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1. Introduction

ΔΣ modulators are widely adopted in tasks such as
A/D, D/A and D/D conversion [1,2], frequency synthesis [3], 
waveform storage [4], signal processing [5] and more. 
Recently, it has been suggested that they may even be 
used as heuristic optimizers for special classes of optimi-
zation problems [6,7]. In all these applications, their 
attractiveness mainly derives from the ability to perform 
noise shaping. Such property is achieved through a non-
linear feedback architecture and is typically described by 
means of an approximated linear model through the so-
gna, Bologna, Italy.
llegari),
called noise transfer function (NTF) [8]. Fig. 1(a) illustrates 
the structure of a classic modulator including a single 
integrator on the feedforward path, as well as the sub-
stitution applied onto the nonlinear quantizer to derive 
the approximated linear model. In this basic setup, the
noise transfer function is NTFðzÞ ¼ XðzÞ=EðzÞ for UðzÞ ¼  0 
(capital letters systematically indicate the z-transforms of
the corresponding uncapitalized quantities) and necessa-
rily takes a first-order high pass (HP) form. This is suitable 
for modulators where the useful signal occupies the lower 
part of the frequency range.

In order to improve the performance and flexibility of 
the modulator, it is desirable to adopt NTFs that are higher 
order, not necessarily HP, and tuned to the specific 
application. To this aim, two major strategies exist (and 
in rare cases may even be combined):
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Fig. 1. Block diagram of a classic discrete-time ΔΣ modulator (a) and of
its generalization (b). The derivation of the approximated linear model is
also illustrated.
(i)
for 

 

move to the setup in Fig. 1(b), where FF(z) and FB(z) 
are generic filters;
 
(ii)

 

move to arrangements where multiple ΔΣ loops are 
cascaded. 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 
 
 
 

 
 

In (ii), multiple quantizers are used and the quantization
error of each stage is passed to the subsequent one. Then,
the outputs of all the quantizers are combined, leading to
the so-called multi-stage noise shaping (MASH) [8]. As long
as it relies on basic internal loops, the MASH approach is
substantially immune from stability issues [9]. However, it
may constrain the NTF to specific forms and suffer from
mismatch among its stages (at least in analog implementa-
tions). Most important, it necessarily delivers a multi-bit
output due to the composition of the signals from the
individual quantizers. This is ill suited for applications
where very low sample depths are required, e.g., the direct
drive of power bridges. Even if workarounds exist for this
problem, such as the interposition of pulse width modula-
tion stages, they may not always be desirable.

For these reasons, single-quantizer structures such as
that in Fig. 1(b) remain essential. This implies an interesting
signal processing problem with respect to the design of
their inner filters, because the analysis of the approximated
linear model is not sufficient to guarantee stability. As a
matter of fact, until 1987 it was common belief that single-
bit modulators with orders higher than 2 were impossible
to reliably stabilize [10]. Today, many issues have
been overcome and design flows for these modulators
exist [8,11–15]. They are centered around the NTF selection,
from which FF(z) and FB(z) can be determined once the
signal
transfer function (STF), namely STFðzÞ ¼ XðzÞ=UðzÞ for EðzÞ ¼
0, is assigned. The key idea is that stability can be achieved
by appropriately constraining the NTF. Even if the con-
straints are often semi-empirical, meaning that stability
cannot be formally guaranteed, the concept is known to
work in most practical cases [16]. Different types of con-
straints exist, the most famous ones being: the Agrawal and
Shenoi Power Gain Criterion [17]; the  Lee Criterion [18]; the
Kenney No-overload Criterion [11]; and the Anastassiu
Criterion [19]. Among them, the Lee criterion, that bounds
the peak gain of the NTF, is probably the most popular one
modulators with 2- or 3-level quantizers [8].
A key point to note is that, once structural and stability
constraints are defined, the remaining degrees of freedom
are available to optimize the NTF features under some cost
function. The most classic one is in-band quantization noise
power [8], but other indexes exist such as application-
perceived noise power [12], worst-case noise power density
[14], etc. In some of them, adaptation to the embedding
application is inherent [12,13,20], while other indexes
completely neglect the matter. This is interesting, because
the noise shaping practiced by the modulator should in
principle be matched to the noise removal abilities of the
embedding environment [12]. Neglecting this aspect is
equivalent to assuming that the matching should be dele-
gated to the embedding environment [21]. Yet, this may not
always be possible or convenient [12,22].

Attempting a constrained NTF optimization can be com-
plex. The problem of optimally determining the coefficients
of a discrete time filter is still a hot topic in many application
fields (e.g., see [23–25] for a few representative cases). The
complication induced by the different treatment necessitated
by the numerator and denominator of rational polynomial
functions often requires approximations, heuristic techni-
ques, or specific assumptions on the  filter  structure
[23]. Restriction to finite impulse response (FIR) arrangements
can often help achieve exact solutions
[13,14,24,25]. Conversely,  the presence of constraints
defined in the frequency domain for every possible frequency,
implies semi-infinite programming [26] and may make the
optimization harder to tackle. In the case at hand, the
problem is always non-linear, possibly characterized by
local optima, and the management of the constraints is
non-trivial, even for empirical ones enjoying simple
formulations such as Lee's. Furthermore, one cannot ignore
implementation costs. In fact, the NTF determines the
modulator internal filters, so that the implementation effort
scales with its order. For analog modulators, very high order
NTFs can be particularly impractical.

For these reasons, there cannot be a catch-all optimization
approach. To keep the optimization manageable, the NTF
search is generally restricted to specific filter classes, with diff-
erent classes being better or worse suited at different combi-
nations of cost-functions and constraints. Two major options

exist
(a)
s, where the NTF is respectively sought within
a particular infinite impulse response (IIR) form;
(b)
 a generic FIR form.
Only quite recently (in fact while this paper was in review),
a proposal has been made for a free form IIR design strategy
[15]. Yet, this targets just the combination of a specific merit
factor with a specific constraint arrangement (more in the
next pages). For other cases, practically adopted IIR forms
include Chebyshev Type II pole-zero arrangements [10], or
forms where the NTF zeros all lie on the unit circle, while
the poles take maximally flat arrangements [27]. A rationale
for using a specific IIR form is that the NTF parametrization
can be reduced. For instance, consider an N-th order IIR NTF.
In the most general case it takes 2Nþ1 coefficients. Work-
ing with such a large number of parameters when ties to
merit factors and constraints are non-linear can be hard.
Restricting to a Type II Chebyshev form [28], reduces the



 
 
 

 

 

parameters to just 3 (in-band gain, stop-band minimal 
attenuation, and stop-band edge frequency) and then 
structural requirements from the loop architecture (detailed 
in the following pages) enable further reduction to just 1, 
regardless of N. Similarly, restricting to forms where the 
NTF zeros all lie on the unit circle, while the poles take a 
max-flat form, restricts the parametrization to N/2 frequen-
cies associated to the zeros and to a single coefficient for the 
poles. Such problem-size reductions can be a determining 
factor for the feasibility of the optimization. Furthermore, 
restricted forms can make constraints specified at every 
possible frequency immediately collapse into constraints for 
a single frequency (e.g., think of a bound on a peak gain and 
its implications where the peak frequency cannot or can be 
known in advance). Conversely, the idea underlying the use 
of FIR forms is not to reduce the parametrization (actually 
FIR transfer functions require lots of parameters to achieve 
detailed features), but to enable the use of efficient optimi-
zation codes. With FIR forms, the ties between the NTF 
parameters, the merit factors and constraints can typically 
be expressed through standard convex forms. For instance, 
the Lee constraint can be translated into a linear matrix 
inequality (LMI) via the Kalman–Yakubovich–Popov
(KYP) lemma [29] so that the resulting optimization
problem can be solved via semidefinite programming
(SDP) and interior point methods [30,31].

It is worth underlining that a fundamental difference exists 
between restricting to a specific IIR form and a generic FIR one. 
In the latter case, no limitation is placed on the features that 
the NTF can get, provided that a sufficiently high order can be 
selected. Indeed, any transfer function can be approximated 
arbitrarily well by an FIR form, as long as it takes a sufficiently 
high order. Conversely, restricting to a particular IIR form 
severely limits the NTF features. For instance, Chebyshev forms 
cannot approximate arbitrary magnitude responses, regardless 
of their order. This has important implications. In the FIR case, 
as the order is increased, one certainly tends to the best 
possible NTF shape and multiple merit factors can be tackled. 
Conversely, some restricted IIR form may work well for a merit 
factor and bad for another. Furthermore, the behavior cannot 
generally tend to the best possible one as the order is 
increased. Indeed, restricted IIR forms may be better perform-
ing than FIR forms at very low orders, but may be paradoxi-
cally characterized by performances that worsen rather than 
improving as one lets them take higher orders.

From a designer point of view, asymptotic behaviors 
achievable for extremely large NTF orders may often be 
irrelevant. Yet, it is certainly relevant to know if there are 
critical cases where conventional restricted IIR forms can 
exhibit an opposite-to-expected order-performance relation-
ship, since this may misguide into wrong design choices or 
hinder the reach of the targeted performance levels. To the 
best of the authors' knowledge, a thorough answer to this 
question has not yet been given. Then, there is a second 
question, namely if, by taking less constrained forms, IIR 
strategies  can be made more flexible, in  order to avoid these
critical situations. This question has not yet been answered 
either. The purpose of this work is to start attacking the two 
points. To this aim (i) multiple design strategies are profiled 
against different sets of merit factors. Cases where the sub-
optimal nature of conventional IIR strategies can be critical are
identified; (ii) FIR strategies are extended to work with pre-
assigned pole structures; (iii) this extension is used to devise
more flexible IIR strategies where a fixed pole structure is
coupled with a non-restricted search of the zeros. The last
point is particularly interesting as it provides a way to work
around the limitation of current IIR design flows and particu-
larly to design low order IIR NTFs with better adaptation to
the modulator embedding environment. In the discussion, the
results are also used to assess the quality of zero placement in
conventional design methods for IIR NTFs.

2. Background

When a modulator such as that in Fig. 1 is linearized, it
gets described by an STF from input u(nT) to output x(nT)
and an NTF from quantization-noise ϵðnTÞ to x(nT), where T 
is the sampling period. The relationships with the loop
filters FF(z) and FB(z) are

NTF zð Þ ¼ 1
1þcFFðzÞFBðzÞ

STF zð Þ ¼ cFFðzÞ
1þcFFðzÞFBðzÞ

8>>><
>>>:

;

FF zð Þ ¼ STFðzÞ
cNTFðzÞ

FB zð Þ ¼ 1�NTFðzÞ
STFðzÞ

8>>><
>>>:

ð1Þ

where c is the equivalent quantizer gain, customarily 
assumed to be 1. As long as the STF is preassigned, as it 
is typically the case, the choice of the NTF determines the 
modulator design.

Information on ϵðnTÞ can be derived from the classical 
model of quantization (CMQ) which states that a uniform
quantizer can be approximately modeled by the superposi-
tion of white noise independent from the quantized signal
and uniformly distributed within ½�Δ=2; þΔ=2�, where Δ is 
the quantization step. This holds relatively well whenever
the modulator input signal is “busy” [8]. Following CMQ, the

average power of ϵðnTÞ is σ
2
ϵ
2 ¼ Δ2

=12, and its power spectral

density (PSD) is Ψ ϵðf Þ ¼Δ =12, where f A ½�1=2; þ1=2� is 
normalized frequency, namely the real frequency over the
update frequency f Φ ¼ 1=T . In  this paper, PSDs are  defined  as
two-sided over normalized frequency, consequently, the quan-
tization noise component at the modulator output has a PSD

Ψ n fð Þ ¼Δ2

12
NTF ei2πf

� ���� ���2: ð2Þ

2.1. Constraints

The NTF choice is subject to some constraints. First of all, 
the modulator loop cannot be algebraic. Thus, the loop
function cFFðzÞFBðzÞ ¼ ð1�NTFðzÞÞ=NTFðzÞ must include some
delay. For this condition to be satisfied, the NTF impulse
response needs a unitary zero lag coefficient (or, equivalently, 
the NTF should be a bi-proper rational transfer function with 
monic numerator and denominator). Secondly, the modulator 
must be stable. As mentioned in the Introduction, this 
requirement cannot be enforced looking at the stability of 
the linear model, which is approximated. Namely, it is not 
sufficient to design a stable NTF and many criteria exist to 
practically ensure the loop stability. Among them, this work 
focuses on the Lee criterion [18], which is the most commonly
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adopted one for very low depth quantizers [8]. Some of the
proposed conclusions may hold for other criteria, though.

The Lee criterion limits the peak NTF gain. Formally, the
following inequality is enforced

JNTFJ1 ¼ max
f A 0;1=2½ �

NTF ei2πf
� ���� ���oγ ð3Þ

where γ is a constant depending on the quantizer resolu-
tion. Binary quantizers need γ r2 and γ ¼ 1:5 is  often
used. A justification of the criterion comes from the
consideration that ΔΣ loops can easily lead to approxi
mated linear models showing conditional stability. In othe
words, once FF(z) and FB(z) are assigned, the linear model
can be stable for c¼1, but unstable for lower c values
Recalling that c is the equivalent quantizer gain, one can
expect its value to reduce when the quantizer input gets
large (or so to say, when the modulator is overloaded)
From Fig. 1 and Eq. (1), one sees that, in the ideal case, the
quantizer input is STFðzÞUðzÞþðNTFðzÞ�1ÞEðzÞ. Namely, the
quantizer input can grow large even if u(nT) is appropri-
ately bounded, due to the ðNTFðzÞ�1ÞEðzÞ component. The
worst case is obviously encountered if one has a burst
where ϵðnTÞ looks like a tone whose frequency corre-sponds
to a peak in the magnitude response of NTF(z).
Thus, the precaution of limiting JNTFJ1 is justified. Even
if the Lee criterion is neither a necessary nor a sufficient
condition for stability, experiments reported in [18,32] and 
subsequent experience have shown its effectiveness.

2.2. Merit factors

The quality of an NTF can be evaluated by differen
criteria. Three notable ones are reported here and used in
the following discussion.

2.2.1. In-band quantization noise power
The most obvious way to define a cost function is to

look at the in-band quantization noise at the modulato
output. This is [8]

PB ¼
Z
B
Ψ nðf Þdf ð4Þ

where B is the set of frequencies in the signal band.1 For
low pass (LP) modulators, this is

PB ¼
Z 1=ð2OSRÞ

�1=ð2OSRÞ
Ψ nðf Þdf ¼ 2

Z 1=ð2OSRÞ

0
Ψ nðf Þdf ð5Þ

where OSR is the oversampling ratio f Φ=ð2BÞ when B 
indicates the signal bandwidth, namely half the measure
of B. Evidently, PB is improved when the NTF magnitude 
response is kept low on average in the whole signal-band
of the modulator.

2.2.2. Worst-case quantization noise power density
Another approach is to look at the worst case noise 

power density for any possible in-band frequency [14]

PdM ¼max
f AB

Ψ nðf Þ: ð6Þ
 
1 Including negative frequencies, since two-sided PSDs are considered.
This merit factor makes particular sense when the input
signal is made of multiple components. Say that there are
m sub-bands B1;…;Bm with bandwidths B1;…;Bm and
that the input power Pu spreads uniformly among them
(so that Bi gets power PuBi=B). Clearly, designing the NTF,
one should avoid favoring SNR in a sub-band at the
detriment of some other. Thus, the optimization should
be aimed at worst case SNR, namely

SNRworst ¼ min
iA f1;…;mg

PuBi

BR
Bi
Ψ nðf Þ df

: ð7Þ

If m is large, the bands are thin and Eq. (7) is easily
approximated by assuming that Ψ nðf Þ stays approximately 
constant within each of them. With this, one gets

SNRworst � Pu

2Bmax
f AB

Ψ nðf Þ
¼ Pu

2BPdM
ð8Þ

which is maximized by minimizing PdM. Evidently, PdM is 
improved when the peak value of the NTF magnitude 
response within the signal band of the modulator is kept 
low. Empiric evidence shows that this typically implies 
having the NTF magnitude response as flat as possible in 
the signal band of the modulator [14].

2.2.3. Weighted quantization noise power (application-
perceived noise power)

Finally, one may want to look at the quantization noise 
PSD integrated over the whole available bandwidth, after 
some weighting [13]. Namely

PW ¼ 2
Z 1=2

0
Ψ nðf Þwðf Þdf ð9Þ

where w(f) is the weighting function. This merit factor is
particularly useful when the modulator is followed by a filter in
charge of removing the quantization noise. By setting w(f) to
the squared magnitude response of the filter, PW returns the
power of the noise that leaks through it [12,20]. This quantity
can be used to compute the SNR that is actually perceived by
the application embedding the modulator. Note that the filter
following the modulator need not be electronic. For instance
in an audio application, the weighting function can also
account for the psycho-acoustic filtering provided by the
listener auditory system [33]. Finally, note that the  in-band
merit factor PB is a special case of PW with wðf Þ ¼ 1 for f AB
and null otherwise. Empiric evidence shows that having a
good PW typically involves getting an NTF magnitude response
capable of “compensating” w(f), namely capable of making the
product Ψ nðf Þwðf Þ as flat as possible [13].

2.3. Conventional IIR design flows for the NTFs

As representative examples of conventional design flows
based on restricted IIR forms, two cases are worth reporting
One uses Chebyshev Type II forms and  the other one is
Schreier's sophisticated synthesizeNTF method [27]. As a
justification for the particular choice of these two examples
it is worth underlining that (i) representative constructs with
significantly fewer constraints are lacking, as they would
imply a non-convex optimizations too complex to be exactly
solved for every possible case. The best that is currently
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available is a quite recent result [15] that is completely free
form, but that only targets the PdM merit factor (which
according to our evaluations, is a not too critical case for th
two sample methods above); (ii) these methods are wha
most designers are accustomed to and use, since they ar
present in widespread electronic design automation (EDA
tools. Both methods are illustrated for the LP case and can b
adapted to band pass (BP) modulators as well. Variants o
these strategies exist, but similar considerations apply, so
that the results presented in this work also hold for them.

2.3.1. IIR design flow based on Chebyshev Type II forms
In an LP modulator, the NTF needs to be HP. An HP

Chebyshev Type II filter with unitary in-band gain is defined
by three parameters: the order N; the  stop-band edg
frequency f st ; the maximum out-of-band gain Ro1 [34].
Once the order is assigned and f st is set to 1=ð2OSRÞ, to assur
that quantization noise is strongly attenuated in the signal
band, one remains with the single parameter R. Now recal
that NTF(z) needs to be monic in its numerator and denomi
nator. After the gain is adjusted to satisfy this condition, R become
the ratio between the peak out-of-band gain and the in-band
gain. Rising R reduces the in-band gain and increases the out-of
band gain and viceversa. To satisfy the Lee criterion, it is enough
to rise R until the in-band gain is reduced to γ. Rising R more than
that should be avoided as it increases the NTF in the signal band
for no reason. Obviously, adjusting R in this way minimizes meri
factor PB for this class of filters. The role of R and how PB get
optimized is well illustrated by the plots in Fig
2. In this example, as through  all those in this
work, OSR¼64 and γ ¼ 1:5. Even if OSR can vary significantl
across practical applications, the chosen quantity is within the
range of adopted values, helps obtaining well readable plots, 
and is close to the defaults used in some EDA tools [27].

2.3.2. IIR design flow forcing zeros on the unit circle
(Schreier's synthesizeNTF)

In this design flow, the NTF is expressed as BðzÞ=AðzÞ
where A(z) and B(z) are monic. The roots of B(z) ar

constrained to lay on the unit circle, while those of A(z) ar
chosen so that A(z) is HP and maximally flat at low
frequencies. Since A(z) must be monic, this leaves a singl
degree of freedom for its definition, a quantity that shall b
indicated as α, related to the stop-band edge frequency
lower
R

lower
R

Fig. 2. Effect of changing parameter R and modulator order in an NTF design
response is plotted. In (a), curves corresponding to different R values are sh
approximately �80 dB); 10-fold higher and lower R values (curves starting at
peak gain exactly equal to γ. In (b), curves corresponding to different orders are
�40 dB), 4 (starting at approximately �80 dB) and 6 (starting at approximately
[8, Section 4.3]. Specifically, the pole placement is chosen 
according to the solution of

1þαðz�1ÞN z�1�1
� �N ¼ 0: ð10Þ

where N is the modulator order. This returns 2N values,
but only those inside the unit-circle are retained. As α is
increased, the stop-band edge frequency is reduced, the
low-frequency gain is reduced and the high-frequency
gain is increased. With this, the design can be based on
three steps, where the last two may be iterated multiple
times:
1.
proc
own
appr
sho
�

The roots of A(z) are all initially set at zero.

2.
 The roots of B(z) are chosen to minimize PB. This leads

to an HP B(z).

3.
 The value of α is adjusted until the peak magnitude

response of BðzÞ=AðzÞ is equal to γ, to respect the Lee
constraint. This adjustment is relatively easy to per-
form, since the particular choice in the forms of B(z)
and A(z) always makes BðzÞ=AðzÞ peak at f ¼ 1=2. The
design flow may already stop here. Alternatively, for
better accuracy, it can repeat from step 2.

Clearly, this procedure leads to a minimization of PB for 
this specific class of filters. The visual aspect of the NTF 
magnitude responses obtained by this procedure is very 
similar to that obtained by the Chebyshev method, already 
illustrated in Fig. 2b. However, in many cases the minimal 
PB for this class of filters is slightly better than the minimal 
PB for the class based on Chebyshev Type II forms. This 
happens because this procedure is less constrained than 
the Chebyshev one. In other words, Schreier's synthesi-
zeNTF in many cases can do better because, at comparable 
order, the search space provided by its restricted IIR filter 
class is somewhat larger than that provided by Chebyshev 
Type II forms and can consequently get closer to the 
ideally optimal NTF.

2.4. FIR design flows for the NTF based on the KYP lemma

NTF design methods based on FIR forms are relatively 
recent [12–14]. In their original statements, each of them 
considers a different merit factor, yet many common traits 
exist. A key point is that since there are no restrictions on
higher
order

edure based on an IIR Chebyshev Type II form. The NTF magnitude
for a fourth-order modulator: optimal R value (curve starting at

oximately �60 dB and �100 dB, respectively). Optimal value makes
wn for the optimal R value: orders 2 (curve starting at approximately
100 dB). All plots obtained with OSR¼64 and γ ¼ 1:5.



the features that the NTF can take, it is impossible to
known in advance where it will peak. With this, the Lee
criterion translates into an infinite set of constraints
NTF ei2πf

� ��� ��oγ, one for every possible frequency f. Since

ξðnþ1Þ ¼ AξðnÞþBϵðnÞ
νðnÞ ¼ CξðnÞþDϵðnÞ

such a universal qualification is clearly unmanageable, all 
the FIR based strategies reformulate the constraint via the 
KYP lemma into an existential qualification. The details of 
such procedure can be found in [12,14]. Its main lines are 
the following.

First of all, a controllable state space form is derived for 
the NTF, such as(

ð11Þ

where ξ is the state vector, ν is the output, ϵ is the input,
and matrices A, B, C, and D are N�N, N � 1, 1� N and
1�1 respectively. By using a controllable canonical state
space form, it can be assured that the to-be-determined
FIR coefficients of the NTF all go in matrix C, while D
contains the first NTF coefficient, that is known to be 1.
Matrix A and B are independent of the NTF coefficients,
with A being upper diagonal and B being a column vector
with all zeros, but for a single 1 as its last entry.

With this, the KYP lemma assures that the relation
JNTFJ1oγ holds if

(PARN�Ns:t: PZ0 and
ATPA�P ATPB CT

BTPA BTPB�γ2 D
C D �1

0
B@

1
CAr0

ð12Þ
where the inequalities, applied to matrices, indicate posi-
tive or negative semidefiniteness and the superscript T 
indicates transposition.

Under this premise, the NTF selection problem is 
transformed into an optimization problem where some 
merit factor such as PB, PdM, or PW in (4), (6) and (9) needs 
to be minimized, while respecting (12). Interestingly, 
PB and PW can be expressed as positive definite quadratic
Fig. 3. Sample magnitude responses of NTFs designed by FIR strategies optimizin
of PdM . In (c), optimization of Pw for a weighting profile (red, dotted) that abruptl
weighting profile (red, dotted) that does not become abruptly negligible out of
forms on the unknown FIR coefficients [13] and PdM can be 
minimized by defining an LMI on them [14]. Furthermore, 
the condition (12) can also be expressed through an LMI in 
the unknowns (the entries of P and the FIR coefficients). 
Hence, altogether one has a convex optimization problem 
that can be efficiently tackled by SDP and interior point 
methods [35]. Note that in this approach the requirement 
that the NTF takes an FIR form is crucial. If the NTF were 
IIR, it would not be possible to state the merit factors PB, 
PdM, or PW as a convex expression in its coefficients. 
Similarly, it would not be possible to express (12) as an 
LMI in the unknowns.

As an example, Fig. 3 shows some NTF magnitude 
responses obtained by design flows based on FIR forms, 
the KYP lemma and SDP. These plots illustrate how the 
method can be seamlessly adapted to work with all merit 
factors.

3. Pros and cons of conventional IIR design strategies

As it should be clear from the examples in the previous
sections, methods based on IIR NTF forms can perform 
quite well when the merit factor to be optimized is PB. 
Some quantitative comparison is provided in Table 1 
(ignore for now the rows corresponding to methods not 
yet introduced). From the data, it is evident that, when it 
comes to PB, IIR strategies can often achieve better beha-
vior than the FIR SDP strategy at much lower order. 
Quantitative data also confirms the slight advantage of 
the synthesizeNTF IIR strategy over the Chebyshev one. 
Yet, the previous discussion also hints at the limitations of 
conventional IIR strategies. First of all, they are all 
inherently single-band. Specifically, their most basic 
imple-mentation leads to HP NTFs, suitable for LP 
modulators. They can be extended to band-stop NTFs 
suitable for BP modulators by frequency transformations, 
but it is hard to go further than that. This is because 
the restriction to a specific IIR form excludes the 

possibility to design arbitrary

g PB, PdM and PW at order 32. In (a), optimization of PB. In (b), optimization
y becomes negligible out of the signal band. In (d), optimization of Pw for a
the signal band. Plots obtained for OSR¼64, and γ ¼ 1:5.



 

 
 

 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
 
 
 
 

Table 1
Comparison of different NTF design techniques with respect to the PB
merit factor, for OSR¼64, γ ¼ 1:5.

Design method Order PB (dBm)

FIR, optimized for PB 32 �79.9
FIR, optimized for PB 40 �91.5
IIR, Chebyshev Type II 2 �47.8
IIR, Chebyshev Type II 4 �80.9
IIR, Chebyshev Type II 6 �105.0
IIR, Schreier 2 �48.4
IIR, Schreier 4 �81.7
IIR, Schreier 6 �105.4
IIR, Hybrid 2 �48.4
IIR, Hybrid 4 �81.7
IIR, Hybrid 6 �105.5

Table 2
Comparison of different NTF design techniques with respect to the PdM

merit factor, for OSR¼64, γ ¼ 1:5.

Design method Order PdM (dBm)

FIR, optimized for PdM 32 �54.7
FIR, optimized for PdM 40 �66.3
IIR, Chebyshev Type II 2 �23.4
IIR, Chebyshev Type II 4 �56.7
IIR, Chebyshev Type II 6 �80.8
IIR, Schreier 2 �20.4
IIR, Schreier 4 �51.4
IIR, Schreier 6 �73.9
IIR, Schreier modified for PdM 2 �22.8
IIR, Schreier modified for PdM 4 �56.3
IIR, Schreier modified for PdM 6 �79.6
features, such as multiple stop-bands. By contrast, FIR based
strategies can seamlessly deliver NTFs for multi-band mod-
ulators, because no restriction is imposed a priori on the
NTF features. The limitation in the number of signal bands
that can be treated may not appear very important as most
practical applications of ΔΣ modulator are single-band. Yet,
it may be the case that the lack of good multi-band design
tools is among the reasons why multi-band applications are
rare.

A second limitation, which is more subtle but possibly
more important from an application point of view, is that
conventional IIR design flows may have difficulties in
properly dealing with merit factors other than PB. This is
detailed in the following sections.

3.1. Limitations of the IIR Chebyshev Type II design flow

As mentioned in Section 2.3.1, design flows based on
Chebyshev IIR forms are characterized by a single degree
of freedom R which is strictly related to the gain of the NTF
in its in-band and out-of band frequency regions. Since the
out-of-band region of the NTF needs to coincide with the
ΔΣ modulator signal band, R has an immediate influence on
PB. As it has already been illustrated, to optimize PB it is
sufficient to select the minimum possible R value that keeps
the NTF gain in its in-band frequency region not larger than
γ.

One can now consider what happens trying to practice
the optimization with respect to other merit factors, so as
to fully profile the method and to highlight if critical cases
exist. From what has been said so far, one can expect the
method to work decently as long as one considers merit
factors that appreciate the NTF attenuation in a well-
defined LP signal band only. In this case, one can make
the NTF stop-band coincident with such band, and then
rely on R to basically scale the NTF magnitude response
there. Specifically, the peaks of the NTF magnitude
response in the stop-band are immediately affected by R
(by the very role of this control parameter), so one can
expect the method to work well with PdM in addition to PB.
For PW the situation is more complex though. First, the
parametrization of Chebyshev NTFs is from the very
beginning insufficient to provide any adaptation to a
specific weighting profile. There is no “knob” to turn to
trade the NTF gain at some frequency neighborhood for
the gain at some other frequency neighborhood. Second
and most important, the weighting function on which PW
is based may or may not succeed in clearly defining a
signal band. When PW is adopted, depending on w(f) two
major cases may occur. In the first scenario, a transition
frequency f~{0:5 exists such that w(f) is clearly non-
negligible before it and clearly negligible after it. In the
second scenario w(f) stays non negligible through the
whole of the ½0; 1=2� frequency range or over a very large
part of it. In the first case, one can expect Chebyshev type
NTFs to be able to somehow cope with PW, although not
optimally. Conversely, in the second case, one can expect
the features of the NTF and w(f) to be so badly matched
that performance is compromised. In order to verify if
these intuitive considerations correspond to actual beha-
viors, experiments can be run.
For what concerns PdM, from a comparison of Figs. 2(b) 
and 3(b) one can immediately see that Chebyshev NTFs do 
not have an optimal in-band shape. In fact, they do not 
provide a leveled in-band magnitude response as the 
optimal FIR design strategy. Actually, this would simply 
be impossible, as Chebyshev type II form are by definition 
characterized by ripple in their stop-band. In this respect, 
it is worth recalling that the requirement that NTFs are 
monic both in the numerator and the denominator means 
that it is impossible to lower their gain at some frequency 
interval without raising it somewhere else. This is why the 
leveling of the NTF is inherent in the PdM optimization: to 
lower the NTF peaks in the signal band, one ends up 
raising the valleys. Still, if one looks at quantitative data, it 
is evident that this defect of Chebyshev forms with respect 
to the PdM cost function does not affect performance 
significantly. As an example, see Table 2, where the Cheby-
shev method can provide rather good PdM values at 
relatively low orders. The reason why this is possible is 
quite obvious. As the order is increased, the NTF roll-off is 
improved. Thus, even without a leveled behavior, the NTF 
peaks in the signal band can be reduced by rising the gain 
in the initial part of the noise-band (see Fig. 2(b)). To 
summarize, as expected from the informal considerations 
at the beginning of this section, the optimization of PdM 

does not represent a critical case for methods based on IIR 
Chebyshev forms.

A very similar situation occurs for PW in conjunction 
with weightings that abruptly fall to zero above a certain



small f~ . In this case, f~ can be taken to mark the top of the 
signal band. As an example, weightings of this sort are 
inherent in all audio applications, where w(f) frequently 
includes the psycho-acoustic response of the human 
auditory system, whose sensitivity drops abruptly above 
approximately 16 kHz [13,22,33]. In this case, the ideal NTF 
magnitude response should follow (actually “compen-
sate”) the weighting, namely try to make Ψ nðf Þwðf Þ as flat
as possible in the signal band. For instance, Fig. 3(b) shows
an FIR NTF fully optimized for a sample arbitrary weight-
ing profile. Again a flattening is inherent in the optimiza-
tion process that Chebyshev forms cannot adapt to. As an 
example, Table 3 reports data relative to the weighting 
profile in Fig. 3(c) (column “case I”).

Also in this case, design flows based on Chebyshev 
IIR forms are quite competitive against optimal FIR 
methods, in the sense that they can easily reach the same 
performance levels (and typically do so at a low order). 
The reasons why this happens are substantially the same 
that have just been illustrated for PdM. To summarize, as 
expected from the informal considerations at the 
beginning of this section, the optimization of PW does not 

represent a critical case for

Table 3
Comparison of different NTF design techniques with respect to the PW
merit factor, for OSR¼64, γ ¼ 1:5 and two different weighting functions: 
case I uses the abrupt falling weighting in Fig. 3(c), while case II uses the
smoothly fading weighting in Fig. 4.

Design method Order PW (dBm)
(case I)

PW (dBm)
(case II)

FIR, optimized for PW 32 �78.2 �9.16
FIR, optimized for PW 40 �90.0 �9.17
IIR, Chebyshev Type II 2 �39.8 �7.48
IIR, Chebyshev Type II 4 �73.2 �4.42
IIR, Chebyshev Type II 6 �94.5 �2.55
IIR, Schreier 2 �42.4 �7.52
IIR, Schreier 4 �75.7 �4.48
IIR, Schreier 6 �95.5 �2.70
IIR, Schreier modified for PW 2 �44.9 �7.58
IIR, Schreier modified for PW 4 �80.0 �4.61
IIR, Schreier modified for PW 6 �96.8 �3.01
IIR, Hybrid 2 �45.7 �8.08
IIR, Hybrid 4 �80.0 �8.00
IIR, Hybrid 6 �96.8 �7.99

In w( f ) 
transition region, 
NTF response 
'compensates' 
slope of w( f )

Fig. 4. Comparison of IIR design technique (based on Chebyshev Type II form) a
NTF magnitude response (blue, solid line) obtained with an FIR strategy (order
(dashed green and solid blue line, respectively). Both plots also show the weigh
methods based on IIR Chebyshev forms as long as one has
weightings that fall abruptly to zero at a transition frequency
much lower than 1=2.

Eventually, one may consider what happens for PW and
weightings that never or only smoothly fade to zero as f is
increased. This case is quite common when w(f) is based on
the actual profile of a filter in charge of removing quantization
noise that is present in the modulator embedding environ-
ment, since filters designed to be inexpensive often provide
only a moderate roll-off. Also in this case, a fully optimal
design should try to “compensate” w(f) by flattening Ψ nðf Þ
wðf Þ. Yet, now this action should extend to the whole of the
½0;1=2� frequency range. This is something that Chebyshev
forms simply cannot accomplish. As an example, consider
Fig. 4(a) which proposes the ideal NTF profile for a weighting
based on a first-order Butterworth filter. Actually, this figure
merely reproduces Fig. 3(d) highlighting the “compensation”
effect. The corresponding Chebyshev profile is in Fig. 4(b).

Evidently, here there is no chance of working around the
inherent sub-optimality of the restricted NTF shape by rising
its order. Conversely, an order rise may deteriorate the match
between the NTF and the weighting profiles even more.
Quantitative data confirms this impression, as illustrated
in Table 3 (case II). Clearly, design flows based on IIR Cheby-
shev forms cannot reach the same performance levels pro-
vided by the optimal FIRmethod. Furthermore, the situation is
subtle, because, contrarily to usual expectations, rising the
modulator order worsens the performance rather than
improving it. This phenomenon can easily mislead a designer
into wrong conclusions unless he/she is well aware of it.
Obviously, the reasons lie in the fact that the higher the order,
the worse the Chebyshev Type II transfer function can follow a
smooth weighting in its transition range. What happens is

2iπf
� ��� ��2better evidenced in Fig. 5 that shows the NTF e wðf Þ

product. The plotted quantity is proportional to the integrand
Ψ ðf Þwðf Þ appearing in the definition (9) of PW and as such
should be as small as possible. However, as evident from the 
plots, for the IIR design strategy it is always larger than for the
optimal FIR one, precisely at frequencies slightly above the top 
of the signal band.
Following the latter considerations, one might be 
tempted to conclude that the case is not actually 
critical, since one has just to pick a low modulator 
order, rather than a large one, to get acceptable 
performance. Unfortunately, this conclusion would be 

wrong and the approach

   In w( f ) 
transition 
region, NTF 
response 
does not 
'compensate' 
slope of w( f )

nd optimal FIR technique with respect to merit factor PW. In (a), optimal
12). In (b), magnitude responses for second- and fourth-order IIR NTFs
ting function (red, dotted line). Plots obtained for OSR¼64, and γ ¼ 1:5.



would represent an ad hoc solution working just for very
plain weightings. For instance, a weighting including a flat
zone in the transition range would be impossible to trace
for a Chebyshev filter at any order. To summarize, as
expectable from the initial parts of this section, a very
critical case for design flows based on IIR forms can be
identified for the use of the PW merit factor in conjunction
to non-fading or smoothly fading weightings.

3.2. Limitations of the IIR zeros-on-unit-circle design flow

Very similar considerations to those made for the IIR
technique based on Chebyshev Type II forms can be made
for Schreier's IIR technique. Yet, here there are some
additional degrees of freedom thanks to the possibility of
arranging the zeros at will, as long as they lie on the unit
circle, within the signal band. Such freedom can be used to
attempt an active optimization of PdM or PW. This is quite
easy to practice, since it is sufficient to substitute PdM or PW
for PB at step 2 in the algorithm described in Section 2.3.2.
For PdM the change is minimal and the results remain
substantially aligned to those of the method based on
Chebyshev Type II forms. This is well illustrated by the plot
in Fig. 6(a) and by the data in Table 2.

For PW, the results can be far more interesting, as long as
the weighting is defined only for the signal band and taken
to be negligible elsewhere. As an example, see Fig. 6(b) that
Fig. 5. Comparison of IIR design technique (based on Chebyshev Type II
form) and optimal FIR technique with respect to merit factor PW. The
product NTF e2iπf

� ��� ��2wðf Þ is illustrated for a FIR strategy with order 12
(blue solid line), as well as for a fourth-order Chebyshev NTFs (dotted, 
red) and a second-order Chebyshev NTFs (dashed, green). Plots are 
derived from those in Fig. 4(a) and (b).

Fig. 6. Comparison of standard Schreier's procedure to the procedure modi
procedure (blue solid line) and procedure modified for optimizing PdM (green d
In (b), comparison of standard procedure (blue solid line) and procedure mod
adopted weighting (red, dotted line) is negligible out of the signal band. In all
can be compared to Fig. 3(c), as well as the data in Table 3
(case I). For the specific application example, the advantage
of adapting the zero placement to the specific weighting
curve used for the computation of PW can reach 2.5 dB. As a
matter of fact, a similar approach is exploited in [22] to
design a psycho-acoustically optimal modulator for audio
applications.

Unfortunately, the results become once again quite
disappointing when a weighting that does not fall sharply
to zero outside the signal band is considered. As an
example, Fig. 7 shows an attempt at designing a modulator
using a weighting function derived from a first-order LP
filter (like that used for the examples in Fig. 4). In Fig. 7(a),
the magnitude of the achieved NTF is shown, both for the
standard Schreier's method and for the method modified
for PW. In this second case, the method tries to push the
zeros at slightly higher frequencies, in order to compen-
sate the weighting profile a bit better at frequencies just
above the signal band. Unfortunately, the results are not
satisfactory, as evident from Fig. 7(b) that provides plots of
the NTF e2iπf

� ��� ��2wðf Þ product. The benefit of the method
modified for PW over the standard one is minimal and the
performance remains very far away from that achievable
by the FIR approach shown in Fig. 5. This is also quantita-
tively shown in Table 3 (case II). As for the IIR approach
based on Chebyshev Type II forms, performance decreases
when rising the modulator order.

3.3. Summary of critical cases for conventional IIR design
methods

From the previous discussion, it is evident that con-
ventional IIR design methods may show issues for merit
factors other than PB. In fact, there is no guarantee that
these methods are asymtpotically optimal, namely that
they converge to the best possible NTF as the modulator
order is grown (in fact, for some cost functions there are
strong indications that the contrary happens). Practically,
these design methods remain sufficiently successful for
the PdM merit factor. Similarly, the behavior remains good
for PW as long as the weighting function rapidly becomes
negligible out of the signal band. In fact, in all these cases
the merit factors are only concerned with what happens in
the signal band. Specifically they look at the height of the
fied for the optimization of PdM and PW. In (a), comparison of standard
ashed line), for an order 4 modulator. The two plots are almost coincident.
ified for optimizing PW (green dashed line), for an order 4 modulator. The
plots, OSR¼64, γ ¼ 1:5.



Fig. 7. Behavior of Schreier's IIR NTF design technique when tackling merit factor PW with a weighting profile that does not fall sharply to zero out of the
signal band. In (a), the NTF magnitude response, both for the standard Schreier's method (blue solid line) and for the method modified to explicitly deal
with PW instead of PB (green dashed line). The weighting function is also given as a reference (red, dotted line). In (b), the NTF e2iπf

� ��� ��2wðf Þ product both for
the standard (blue solid line) and the modified (green dashed line) method.
magnitude response of the NTF here, observed via some
indicator (maximum peak, weighted average of square).
All these indicators improve if the NTF scales down as a
whole in the signal band. Since IIR design methods let one
“shift” down the whole of the NTF magnitude response in
the signal band by merely rising the NTF order, they make
it possible to improve these indicators even if they do not
return the best possible NTF shape in this zone.

Yet, critical situations may emerge when one considers
merit factors that also look at what happens in the neighbor-
hood of the signal band. This is the case for the merit factor PW
in conjunction with weighting functions that do not fall
abruptly to zero above some (low) threshold frequency. In
this case, conventional IIR design methods fail because they
simply do not offer sufficient degrees of freedom to provide
adequate NTF features in the transition region between the
modulator signal and noise bands. This means that perfor-
mance levels provided by FIR strategies, that are asymptotically
optimal, namely certain to reach the best possible NTF shape as
the order is sufficiently increased, are simply unreachable.
Paradoxically, the cases where IIR strategies based on restricted
forms are ill suited tend to coincide with the scenarios where
optimal FIR methods are at their best ease, not requiring very
large orders. Critical situations can be immediately spotted
from merit factors that decrease while rising the NTF order.

4. Extension of FIR strategies to IIR forms with pre-
assigned poles

After critical cases for conventional IIR design techniques
have been identified, one may address the question whether
such criticality can be avoided by introducing further degrees
of freedom in the design flow. Clearly, the ideal case would be
to operate with free form IIR expressions, namely to have the
possibility to use all poles and zeros as degrees of freedom. As
hinted in the Introduction, research is active in the area, but
the problem is not yet solved. The best currently available is a
quite recent algorithm operating with free form IIR expres-
sions, specifically targeting the PdM merit factor [15]. This
operates by identifying a sequence of convex optimization
problems, eventually delivering the best NTF shape. For other
merit factors (including PW), or to rely on techniques with a
lower computational cost, a different trade off between
flexibility and complexity must be identified. To this aim
recall that both the IIR method based on Chebyshev Type II
forms and Schreier's synthesizeNTF method compel the
NTF zeros to fall on the unit circle. In this regard, Schreier's
method is already more flexible than the method based on
Chebyshev Type II forms, since it allows the zeros to fall
anywhere on the unit circle, rather than forcing them to fixed
relative positions. This suggests that a good compromise in
flexibility can be achieved by making the zero positions
selectable over the whole unit disk.

Interestingly, such a result can be easily obtained by
extending the fully optimal FIR techniques to take a set of
pre-assigned poles. By doing so, one ultimately obtains an
hybrid IIR design techniquewhere the poles are as in standard
IIR methods, while the zeros are fully optimized. Assume that

NTF zð Þ ¼ BðzÞ
AðzÞ ¼

PNB
i ¼ 0 biz

� iPNA
i ¼ 0 aiz

� i
ð13Þ

where the order is N¼maxfNA;NBg, and a0 ¼ b0 ¼ 1 since
the polynomial must be monic. Furthermore assume that
a1;…; aNA are pre-assigned coefficients, and b1;…; bNB are NB

parameters to be found. Let ai¼0 for i4NA and bi¼0 for
i4NB in order to pad the coefficient vectors to N elements.
With this, a controllable state space model equivalent to (13)
can be obtained with a structure such as that in Eq. (11) with

A¼

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

�aN �aN�1 �aN�2 ⋯ a1

0
BBBBBB@

1
CCCCCCA

B¼ 0 0 0 ⋯ 0 1ð ÞT

C ¼ dN dN�1 dN�2 ⋯ dN1 1
� �

D¼ 1ð Þ ð14Þ
where di ¼ bi�ai [34]. When (14) is substituted in (12), one
gets an expression that is affine in all the unknowns (the bi
coefficients and the entries of P), so that it can be reformu-
lated into an LMI that is manageable by practical
optimization tools.

Merit factors can be expressed in convex terms too. Here,
the discussion is restricted to PW for which critical situations
exist. Yet, PB is implicitly considered as well, being a special
case of the PW (though in the optimization of PB critical



Fig. 8. Exemplification of the hybrid NTF design strategy, taking poles by
a conventional method and using SDP to pick optimal zeros in order to
minimize the residual quantization noise after filtering.
situations do not occur). Furthermore, the discussion can also
be extended to PdM , but this development is omitted here for
brevity and the interested reader is referred to [14]. One has

PW ¼Δ2

12

Z 1=2

�1=2

B ei2πf
� �

A ei2πf
� �

�����
�����
2

w fð Þdf : ð15Þ

Since A(z) is pre-assigned, this can be rewritten by defining a
new weighting function

ŵ fð Þ ¼ wðf Þ
A ei2πf
� ��� ��2 ð16Þ

so that

PW ¼Δ2

12

Z 1=2

�1=2
B ei2πf
� ���� ���2ŵ fð Þdf ð17Þ

where B(z) is FIR, so that the theory in the Literature can be
reused. Specifically, following [13] one can take

qi;j ¼
Z 1=2

0
ŵðf Þei2πf ði� jÞ df ð18Þ

for i; j¼ 0;…;NB as the entries of an ðNBþ1Þ � ðNBþ1Þ
matrix Q and see that PW is proportional to bTQb where
b¼ ð1;b1;…; bNB ÞT. Since it can be easily shown that Q must
be positive definite, bTQb is necessarily a convex quadratic
form that can be used as an optimization goal.

5. Applications

5.1. Hybrid design strategy

The approach that has just been presented as an exten-
sion of [12,13] can have a significant application value. In
fact, it provides a hybrid design strategy where IIR NTFs can
take pole arrangements as in conventional methods and zero
arrangements that are fully optimized for any merit factor
given the pre-assigned pole arrangement. This can get the best
of both realms. Namely, it can deliver low order NTFs such as
conventional IIR strategies and at the same time provide
good performance (almost as good as fully optimal FIR
strategies that would be expensive due to high order) for
merit factors hard to tackle by conventional IIR strategies. To
validate this expectation, test cases similar to those exam-
ined previously can be considered. Tables 1 and 3 also
indicate the performance for a hybrid IIR design strategy
based on the synthesizeNTF pole arrangement.2 As it
could be expected, the hybrid strategy has no or negligible
advantage in all those cases where conventional IIR methods
already work well. However, there is a significant advantage
in the critical case where merit factor PW is considered
together with a weighting function that does not go rapidly
to zero out of the signal band. For the example under
consideration, the hybrid strategy consistently returns results
that are very close to the FIR one (just 1 dB worse) and
prevents performance from strongly degrading when the
NTF order is risen.
2 Even if it is possible, a hybrid strategy has not been coded for the PdM

case, to avoid a cumbersome programming exercise for a case where no
benefit was anyway expected.
Since a single example is insufficient to say that a pro-
cedure is successful (it could be a lucky case), another test
condition is here provided, now thoroughly examining what
happens. For this additional example, the values OSR¼64 and
γ ¼ 1:5 are kept, but the weighting function is now derived
from the hypothesis of having a second-order Butterworth
reconstruction filter, with cut-off frequency at the edge of the
modulator signal band. The corresponding w(f) is shown as a
dotted red line in Fig. 8.

The same figures also show the optimal NTF profile
obtained by an FIR strategy with SDP optimization and order
set to 16 (above that value performance does not change, so
this is approximately the asymptotic optimum to be taken as a
reference) as a solid blue line. Furthermore, the figure shows
the NTF magnitude response obtained with the synthesi-

zeNTF method and the proposed hybrid method, when the
order is set to 4 (green dashed line and black thick line,
respectively). From the figure, it is straightforward to see that
the hybrid methods can deliver an NTF whose magnitude
response traces much better the ideal profile, particularly with
reference to the roll-off region of the reconstruction filter just
above the modulator signal band.

The advantage is confirmed by the PW data. For the
ideal NTF profile, one gets �51.5 dBm. This is a hard bound 
for the setup, being the plateau at which the optimal FIR
method converges at large orders. Schreier's synthesi-
zeNTF gives �46.6 dBm, namely a large 5 dB worse than 
the best possible performance. The proposed hybrid
method gives �49.4 dBm, only 2 dB worse than the best 
possible performance and 3 dB better than the conven-
tional IIR strategy.
5.2. Validation of design choices in conventional methods

Another application of the approach in Section 4 is to
validate the choices made in conventional IIR strategies in 
those cases where they are anyway known to work 
relatively well. Specifically, both Chebyshev and Schreier's 
design strategies fix the zeros on the unit circle. This is
known to give good results when designing for PB. Yet, 
backed as it is by many intuitive motivations, this choice is 
arbitrary. Would placing the zeros elsewhere be better?

A preliminary answer to this question comes from the
data in Table 1. Since the performance for Schreier's 
method and the hybrid one is the same, in this case 
Schreier's zero placement must be optimal.



Yet, this may be a lucky case and it is sensible to
observe the matter in better detail. To this aim, it is worth
focusing on the max-flat pole arrangement used in Schre-
ier's synthesizeNTF. Two different types of evaluations
are reported: (i) tests with different oversampling ratios
and different NTF orders using the same pole assignment
as synthesizeNTF; (ii) tests with maximally flat pole
arrangements obtained by varying the α parameter in Eq.
(10). The second type of test is useful to also determine if
the pole assignment done by synthesizeNTF under the
constraint of a maximally flat pole form is optimal. Results
are consistent in showing that
(a)
Fig.
by s

varie
valu
Using a max-flat pole arrangement and the α setting
delivered by synthesizeNTF, the optimal zero
9. Validation of design choices in Schreier's synthesizeNTF for a sample fourth-or
ynthesizeNTF. Plot (b): PB variation as one operates with an NTF with fully optimiz
d around the value delivered by synthesizeNTF. Plots (c) and (d): pole zero placem
es under test. Plot (e): NTF magnitude response corresponding to the cases in plot
placement is on the unit circle and identical to that
delivered by synthesizeNTF.
(b)
 α values just slightly smaller than those provided by
synthesizeNTF (e.g., 1–3%), together with a zero
arrangement very close to the unit circle, but not quite
on it, may succeed in delivering a marginally better
attenuation of the in-band quantization noise, but the
advantage is negligible.
The conclusion is that also the α value delivered by
synthesizeNTF is substantially optimal. In other words,
under the sole assumption that the poles are in a maximally
flat arrangement, synthesizeNTF delivers the best pole
and zero structure when optimizing for PB.
der LP modulator with OSR¼64. Plot (a): pole-zero placement delivered
ed zeros and a pre-assigned pole placement given by Eq. (10) when α is
ents corresponding to the cases in plot (b) for the smallest and largest α
(b) for the smallest and largest α values under test.



For the sake of illustration, at least one of the examined
cases is worth a full reporting. Fig. 9 details the findings for 
a fourth-order binary modulator for LP signals, with
OSR¼64 and γ ¼ 1:5. Here, synthesizeNTF determines
α ¼ 11; 662:34 as the best parameter value. The corre-
sponding pole-zero placement is shown in Fig. 9(a). The
corresponding PB value is �92.71 dBm. Keeping the pole
placement from this α value, while determining the zeros
by SDP, delivers the very same zeros as synthesizeNTF.
However, using poles obtained with a perturbed α causes 
SDP to deliver a zero arrangement with some zeros pushed
inside the unit circle, particularly when α is lowered. This
is shown in Fig. 9(c) and (d) for the reference α divided and 
multiplied by 5. The pole-zero arrangements for the
perturbed α values are typically worse than those deliv-
ered by synthesizeNTF, as shown in Fig. 9(b) and (e).
However, the best possible setting is not at the α value 
returned by synthesizeNTF, but slightly lower
(11,292.92), with PB at �92.78 dBm. The change is so small
that it can be considered negligible, though.
6. Conclusions

In this paper, some of the constraints and merit factors
that can be used in the design of ΔΣ modulators have 
been reviewed, together with some common design stra-
tegies. With this, it has been shown that only the most 
modern strategies based on SDP can correctly deal with 
the whole range of merit factors herein presented. How-
ever, these strategies are generally more expensive than 
conventional ones in implementation terms, because in 
most cases they can only deliver FIR NTFs that typically 
require a high-order to provide the desired features. Then, 
it has been shown that these modern strategies can be 
adapted to work with pre-assigned pole arrangements. 
This result has two valuable practical applications. First of 
all, it can be exploited to devise hybrid design methods 
that take conventional pole arrangements and fully opti-
mize the zeros. Such arrangements may represent an 
interesting compromise between different design strate-
gies, since they can deliver low-order IIR NTFs and at the 
same time provide the flexibility of SDP methods in 
picking different optimization goals. We expect this to be 
a useful ad interim solution, until other approaches based 
on IIR forms and imposing even lower constraints can be 
developed. Secondly, the result can be useful to validate 
some choices made in conventional design strategies. In 
the paper, it has been used to validate the substantial 
optimality of Schreier's synthesizeNTF. Code is provided 
to replicate all the provided results via the PyDSM toolbox 
(http://pydsm.googlecode.com).
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