acquisition and pro-

cessing in union of subspaces. Signal Processing, IEEE Transactions on, 59(10):4719–4734,

2011.

J. Mitola and G. Q. Maguire. Cognitive radio: making software radios more personal.

Personal Communications, IEEE, 6(4):13 –18, Aug. 1999.

Y.L. Polo, Y. Wang, A. Pandharipande, and G. Leus. Compressive wide-band spectrum

sensing. In IEEE International Conference on Acoustics, Speech and Signal Processing,

2009., pages 2337 –2340, Apr. 2009.

S. A. Razavi, M. Valkama, and D. Cabric. High-resolution cyclic spectrum reconstruction

from sub-Nyquist samples. In IEEE Workshop on Signal rocessing Advances in Wireless

Communications (IEEE SPAWC 2014), pages 250–254, June 16-19 2013.

S. A. Razavi, M. Valkama, and D. Cabric. Signature-assisted rendezvous in ofdm-based

cognitive networks using sub-Nyquist samples. In Proc. 8th IEEE International Workshop

on Sensor Array and Multichannel Signal Processing, (IEEE SAM 2014), pages 401–404,

June 22-25 2014.

E. Rebeiz, V. Jain, and D. Cabric. Cyclostationary-based low complexity wideband spectrum

23



sensing using compressive sampling. In International Conference on Communications (ICC

2012), 2012.

G. A. F. Seber. A Matrix Handbook for Statisticians. Wiley-Interscience, 2008.

H. Sun, W. Chiu, J. Jiang, A. Nallanathan, and H. V. Poor. Wideband spectrum sensing

with sub-Nyquist sampling in cognitive radios. Signal Processing, IEEE Transactions on,

60(11):6068 –6073, Nov. 2012.

Hongjian Sun, Wei-Yu Chiu, Jing Jiang, Arumugam Nallanathan, and H Vincent Poor.

Wideband spectrum sensing with sub-nyquist sampling in cognitive radios. arXiv preprint

arXiv:1302.1847, 2013.

P. D. Sutton, K. E. Nolan, and L. E. Doyle. Cyclostationary signatures in practical cognitive

radio applications. Selected Areas in Communications, IEEE Journal on, 26(1):13–24, Jan.

2008.

Z. Tian and G.B. Giannakis. Compressed sensing for wideband cognitive radios. In IEEE

International Conference on Acoustics, Speech and Signal Processing, 2007., pages IV–

1357 –IV–1360, April 2007.

Z. Tian, Y. Tafesse, and B. Sadler. Cyclic feature detection with sub-Nyquist sampling for

wideband spectrum sensing. Selected Topics in Signal Proc., IEEE Journal of, 6(1):58

–69, Feb. 2012.

Zhi Tian. Compressed wideband sensing in cooperative cognitive radio networks. In Global

Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE, pages 1–5. IEEE,

2008.

Zhi Tian. Cyclic feature based wideband spectrum sensing using compressive sampling. In

Communications (ICC), 2011 IEEE International Conference on, pages 1–5. IEEE, 2011.

24

http://arxiv.org/abs/1302.1847


Joel A Tropp, Jason N Laska, Marco F Duarte, Justin K Romberg, and Richard G Baraniuk.

Beyond nyquist: Efficient sampling of sparse bandlimited signals. Information Theory,

IEEE Transactions on, 56(1):520–544, 2010.
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Figure 1: Probability of Detection versus SNR for various compression ratios ρ. The number
of blocks is NB = 100 and the probability of false-alarm is PFA = 0.05. The solid curves with
circle markers correspond to the case where the threshold has been determined based on
the true PFA computed from the simulated data. The dotted curves with diamond markers
correspond to the case where the threshold has been determined from formula (26). The
dashed curves with square markers correspond to the PSD recovery method introduced in
Tian et al. (2012). Color conventions are as follows. Blue: ρ = 0.2, red: ρ = 0.4, black:
ρ = 0.6, magenta: ρ = 0.8, green: ρ = 1. As it can be seen the proposed algorithm
clearly outperforms the method introduced in Tian et al. (2012). Furthermore, the very
small distance between the solid curves with circle markers and the dotted curves with
diamond markers shows the exactness of the approximation we adopted.
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Figure 2: Probability of Detection versus SNR for various compression ratios ρ. The number
of blocks is NB = 100 and the probability of false-alarm is PFA = 0.05. The solid curves
correspond to the case where the threshold has been determined based on the true PFA

computed from the simulated data. The dashed curves correspond to the PSD recovery
method introduced in Tian et al. (2012). The color conventions are as in Figure 1. As it can
be seen the proposed algorithm clearly outperforms the method introduced in Tian et al.
(2012).
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Figure 3: Probability of Detection versus SNR for various number of blocks NB. The
compression ratio is ρ = 0.4 and the probability of false-alarm is PFA = 0.05. The solid
curves with circle markers correspond to the case where the threshold has been determined
based on the true PFA computed from the simulated data. The dotted curves with diamond
markers correspond to the case where the threshold has been determined from formula
(26). The dashed curves with square markers correspond to the PSD recovery method
introduced in Tian et al. (2012). Color conventions are as follows. Blue: NB = 100, red:
NB = 400, black: NB = 700, magenta: NB = 1000. As it can be seen the proposed
algorithm clearly outperforms the method introduced in Tian et al. (2012). Furthermore,
the very small distance between the solid curves with circle markers and the dotted curves
with diamond markers shows the exactness of the approximation we adopted.
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Figure 4: Probability of Detection versus SNR for various number of blocks NB. The
compression ratio is ρ = 0.4 and the probability of false-alarm is PFA = 0.05. The solid
curves correspond to the case where the threshold has been determined based on the true
PFA computed from the simulated data. The dashed curves correspond to the PSD recovery
method introduced in Tian et al. (2012). The color conventions are as in Figure 3. As it can
be seen the proposed algorithm clearly outperforms the method introduced in Tian et al.
(2012).
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Figure 5: Effect of frequency-selectivity of the channels on the performance of the proposed
method. The channel length is L+ 1 and ρ is the compression ratio.
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