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Abstract

The Bayesian smoothing equations are generally intractable for systems de-
scribed by nonlinear stochastic differential equations and discrete-time mea-
surements. Gaussian approximations are a computationally efficient way to
approximate the true smoothing distribution. In this work, we present a com-
parison between two Gaussian approximation methods. The Gaussian filtering
based Gaussian smoother uses a Gaussian approximation for the filtering distri-
bution to form an approximation for the smoothing distribution. The variational
Gaussian smoother is based on minimizing the Kullback–Leibler divergence of
the approximate smoothing distribution with respect to the true distribution.
The results suggest that for highly nonlinear systems, the variational Gaus-
sian smoother can be used to iteratively improve the Gaussian filtering based
smoothing solution. We also present linearization and sigma-point methods to
approximate the intractable Gaussian expectations in the Variational Gaussian
smoothing equations. In addition, we extend the variational Gaussian smoother
for certain class of systems with singular diffusion matrix.

Keywords: Bayesian smoothing; Gaussian approximation; Variational
inference

1. Introduction

The continuous-discrete system refers to a system whose process dynamics
are governed by a continuous-time stochastic differential equation (SDE) and
whose measurements are taken at discrete time instants. Bayesian filtering
and smoothing equations give the solution to the problem of estimating the
state of the system from the noisy measurements. Computing the filtering and
smoothing distributions involves solving the related partial differential equations
[1, 2], and is only tractable for linear-Gaussian systems (and some other special
cases [3]). In this paper, we consider two different approaches for computing a
Gaussian approximation for the smoothing distribution.
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The Gaussian approximation for the filtering and smoothing equations is well
known in the literature. The first Gaussian approximations were based on lin-
earization using the Taylor series based methods [4, 1]. The Taylor series based
methods can be seen as a special case of the more general Gaussian filtering and
smoothing framework, where different filters and smoothers arise based on the
numerical method for computing the Gaussian expectations [5, 6]. A different
approach for Gaussian smoothing was considered in [7, 8, 9], where a Gaussian
approximation is sought by approximating the stochastic process giving the
smoothed distribution with a linear process. The method is based on the fixed-
form variational Bayes approximation [10] and minimizes the Kullback–Leibler
divergence of the approximate distribution with respect to the true distribution.

The variational Gaussian approximation is considered further in [11, 12, 13,
14]. Shen et al. [11] compared the variational approximation to a Monte Carlo
Markov Chain (MCMC) solution for the one dimensional double well system
and found that the variational method performed comparatively to the MCMC
solution when the uncertainties in the measurements were not so large as to
cause the true posterior to be multimodal. In [12] the variational Gaussian
smoothing solution is used as a proposal distribution in an MCMC method to
improve the efficiency of the algorithm. The variational MCMC method was
found to outperform the hybrid Monte Carlo method for sparsely observed diffu-
sion processes. Vrettas et al. [13, 14] considered approximating the variational
Gaussian smoothing equations using a radial basis function representation for
the variational parameters. By imposing a certain structure for the variational
parameter functions, the overall number of parameters to be optimized can be
reduced.

The variational Gaussian smoothing equations derived by Archambeau et

al. [7, 8, 9] require a non-singular effective diffusion matrix. Our first goal is
to extend the variational Gaussian approximation to a certain class of singular
models by considering an alternative derivation based on Girsanov’s theorem.

Another problem in the variational Gaussian algorithm is the need to com-
pute Gaussian expectations over nonlinear functions. Previous works on the
variational approximation [7, 8, 11, 13, 14] have not presented details for com-
puting the Gaussian expectations for general nonlinear systems. Our second
goal is to extend the variational Gaussian smoothing method for general non-
linear systems by considering numerical approximations for the Gaussian ex-
pectations. The treatment is similar to the one in [6], where Taylor series based
linearization, cubature and unscented transform based sigma-point methods and
Gauss–Hermite quadrature were used to compute Gaussian expectations in the
Gaussian smoothers based on the classical Gaussian filtering framework.

In addition, we provide in this paper a comparison between the variational
Gaussian approximation and the Gaussian smoothers presented in [6]. Using a
suitable change of variables the Gaussian smoothing equations can be converted
to a variational form similar to the variational Gaussian smoothing equations.
The computation of the Gaussian filtering based smoothing solution is numer-
ically stable and provides good initial conditions for the variables in the varia-
tional Gaussian smoothing algorithm. This might help to overcome the problems
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reported by Vrettas et al. [13] in the initialization of the variational Gaussian
algorithm for high dimensional systems. Also, we study if the variational Gaus-
sian smoother can be used to iteratively improve the results from the Gaussian
filtering based smoother.

The organization of this paper is as follows. First we present the varia-
tional Gaussian smoother and the Gaussian smoother based on the Gaussian
filtering framework for the continuous-discrete system. Here we extend the
variational Gaussian smoothing equations for a certain class of singular models.
Next we compare theoretically the Gaussian smoothers by presenting a con-
version of the Gaussian filtering based smoothing equations to the variational
form by a suitable change of variables. This also provides the initial values
for the variational Gaussian smoothing algorithm. The problem of numerically
computing the Gaussian expectations in the variational Gaussian smoothing
equations is treated in the next section. We present Taylor series lineariza-
tion and sigma-point methods to approximate the Gaussian expectations in
the variational Gaussian smoothing equations. The paper concludes with two
synthetic-data examples that are used to compare the Gaussian smoothers, and
also provides comparison of the different numerical methods for the computation
of the Gaussian expectations.

1.1. Problem statement

The continuous-discrete system considered in this paper is given by

dx = f(x, t) dt+ L(t)dβ(t), (1)

yk = hk(x(tk)) + vk, (2)

where x(t) is the state, f(x(t), t) is the drift term, and β(t) is a Brownian motion
stochastic process with diffusion matrix Q(t). The effective diffusion matrix for
the process is given by

Σ(t) = L(t)Q(t)LT (t). (3)

The initial conditions are assumed to be normally distributed x(t0) ∼ N(m0, P0).
The measurement noise {vk} is a zero mean Gaussian white noise sequence with
covariance matrix Rk. The measurement noise {vk}, process noise β(t) and
initial conditions x0 are assumed to be mutually independent.

Let y1, . . . , yK be the measurements taken at discrete time instants t1, . . . , tK .
The solution to the Bayesian smoothing problem is the posterior distribution

p(x(t) | y1, . . . , yK), t ∈ [t0, tk]. (4)

In this paper, we concentrate on Gaussian approximations for the smoothing
distribution. That is, the smoothing distribution is approximated as

p(x(t) | y1, . . . , yK) ≈ N(x(t) |m(t), P (t)), (5)

where m(t) is the mean function and P (t) is autocovariance P (t, t′) at t = t′ for
the approximating distribution. The smoothing problem now reduces to finding
the expressions for the mean and covariance functions.
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2. Gaussian smoothing for continuous-discrete systems

2.1. Variational Gaussian approximation

The variational Gaussian approximation for the continuous-discrete smooth-
ing problem was derived by Archambeau et al. [7, 8, 9]. The method is based
on approximating the smoothing process with a linear process

dx = [−A(t) + b(t)]dt+
√

Σ(t)dβ(t), (6)

where A(t) and b(t) are parameters of the approximation and β(t) is a Brownian
stochastic process with identity diffusion matrix. The solution to the linear
SDE (6) is a Gaussian process. The marginal density at each time is given
by q(x(t)) = N(x(t) |m(t), P (t)), where the mean and covariance are computed
from the ordinary differential equations

d

dt
m(t) = −A(t)m(t) + b(t) (7)

d

dt
P (t) = −A(t)P (t)− P (t)AT (t) + Σ(t). (8)

The parameters A(t) and b(t) are computed by minimizing the Kullback–Leibler
(KL) divergence of the probability law QX of the approximating process with
respect to the probability law PX |Y of the true smoothing process. The KL-
divergence is given by [7, 8, 9]

KL(QX ||PX |Y ) =

∫ tK

t0

Eq

[

e(x(t), t) +

K
∑

k=1

uk(x(t))δ(t − tk)

]

dt, (9)

where

e(x(t), t) =
1

2
[f(x(t), t) +A(t)x(t) − b(t)]TΣ−1(t)[f(x(t), t) +A(t)x(t) − b(t)],

(10)

uk(x(t)) =
1

2
[yk − hk(x(t))]

T R−1
k [yk − hk(x(t))] . (11)

The expectations Eq[·] are computed with respect to the marginal distribution
q(x(t)) of the approximating process.

The KL-divergence is minimised using the mean and covariance differential
equations (7) and (8) as constraints. Introducing Lagrange multiplier functions
λ(t) and Ψ(t) for the constraints, the objective function is given by

F(A, b,m, P ) =

∫ tK

t0

{

Eq

[

e(x, t) +

K
∑

k=1

uk(x)δ(t − tk)

]

−λ(t)T
(

dm

dt
+A(t)m(t) − b(t)

)

− tr

[

Ψ(t)

(

dP

dt
+A(t)P (t) + P (t)A(t)T − Σ(t)

)]}

dt. (12)
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For notational convenience, we use x = x(t). The Euler–Lagrange equations for
the optimal A(t) and b(t) can then be written as [7,8]

d

dt
λ(t) = AT (t)λ(t) −∇m Eq[e(x, t)]] (13)

d

dt
Ψ(t) = Ψ(t)A(t) +AT (t)Ψ(t)−∇P Eq[e(x, t)] (14)

A(t) = −Eq[Fx(x, t)] + 2Σ(t)Ψ(t) (15)

b(t) = Eq[f(x, t)] +A(t)m(t) − Σ(t)λ(t). (16)

At observation times, the Lagrange multiplier functions satisfy

λ(t+k ) = λ(t−k ) +∇m Eq[uk(x)], (17)

Ψ(t+k ) = Ψ(t−k ) +∇P Eq[uk(x)]. (18)

To find a solution satisfying the Euler–Lagrange equations, we propose here
a slight modification of the iterative algorithm given by Archambeau et al.

[7, 8]. Given the previous estimates A(k)(t) and b(k)(t), the mean and covariance
differential equations (7) and (8) are solved forward in time from t0 which gives
m(k+1)(t) and P (k+1)(t). Using these, the Lagrange differential equations (13)
and (14) are then solved backward in time from tK which gives λ(k+1)(t) and
Ψ(k+1)(t). New estimates A(k+1)(t) and b(k+1)(t) are then computed by using a
damped fixed-point update

A(k+1)(t) = A(k)(t) + γk

(

A(t) −A(k)(t)
)

(19)

b(k+1)(t) = b(k)(t) + γk

(

b(t)− b(k)(t)
)

, (20)

where A(t) and b(t) are computed using Equations (15) and (16) respectively,
and γk ∈ (0, 1) is a damping parameter that is used to prevent numerical in-
stabilities caused by too large updates. Instead of using constant damping
parameter as in [7], we propose to select the parameter γk using backtracking
line search so that the objective function and therefore also the KL-divergence
is reduced at each time step. In a computer implementation of the variational
Gaussian smoother, the values of the functions A(t) and b(t) are computed and
stored at discrete time points. The differential equations can be solved using
any standard numerical solver such as Euler or Runge–Kutta methods.

2.2. Variational Gaussian smoothing for singular models

Note that to compute the term e(x, t), a nonsingular effective diffusion ma-
trix Σ(t) is required. We extend here the variational Gaussian smoother to
singular models of the form

dx1

dt
= F1(t)x (21)

dx2 = f2(x, t) dt +
√

Σ2(t) dβ, (22)
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where Σ2(t) is a nonsingular diffusion matrix.
Denote by n1 and n2 the dimensions of the state vectors x1 and x2 respec-

tively. We now seek an approximate smoothing process of the form

dx1

dt
= F1(t)x (23)

dx2 = (−A(t)x + b(t)) dt+
√

Σ2(t) dβ, (24)

where A(t) and b(t) are the variational parameters. This gives a Gaussian
process, where mean m(t) and covariance P (t) follow the differential equations

d

dt
m(t) = −Ã(t)m(t) + b̃(t) (25)

d

dt
P (t) = −Ã(t)P (t) − P (t)ÃT (t) + Σ(t), (26)

with

Ã(t) =

[

−F1(t)
A(t)

]

, b̃(t) =

[

0n1×1

b(t)

]

, Σ(t) =

[

0n1×n1
0n1×n2

0n2×n1
Σ2(t)

]

. (27)

The KL-divergence term for the singular system can be computed using Gir-
sanov’s theorem and is given by (see [15] and Appendix A for details)

KL(QX ||PX |Y ) =

∫ tK

t0

Eq

[

e(x, t) +

K
∑

k=1

uk(x)δ(t − tk)

]

dt, (28)

where uk(x) is given by eq. (11) and

e(x, t) =
1

2
[f2(x, t) +A(t)x(t) − b(t)]TΣ−1

2 (t)[f2(x, t) +A(t)x(t) − b(t)]. (29)

The objective function is given by

F(A, b,m, P ) =

∫ tK

t0

{

Eq

[

e(x, t) +

K
∑

k=1

uk(x)δ(t − tk)

]

− λ(t)T
(

dm

dt
+ Ã(t)m(t)− b̃(t)

)

− tr

[

Ψ(t)

(

dP

dt
+ Ã(t)P (t) + P (t)Ã(t)T − Σ(t)

)]}

dt (30)

and the solution satisfies

d

dt
λ(t) = ÃT (t)λ(t) −∇m Eq[e(x, t)]] (31)

d

dt
Ψ(t) = Ψ(t)Ã(t) + ÃT (t)Ψ(t)−∇P Eq[e(x, t)] (32)

A(t) = −Eq[F2,x(x, t)] + 2Σ2(t)MΨ(t) (33)

b(t) = Eq[f2(x, t)] +A(t)m(t) − Σ2(t)Mλ(t), (34)
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where F2,x(x, t) is the Jacobian of f2(x, t) and the matrix M , which selects the
relevant part of the Lagrange parameter functions, is given by

M =
[

0n1×n2
In2×n2

]

. (35)

At observation times, the Lagrange multipliers satisfy the boundary conditions
given by eqs. (17)-(18).

2.3. Gaussian filtering based Gaussian smoother

The Gaussian filtering based Gaussian smoother uses the Gaussian approxi-
mation for the filtering distribution to form the Gaussian approximation for the
smoothing distribution [6].

The Gaussian filtering (or Gaussian assumed density filtering) approach is
well known in the literature (see e.g. [16, 1, 17]) and uses the approximation

p(x(t) | y1, . . . , yk) ≈ N(x(t) |mf (t), Pf (t)), (36)

where p(x(t) | y1, . . . , yk) is the filtering distribution. The mean and covariance
function are recursively computed using the following prediction and update
steps. In the prediction step the mean and covariance functions are propagated
from time tk−1 to time tk using

dmf

dt
= Ef [f(x, t)] (37)

dPf

dt
= Ef [(x−mf )f(x, t)

T ] + Ef [f(x, t)(x −mf )
T ] + Σ(t). (38)

In the update step, the information from the latest measurement yk is used to
update the predicted estimates m(t−k ) and P (t−k ) using equations

Sk = Ef

[

(hk(x) − Ef [hk(x)])(hk(x) − Ef [hk(x)])
T
]

+Rk (39)

Kk = Ef

[

(x−mf (t
−
k ))(hk(x) − Ef [hk(x)])

T
]

S−1
k (40)

mf (tk) = mf (t
−
k ) +Kk (yk − Ef [hk(x)]) (41)

Pf (tk) = Pf (t
−
k )−KkSkK

T
k . (42)

Särkkä and Sarmavuori [6] extend the general Gaussian filtering ideas also
to smoothing problems and derive three types of Gaussian smoothers labeled
as type I, type II and type III. The type I smoother is derived by using the
Gaussian approximation for the filtering distribution to approximate the ex-
act partial differential equations for the smoothed mean and covariance. The
type II smoother is derived by discretizing the dynamic model, applying the
discrete-time smoothing equations and then taking the limit as the discretiza-
tion time approaches zero. Formulating the type II smoothing equations into a
computationally efficient form gives the type III smoother.

The type I smoothing equations are numerically quite sensitive, which causes
the type I smoother to diverge quite often compared to the type II and type
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III smoothers. Also, the type I smoother is computationally more demanding
and was not found to be clearly better than the type II and type III smoothers
in the synthetic-data example considered in [6]. For this reason we decided to
concentrate on the type II and type III smoothers in this paper.

The type II smoothing equations are given by

dms

dt
= Ef [f(x, t)] +

[

Ef [f(x, t)(x −mf )
T ] + Σ(t)

]

P−1
f (ms −mf ) (43)

dPs

dt
= (Ef [f(x, t)(x−mf )

T ] + Σ)P−1
f Ps

+ PsP
−1
f (Ef [f(x, t)(x −m)T ]T +Σ(t))− Σ(t). (44)

If the Jacobian Fx(x, t) of f(x, t) is available, we can alternatively use

Ef [f(x, t)(x −mf )
T ] = Ef [Fx(x, t)]Pf (45)

in the filtering and smoothing equations. The expectations in the smoothing
equations are with respect to the filtering density, which means that they can
be computed already during the filtering stage. This is used in the type III
smoothing equations, which reformulate the filtering and type II smoothing
equations so that no expectations need to be computed during the smoothing
stage (see [6] for details).

2.4. Differences between the Gaussian smoothers

In this section, we study the differences between the variational and Gaussian
filtering based Gaussian smoothers. First we introduce a change of variables
that converts the type II Gaussian smoothing equations to a form similar to
the variational Gaussian smoothing equations. This conversion is similar to the
results from Rauch, Tung and Striebel [18], where it was shown that the Rauch–
Tung–Striebel smoothing equations are formally equivalent to the smoothing
equations presented by Bryson and Frazier [4].

The conversion is achieved by using the change of variables

λ(t) = −P−1
f (t)(ms(t)−mf (t)), Ψ(t) = −1

2
(P−1

f (t)− P−1
s (t)). (46)

Inserting λ(t) and Ψ(t) to the Equations (43)-(44) and computing the time
derivatives of λ(t) and Ψ(t) gives (see Appendix B)

d

dt
ms(t) = −A(t)ms(t) + b(t) (47)

d

dt
Ps(t) = −A(t)P (t)− P (t)AT (t) + Σ(t) (48)

d

dt
λ(t) = AT (t)λ(t) − 2Ψ(t)Σ(t)λ(t) (49)

d

dt
Ψ(t) = Ψ(t)A(t) +AT (t)Ψ(t)− 2Ψ(t)Σ(t)Ψ(t), (50)

8



where

A(t) = −Ef [Fx(x, t)] + 2Σ(t)Ψ(t) (51)

b(t) = Ef [f(x, t)] + Ef [Fx(x, t)](ms(t)−mf (t)) +A(t)ms(t)− Σ(t)Ψ(t).
(52)

For linear measurement function hk(x) = Hkx, the measurement update for
λ(t) and Ψ(t) in the variational form of the type II smoother is the same as in
the variational Gaussian smoother and is given by

λ(t+k ) = λ(t−k ) +HT
k R−1

k (ms(tk)− yk) (53)

Ψ(t+k ) = Ψ(t−k ) +
1

2
HT

k R
−1
k Hk. (54)

For nonlinear measurement function, the measurement updates for λ(t) and Ψ(t)
are in general not equal to the variational Gaussian smoother update Equations
(17) and (18).

Similarities to the variational Gaussian smoothing equations are evident from
Equations (47)-(52). Note that Equations (51) and (52) for the parameters A(t)
and b(t) are otherwise similar to the variational Gaussian smoothing Equations
(15) and (16), but the function f(x, t) is replaced with statistical linearization
with respect to the filtering distribution:

f(x, t) ≈ Ef [f(x, t)] + Ef [Fx(x, t)](x −mf (t)). (55)

Furthermore, using the statistical linearization (55) to approximate the gradi-
ents in Equations (13) and (14) gives

∇m E[e(x, t)] ≈ 2Ψ(t)Σ(t)λ(t) (56)

∇P E[e(x, t)] ≈ 2Ψ(t)Σ(t)Ψ(t). (57)

That is, the differential equations (49) and (50) can be seen as an approximation
to the exact differential equations (13) and (14) in the variational Gaussian
smoother. This suggests that for linear measurements, the type II Gaussian
smoother can be seen to approximate the variational Gaussian smoother by
using statistical linearization with respect to the filtering distribution.

We can use the type II Gaussian smoothing solution as an initial iterand for
the variational parameters by computing A(0)(t) and b(0)(t) using equations (51)
and (52), where λ(t) and Ψ(t) are given by (46). In [13] it was noted that the
iterative solution of the variational Gaussian smoothing equations is sensitive
to the initial values of the variational parameters A(t) and b(t). This way,
the variational Gaussian smoother can be seen as an iterative way to improve
the type II Gaussian smoothing solution. The benefit of using the variational
Gaussian smoother to improve the type II smoother results is studied further
in the synthetic-data examples.
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3. Computation of Gaussian expectations in the variational Gaussian

smoother

The Gaussian smoothers considered in this paper require computations of
Gaussian expectations over arbitrary nonlinear functions. For some simple mod-
els these can be computed analytically, but for many models no analytical ex-
pression exists. The computation of Gaussian expectations for the Gaussian
filtering based smoothers is presented in [6]. In this work we concentrate on
computing the expectations in the variational Gaussian smoothing equations
and present the extended, cubature, unscented and Gauss–Hermite forms of the
variational Gaussian smoother.

Gaussian expectations need to be computed in the differential equations
(13) and (14) for the functions λ(t) and Ψ(t), in Equations (15) and (16) for the
variational parameter functions A(t) and b(t) and in the measurement update
equations (17) and (18). In order to avoid computing derivatives of the drift
function f(x, t) and of the measurement function hk(x), the gradients with
respect to m(t) and P (t) can be written in the form (see Appendix C)

∇m E[e(x, t)] = P−1 E[e(x, t)(x −m)] (58)

∇P E[e(x, t)] =
1

2
P−1 E[e(x, t)(x−m)(x −m)T ]P−1 − 1

2
E[e(x, t)]P−1. (59)

For the measurement updates, the gradients are computed similarly with e(x, t)
replaced by uk(x).

If the Jacobians Fx(x, t) and Hk,x(x) of f(x, t) and hk(x) are available, the
gradients can be alternatively written in the form

∇m E[e(x, t)] = E[ex(x, t)] (60)

∇P E[e(x, t)] =
1

2
P−1 E[ex(x, t)(x −m)T ]T . (61)

where

ex(x, t) = ∇xe(x, t) = [Fx(x, t) +A(t)]TΣ−1(t)[f(x, t) +A(t)x(t) − b(t)]. (62)

To compute the gradients in the measurement update, ex(x, t) is replaced with

uk,x(x) = ∇xuk(x) = HT
k,x(x)R

−1
k [hk(x) − yk]. (63)

3.1. Taylor series based linearization

In the extended Kalman filter and smoother, the Gaussian expectations are
computed by using a first order Taylor series linearization. Proceeding simi-
larly, we use the following approximations for the extended variational Gaussian
smoother:

f(x, t) ≈ f(m, t) + Fx(m, t)(x(t) −m(t)) (64)

hk(x) ≈ hk(m) +Hk,x(m)(x(t)) −m(t)), (65)
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where Fx(m, t) and Hk,x(m) are the Jacobians of f(x, t) and hk(x) respectively
evaluated at the current mean estimate m(t). Using this approximation, the
expectations in Equations (15) and (16) are given by

E[f(x, t)] ≈ f(m, t), (66)

E[Fx(x, t)] ≈ Fx(m, t). (67)

The expectations needed in the gradients are given by

∇m E[e(x, t)] ≈ (Fx(m, t) +A(t))TΣ−1(t)(f(m, t) +A(t)m(t) − b(t)) (68)

∇P E[e(x, t)] ≈ 1

2
(Fx(m, t) +A(t))TΣ−1(t)(Fx(m, t) +A(t)) (69)

and for the measurement update

∇m E[uk(x)] ≈ HT
k,x(m)R−1

k (t)(hk(m)− yk) (70)

∇P E[uk(x)] ≈
1

2
HT

k,x(m)TR−1
k (t)Hk,x(m). (71)

3.2. Sigma-point methods

The general sigma-point rule computes the Gaussian expectations using the
approximation

E[g(x, t)] ≈
∑

i

W (i)g(m+
√
Pξi, t), (72)

where the weights W (i) and vectors ξi are chosen depending on the used sigma-
point method. In this paper we consider the cubature, unscented and Gauss–
Hermite sigma-point methods. The cubature method uses 2n sigma-points with
vectors

ξi =

{ √
nei, i = 1, . . . , n

−√
nei−n, i = n+ 1, . . . , 2n

(73)

and weights W (i) = 1/(2n) for all i = 1, . . . , 2n. The unscented transform uses
2n+ 1 sigma-points with vectors

ξ0 = 0, ξi =

{ √
λ+ nei, i = 1, . . . , n

−
√
λ+ nei−n, i = n+ 1, . . . , 2n.

, (74)

where λ = α2(n + κ) − n and α, β and κ are parameters of the method. The
weights are defined to be

W (0)
m =

λ

n+ λ
, W (i)

m =
1

2(n+ λ)
, i = 1, . . . , 2n (75)

W (0)
c = W (0)

m + 1− α2 + β, W (i)
c = W (i)

m , i = 1, . . . , 2n. (76)

The weights Wm are used in approximating the transformed mean and Wc in
the covariance approximation. The cubature method is a special case of the
unscented transform with parameters α = 1, β = κ = 0. The Gauss–Hermite
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integration uses sn sigma-points, where s is a parameter that gives the order of
the used Hermite polynomial. Details for computing the vectors ξi and weights
W (i) are given in [17, 5].

The sigma-point approximation for expectations in Equations (15) and (16)
is given by

E[f(x, t)] ≈
∑

i

W (i)f(m+
√
Pξi, t) (77)

E[Fx(x, t)] = E[f(x, t)(x −m)T ]P−1 ≈
∑

i

W (i)f(m+
√
Pξi, t)ξ

T
i

√
P

−1
. (78)

The general sigma-point approximations for the gradients are given by

∇m E[e(x, t)] ≈
∑

W (i)e(m+
√
Pξi, t)

√
P

−1
ξi (79)

∇P E[e(x, t)] ≈ 1

2

∑

W (i)e(m+
√
Pξi, t)

√
P

−T (

ξiξ
T
i − I

)
√
P

−1
. (80)

The expectations needed in the observation updates (17) and (18) are computed
with e(x, t) replaced by uk(x).

The sigma-point approximation for the alternative forms (60) and (61) of
the gradients are given by

∇m E[e(x, t)] ≈
∑

W (i)ex(m+
√
Pξi), (81)

∇P E[e(x, t)] ≈ 1

2

∑

W (i)
√
P

−T
ξie

T
x (m+

√
Pξi, t). (82)

The measurement updates are computed similarly, with ex(x, t) replaced by
uk,x(x). The cubature, unscented and Gauss–Hermite forms of the variational
Gaussian smoother are then obtained by using the corresponding choice for the
weights W (i) and vectors ξi.

For a linear drift function f(x, t), the term E[e(x, t)(x − m)(x − m)T ] is a
fourth order polynomial. For this reason, the sigma-point rules that are only
accurate up to a third order monomial (cubature and unscented rule) give gen-
erally a poor approximation of this expectation. Therefore, for cubature and
unscented sigma-point methods, the use of the alternative form given by Equa-
tions (81) and (82) is recommended.

4. Numerical experiments

The Gaussian smoothers are compared using two different synthetic-data
experiments. The tests are done by running first the Gaussian filtering based
Gaussian smoother (GFGS) and then using the result as initial conditions for the
variational Gaussian smoother (VGS). The VGS iteration is terminated when
the absolute change in the KL-divergence between successive iterations is less
than 10−3.
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In the first experiment, a one dimensional double well system is used. The
same system was also used to demonstrate the VGS in [7, 11, 13]. A 5-
dimensional reentry problem is used for the second experiment. This system
was used to test the continuous-discrete unscented Kalman filter in [19] and
demonstrates the use of VGS for singular systems. Also, for this system the
computation of the needed Gaussian expectations is not possible analytically.

The metrics used to compare the estimates given by the Gaussian smoothers
are the root mean square error (RMSE), negative log-likelihood (NLL) and 95%-
consistency. The RMSE and NLL are given by equations

RMSE =

√

1

tK − t0

∫ tK

t0

‖x(t)−m(t)‖2 dt (83)

NLL =
1

tK − t0

∫ tK

t0

lnN(x(t) |m(t), P (t)) dt, (84)

where x(t) is the true state, m(t) is the estimated mean and P (t) is the estimated
covariance. The 95%-consistency is defined as the fraction of times the true state
is inside the 95% ellipsoid of N(m(t), P (t)). The values of the continuous time
metrics are computed using the values of m(t) and P (t) computed at discrete
time points.

The different approximation methods for computing the Gaussian expecta-
tions in the smoothing equations are also compared. The tested methods are
labeled as

• EXT: The method using the Taylor series based linearization.

• CT: Cubature rule based sigma-point method.

• UT: Unscented rule based sigma-point method with paremeter values α =
1, β = 2 and κ = 0.

• G-H: Gauss–Hermite series based sigma-point method with order 3.

The methods labeled CT2, UT2 and G-H2 use the respective sigma-point method
with the alternative formulation given in Equations (81) and (82).

4.1. Double well

The double well system is given by

dx = 4x(1− x2)dt+
√
σdβ, yk = x(tk) + vk, (85)

where the measurement noise vk is zero-mean Gaussian with variance R. The
prior distribution for the double well system is non-Gaussian and multimodal,
but the smoothing distribution can be reasonably well approximated with a
Gaussian provided that the measurement variance is not too large. The modes
are located at x = 1 and x = −1 and for sufficiently large value of the process
noise parameter σ, there is frequent transition from one mode to the other.

13



Table 1: The mean 95%-consistencies for the GFGS and VGS for different values of mea-
surement variance. The Gaussian expectations in the smoothing equations are computed
analytically.

Measurement variance R
0.02 0.1 0.5 2.5

GFGS 0.93 0.89 0.81 0.91
VGS 0.91 0.88 0.80 0.74

The Gaussian smoothers are compared for 4 different values for the measure-
ment variance R. For each value of the measurement variance R, a data set of
100 Monte Carlo simulations is generated using Euler–Maruyama discretization
with time step ∆t = 0.01 from t0 = 0 to t = 10. The process noise parameter
is chosen to be σ = 1, which is sufficiently large to cause frequent transition
between the modes. The initial state is chosen as x(0) ∼ N(0, 1).

For this system, the Gaussian expectations needed in the Gaussian smoothers
can be computed analytically (see e.g. [7]). For both Gaussian smoothers, the
differential equations are solved using 4th order Runge–Kutta method with time
step 0.01. Average number of 35 iterations was observed for the VGS when us-
ing the GFGS results as initial conditions. Also, we observed a much faster
convergence using this initialization than with the naive initialization using just
the initial conditions.

The boxplots of the RMSE and NLL results for different values of the mea-
surement variance R are shown in Figure 1. For comparison, a reference smooth-
ing solution is also computed using a finite difference approximation of the exact
Bayesian smoothing equations [20]. For the reference solution, the NLL is com-
puted using a finite difference approximation for the smoothing density.

For small values of the measurement variance, the VGS results are very close
to the reference solution and clearly outperform the GFGS approach in terms
of RMSE and NLL. The relatively poor RMSE values for the GFGS are due to
the poor estimation of the transitions between the two modes. A typical time
series for measurement variance R = 0.1 is shown in Figure 2.

For measurement variance R = 2.5, the true posterior is bimodal and the
VGS tends to have the estimated mean close to one of the modes with relatively
small variance. This results in very large NLL values for the VGS, when the
true path is not close to the mode. In comparison, the GFGS tends to have
the mean close to zero with the 95%-confidence region covering both modes.
This shows as very good NLL values and smaller spread of the RMSE values
compared to the VGS.

The mean 95%-consistency results over the 100 Monte Carlo simulations are
shown in Table 1. From the consistency results, we see that in general the VGS
tends to underestimate the variance compared to the GFGS. This is especially
clear in the R = 2.5 case. The underestimation of the variance is a general
property of the variational type of approximations [21, p. 431].

The different approximation methods for the Gaussian expectations were
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Figure 1: The RMSE (left) and NLL (right) for the reference (grey), GFGS (red) and VGS
(blue) for different values of the measurement variance R. The Gaussian expectations in the
smoothing equations are computed analytically. The boxplots show the 5%, 25%, 50%, 75%
and 95% quantiles.
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Figure 2: The estimated mean (blue) and 95%-confidence region (shaded) for GFGS (left) and
VGS (right). True state (black) and measurements (red dot) are also shown. The Gaussian
expectations in the smoothing equations are computed analytically.

compared for measurement variance R = 0.02 and using the same data set of
100 Monte Carlo simulations as in the first experiment. The VGS failed to
converge to a solution on 5 cases using the EXT method, but no failures were
observed using the other methods.

The boxplots of the RMSE and NLL values for the GFGS and VGS when us-
ing the different methods to approximate the Gaussian expectations are shown
in Figure 3. The VGS using the EXT and G-H methods clearly improve the
results of the corresponding GFGS in terms of RMSE and NLL. Numerical
problems were observed for the VGS using CT and UT rules, which resulted in
poor RMSE and NLL values compared to the GFGS results. Using the alter-
native formulation of CT2 and UT2 works clearly better and slightly improve
the results of the GFGS using the CT and UT methods. The VGS using G-
H2 method gives results nearly identical to the VGS using the exact Gaussian
expectations.

The mean 95%-consistency values over the 100 Monte Carlo simulations are
shown in Table 2. The VGS using the EXT method shows a slight improvement
in the consistency compared to the corresponding GFGS result. For the sigma-
point methods, the differences are smaller with GFGS giving in general slightly
better consistency results.
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Table 2: The mean 95%-consistencies for the GFGS and VGS using different methods to
compute the Gaussian expectations.

Integration method
EXT CT UT G-H CT2 UT2 G-H2

GFGS 0.83 0.94 0.94 0.93 0.93 0.93 0.93
VGS 0.86 0.93 0.94 0.93 0.94 0.94 0.91

For comparison, we also included CT2, UT2 and G-H2 versions for the GFGS
that use Equation (45) to compute the Gaussian expectations. There seems to
be no significant improvement in using the alternative formulation for the GFGS.
Also, this increases the computational load, since also the Jacobian needs to be
evaluated for each sigma-point.

Integration method

RMSE            

GFGS

VGS

EXT CT UT G−H CT2 UT2 G−H2

0.3

0.4

0.5

0.6

0.7

Integration method

NLL            

GFGS

VGS

EXT CT UT G−H CT2 UT2 G−H2

0

0.5

1

1.5

2

2.5

Figure 3: The RMSE (top) and NLL (bottom) for the GFGS (red) and VGS (blue) using
different methods to compute the Gaussian expectations. The boxplots show the 5%, 25%,
50%, 75% and 95% quantiles.

4.2. Reentry

The state x = [r, v, α]T of the reentry problem consists of the vehicle’s posi-
tion r and velocity v in a 2-dimensional coordinate system and a parameter α
of its aerodynamic properties. The dynamics are given by

d





r(t)
v(t)
α(t)



 =





02×2 I2×2 01×1

G(x, t)I2×2 D(x, t)I2×2 01×1

01×2 01×2 01×1









r(t)
v(t)
α(t)



 dt+

[

02×3

I3×3

]

dβ(t),

(86)
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where the gravity related force term G(x, t) and drag related force term D(x, t)
are given by

G(x, t) = − Gm0

‖r(t)‖3 , (87)

D(x, t) = −β0e
α exp

{

R0 − ‖r(t)‖
H0

}

‖v(t)‖. (88)

The diffusion matrix for the Brownian motion β(t) is

Q(t) =





2.4064 · 10−5 0 0
0 2.4064 · 10−5 0
0 0 1 · 10−5



 . (89)

The effective diffusion matrix for this model is singular and the dynamic model
can be written in the form of Equations (21) and (22). The values β0 =
−0.59783, H0 = 13.406, Gm0 = 3.9860 · 105 and R0 = 6374 are used as typical
values for the parameters [19] (see [22]).

A radar located at s = [sx, sy]
T periodically measures the range and bearing

of the vehicle with 1 Hz frequency. The measurement model is given by

yk =

[

‖r(tk)− s‖
tan−1

(

r2(tk)−sy
r1(tk)−sx

)

]

+ vk, (90)

where the measurement noise vk is zero-mean Gaussian with covariance matrix

Rk =

[

1 · 10−3 0
0 1.7 · 10−3

]

. (91)

The state trajectory and noisy measurements are simulated from t0 = 0 to
tK = 200 using Euler–Maruyama discretization with time-step ∆t = 0.01. The
initial state is drawn from a Gaussian prior with mean and covariance given by

m(t0) =
[

6500.4 349.14 −1.8093 −6.7967 0.6932
]T

, (92)

P (t0) =

[

10−6 · I4×4 04×1

01×4 0

]

. (93)

For this model the computation of the Gaussian expectations needed in the
GFGS and VGS is not possible analytically. The Gaussian expectations were
computed using the EXT, CT, UT and G-H integration rules. For the VGS it
was necessary to use the alternative formulation of CT2 and UT2 rules, since
the CT and UT rules caused numerical problems and failure of the algorithm
to converge. For G-H this was not a problem. The differential equations were
solved using the standard 4-stage Runge–Kutta method with integration step of
0.1. The initial mean and covariance for the smoothers are given by Equation
(93), where we used m5(t0) = 0 and P5,5(t0) = 1 for the unknown aerodynamic
parameter.
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The boxplots of RMSE and NLL results for 100 Monte Carlo simulations
are shown in Figure 4. No clear difference can be seen between GFGS and
VGS methods, or between the different methods for computing the Gaussian
expectations. The NLL values are slightly better for the GFGS, especially for
the position. This is the result of the slightly underestimated variance for the
position when using the VGS method. The more compact variance estimate of
the VGS can also be seen from the mean 95%-consistency results in Table 3.
On average, only 5 iterations were needed in the VGS before convergence. Also,
only a small decrease of KL-divergence was observed, which explains the small
difference between the methods.
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Figure 4: The RMSE and NLL values for the Gaussian filtering based (red) and variational
(blue) Gaussian smoothers using different methods to compute the Gaussian expectations.
The top row shows the results for position, the middle row for velocity and the bottom row
for the aerodynamic parameter. The boxplots show the 5%, 25%, 50%, 75% and 95% quantiles.
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Table 3: The mean 95%-consistencies for the Gaussian filtering based and variational Gaussian
smoothers.

Position Velocity Parameter
EXT-GFGS 0.94 0.95 0.95
EXT-VGS 0.91 0.95 0.95
CT-GFGS 0.95 0.95 0.96
CT2-VGS 0.88 0.94 0.94
UT-GFGS 0.95 0.95 0.96
UT2-VGS 0.94 0.95 0.96
GH-GFGS 0.95 0.95 0.96
GH-VGS 0.92 0.95 0.95

5. Discussion and conclusions

Compared to the Gaussian filtering based Gaussian smoother the variational
Gaussian smoother is more complex to implement and is computationally heav-
ier, since each iteration requires approximately the same amount of computa-
tions as one run of the filtering and smoothing equations. The Gaussian filter-
ing based Gaussian smoother provides good initial conditions for the variational
Gaussian smoother and could solve the problems with initialization mentioned
in [13]. The variational Gaussian smoother provides Gaussian approximation
that is optimal in the sense that it minimizes the Kullback–Leibler divergence
of the approximating distribution with respect to the true distribution. How-
ever, the examples considered here show that this will not always improve the
estimate with respect to other commonly used metrics.

Using statistical linearization with respect to the filtering distribution in the
variational Gaussian smoothing equations gives formally the Gaussian filtering
based smoother as a special case. This suggests that for highly nonlinear sys-
tems, the variational Gaussian smoother could better capture the nonlinearities.
This is demonstrated in the numerical experiment for the double well system,
where the variational Gaussian smoother clearly improves the Gaussian filtering
based smoother estimate for small measurement variances. However, no clear
improvement was observed in the second numerical experiment for the reentry
problem. The reason could be that the nonlinearities in the reentry system are
not high enough to gain benefit from using the variational Gaussian smoother
equations. A drawback of the variational Gaussian smoother is that it tends to
underestimate the variance compared to the Gaussian filtering based smoother.

For general nonlinear systems the Gaussian expectations can be computed
using Taylor seires based linearization or standard sigma-point methods. The
Taylor series based variational Gaussian smoother linearizes the drift and mea-
surement function with respect to the current mean estimate and is therefore
similar in idea to the iterated Extended Kalman smoother [23]. Using unscented
transform and cubature rule based sigma-point methods in the variational Gaus-
sian smoother resulted in some numerical problems. This is caused since the
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unscented and cubature methods are only accurate up to third order monomi-
als, but even for linear systems some of the expectations are over fourth order
polynomials. The numerical problems can be reduced by computing the Ja-
cobians of the drift and measurement functions and using an alternative form
for the expectations. Also, higher order unscented transform could be used for
these expectations (see [19, 24]). Third order Gauss–Hermite integration rule
worked well for both examples considered in this paper, but the computational
cost is high especially for high dimensional systems. For some high dimensional
systems the computational cost of the Gauss–Hermite method could be reduced
by using Rao-Blackwellisation [25].
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[6] S. Särkkä, J. Sarmavuori, Gaussian filtering and smoothing for continuous-
discrete dynamic systems, Signal Process. 93 (2) (2013) 500–510.

[7] C. Archambeau, D. Cornford, M. Opper, J. Shawe-Taylor, Gaussian process
approximations of stochastic differential equation, Proceedings of the, Jour-
nal of Machine Learning Research: Workshop and Conference 11 (2007)
1–16.

[8] C. Archambeau, M. Opper, Y. Shen, D. Cornford, J. S. Shawe-taylor, Vari-
ational inference for diffusion processes, in: J. Platt, D. Koller, Y. Singer,
S. Roweis (Eds.), Advances in Neural Information Processing Systems 20,
Curran Associates, Inc., 2008, pp. 17–24.

20



[9] C. Archambeau, M. Opper, Approximate inference for continuous-time
Markov processes, in: Bayesian Time Series Models, Cambridge Univer-
sity Press, 2011, pp. 125–140.

[10] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[11] Y. Shen, C. Archambeau, D. Cornford, M. Opper, J. Shawe-Taylor, R. Bar-
illec, A comparison of variational and Markov chain Monte Carlo methods
for inference in partially observed stochastic dynamic systems, Journal of
Signal Processing Systems 61 (1) (2010) 51–59.

[12] Y. Shen, D. Cornford, M. Opper, C. Archambeau, Variational Markov
chain Monte Carlo for Bayesian smoothing of non-linear diffusions, Com-
putational Statistics 27 (1) (2012) 149–176.

[13] M. D. Vrettas, D. Cornford, M. Opper, Y. Shen, A new variational ra-
dial basis function approximation for inference in multivariate diffusions,
Neurocomputing 73 (7) (2010) 1186–1198.

[14] M. D. Vrettas, D. Cornford, M. Opper, Estimating parameters in stochastic
systems: A variational Bayesian approach, Physica D: Nonlinear Phenom-
ena 240 (23) (2011) 1877–1900.
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Appendix A. Computing the KL-divergence using Girsanov’s theo-

rem

This section presents the derivation of the KL-divergence term in Equation
(28) for the system with singular effective diffusion matrix. The KL-divergence
term can be partitioned to [9]

KL(QX ||PX |Y ) = KL(QX ||PX)−
K
∑

k=1

Eq [ln p(yk |xk)] , (A.1)

where PX corresponds to the joint probability law of the stochastic processes
x1(t) and x2(t) and QX to the joint probability law of the stochastic processes
s1(t) and s2(t) defined by

dx1

dt
= F1(t)x,

dx2 = f2(x(t), t) + dβ(t)

ds1
dt

= F1(t)s,

ds2 = g2(x(t), t) + dβ(t),

where β(t) is Brownian motion with diffusion matrix Q(t) with respect to mea-
sure PX .

The processes s1(t) and s2(t) are weak solutions to the original system under
the measure QX that is defined through the Radon-Nikodym derivative [15]

E

[

dQX

dPX

|Ft

]

= Z(t),

where Ft is the natural filtration of the Brownian motion β(t) and

Z(t) = exp

[
∫ t

0

{f2(s1(t), s2(t), t)− g2(s1(t), s2(t), t)}T dβ(t)

−1

2

∫ t

0

{f2(s1(t), s2(t), t)− g2(s1(t), s2(t), t)}T Q−1(t)

{

f2(s1(t), s2(t), t)− g2(s1(t), s2(t), t)
T
}]

.
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The KL-divergence term in the right side of Equation (A.1) is then given by

KL(QX ||PX) = EQX
[− lnZ(t)]

=
1

2

∫ t

0

Eq

[

{f2(s1(t), s2(t), t)− g2(s1(t), s2(t), t)}T Q−1(t)

{f2(s1(t), s2(t), t)− g2(s1(t), s2(t), t)}] .

Inserting g2(s1(t), s2(t), t) = −A(t)s(t)+b(t) gives then the desired KL-divergence.

Appendix B. Converting the Gaussian filtering based Gaussian smoother

to the variational form

Here we present the derivation of the variational form of the Gaussian filter-
ing based Gaussian smoother. This is achieved by using the change of variables:

λ = −P−1
f (ms −mf ), Ψ = −1

2

(

P−1
f − P−1

s

)

.

Computing the time derivatives of the new variables and inserting the filtering
and smoothing differential equations (37)-(38) and (43)-(44) gives

d

dt
λ = P−1

f

(

d

dt
Pf

)

P−1
f (ms −mf )− P−1

f

(

d

dt
ms − d

dt
mf

)

= P−1
f

(

Ef [Fx(x)]Pf + Pf E[F
T
x (x)] +Q

)

P−1
f (ms −mf )

− P−1
f (Ef [f(x)] + Ef [Fx(x)](ms −mf ) +QP−1

f (ms −mf )− Ef [f(x)])

= −Ef [Fx(x)]
Tλ

and

d

dt
Ψ =

1

2
P−1
f

(

d

dt
Pf

)

P−1
f − 1

2
P−1
s

(

d

dt
Ps

)

P−1
s

=
1

2
P−1
f (Ef [Fx(x)]Pf + Pf E[Fx(x)]

T +Q)P−1
f

− 1

2
P−1
s (Ef [Fx(x)]Ps +QP−1

f Ps + Ps Ef [F
T
x (x)] + PsP

−1
f Q−Q)P−1

s

= −ΨEf [Fx(x)]− Ef [Fx(x)]
TΨ+ 2ΨQΨ.

Inserting A(t) = −Ef [Fx(x)] + 2Σ(t)Ψ(t) to the above equations gives

d

dt
λ(t) = AT (t)λ(t) − 2Ψ(t)Σ(t)λ(t)

d

dt
Ψ(t) = Ψ(t)A(t) + AT (t)Ψ(t)− 2Ψ(t)Σ(t)Ψ(t).
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Appendix C. Gradients with respect to mean and covariance

In this section we derive the expressions for the gradients with respect to
the mean vector m and covariance matrix P of a Gaussian expectation over a
scalar function e(x). These are used to form the sigma-point approximations
for the Gaussian expectations in the variational Gaussian smoothing equations.
Computing the gradients gives

∇m E[e(x)] = ∇m

[
∫

e(x)N(x |m,P ) dx

]

=

∫

e(x)∇mN(x, |m,P ) dx

=

∫

e(x)N(x, |m,P )P−1(x−m) dx

= P−1 E[e(x)(x −m)] = E[∇xe(x)]

and

∇P E[e(x)] = ∇P

[
∫

e(x)N(x |m,P ) dx

]

=

∫

e(x)∇PN(x |m,P ) dx

=

∫

e(x)N(x |m,P )
1

2

[

P−1(x−m)(x −m)TP−1 − P−1
]

dx

=
1

2
P−1 E[e(x)(x −m)(x−m)T ]P−1 − 1

2
E[e(x)]P−1

=
1

2
P−1 E[∇xe(x)(x −m)T ].
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