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ABSTRACT 

Recursive, causal and non-causal, multidimensional digital filters, with infinite impulse responses and maximally flat 

magnitude and delay responses in the low-frequency region, are designed to negate correlated clutter and interference in the 

‘background’ and to accumulate power due to dim targets in the ‘foreground’ of a surveillance sensor. Expressions relating 

mean impulse-response duration, frequency selectivity and group delay, to low-order linear-difference-equation coefficients 

are derived using discrete Laguerre polynomials and discounted least-squares regression, then verified through simulation.   

 

Index Terms—Digital filters, Discrete Laguerre transform, IIR filters, Image analysis, Multidimensional signal processing 

 

1. INTRODUCTION 

Low-pass digital filters, such as those proposed by Savitzky and Golay, with a “maximally flat” magnitude and delay response, 

have smoothing properties in the time domain. This ‘duality’ makes it possible to derive their filter coefficients in either the 

frequency or time domains [1]-[4]. For instance, Savitzky-Golay filters [5], may be derived by least-squares fitting a polynomial 

(of degree 𝐵) to a sampled input sequence over a finite sliding window to yield low-pass filters with a finite impulse response 

(FIR). The fitted polynomial resulting from this analysis process, is evaluated at the center of the odd analysis window to yield 

linear-phase (smoothing) filters; evaluation between samples yields fractional-delay (interpolating) filters, evaluation at more 

recent non-central samples yields filters with a reduced group delay; whereas evaluation at future samples yields predictive 

(extrapolating) filters. The offset (𝑞) chosen for the evaluation, or synthesis, therefore determines the phase response of the 

filter [6]. Savitzky-Golay differentiators [7], are obtained by differentiating the fitted polynomial prior to evaluation. FIR 
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Savitzky-Golay filters are realized using either non-recursive or recursive structures; however care is required in the latter case 

to avoid rounding error accumulation due to pole-zero cancellation on the unit circle [6].  

‘Fading-memory’ variants of these ‘finite-memory’ Savitzky-Golay filters may similarly be derived by performing a least-

squares fit with an exponentially-decaying error-weighting function (whose 𝒵 transform has a pole at 𝓏 = 𝑝, where 𝑝 = 𝑒𝜎), 

yielding recursive structures with an infinite impulse response (IIR) and with stability guaranteed (for all 𝑞, if |𝑝| < 1) [8]-

[11]. They are commonly used in target tracking systems to overcome problems of divergence experienced by Kalman filters 

in the presence of model mismatch [9]; however in this context, they are usually restricted to applications where the time 

interval between target detections is constant and where data association is unambiguous; furthermore, startup transients must 

be handled properly. These restrictions have recently been addressed in [12]; with an expanding-memory filter used during 

track establishment and a fading-memory filter used thereafter; measurements are probabilistically weighted, however the 

revisit interval is assumed constant.    

For satisfactory tracking performance at a reasonable computational cost, these types of ‘detect-before-track’ systems 

require the signal-to-noise ratio (SNR) to be relatively large so that: 1) the density of false-detections – due to clutter, 

interference and noise – is low; 2) the probability of target detection is high; and 3) the measurement error is low. When these 

conditions cannot be met, methods that exploit spatiotemporal energy distributions in the underlying sensor ‘image’, i.e. ‘track-

before-detect’ methods are more appropriate [13]-[17]. Target confirmation decisions in both detect-before-track and track-

before-detect frameworks are usually framed as hypothesis tests, based on a test statistic involving a likelihood ratio. The 

likelihood functions for the true and false detections generally have simple idealized forms – Gaussian for the target and Poisson 

for the clutter/noise, in spatial coordinates. The Rician distribution is ideal for modeling intensity distributions because it results 

in Rayleigh and Gaussian distributions at the low- and high-SNR limits, respectively [14]. When the assumed forms or the 

estimated parameters of the underlying distributions are inappropriate or in error, severely degraded target detection and 

tracking performance results [16].  

If not handled properly, structured backgrounds have the potential to ‘wreak havoc’ in detect-before-track and track-before-

detect systems alike. While often ignored in theoretical works, correlated clutter/noise is commonplace in long-range 

surveillance systems involving infrared search and track cameras, high-frequency radar, passive (bi-static) radar and sonar [16], 

especially when very weak targets are sought.  

The use of fading-memory target-tracking filters, derived using discounted least-squares and orthogonal polynomials, has 

been thoroughly explored in the literature, in a detect-before-track context [8]-[12]; indeed, it is interesting and illuminating 
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that the same filter coefficients are reached from such a variety of different starting points. However, these filters are arguably 

a more natural solution to the target-tracking problem in a track-before-detect context, where uniform sampling rates are 

guaranteed in the spatial domain (i.e. within a frame or dwell) and expected in the temporal domain, under normal operating 

conditions (although there may be some “jitter”). Furthermore, the complication of data association is avoided and special logic 

need not be implemented to handle initialization and start-up transients, although this may be required in the spatial dimensions 

if a reduction in the sensor’s field of regard is unacceptable. In this paper, multidimensional forms of the filters are used to 

perform both background whitening and target enhancement functions. 

Strictly speaking, the proposed algorithm is neither a detect-before-track nor a track-before-detect approach because no 

attempt is made to establish, and maintain continuity, of target identity. As a consequence, data association is avoided, thus the 

computational load is constant and data independent, i.e. it does not depend on the density or intensity of the target or clutter; 

furthermore, the filters are amenable to parallelization because the same operations are applied to every ‘cell’. The resulting 

SNR enhancement should improve the performance and simplify the structure of any ‘downstream’ detect-before-track stage 

that follows. The proposed algorithm might therefore be regarded as an ‘enhance-before-detect’ approach. Non causal 

(forward/backward) IIR filters are used in the spatial dimensions, whereas an IIR filter with a tunable group delay, is used in 

the temporal dimension. The simple premise underlying the derivation of the filters allows them to be intuitively adapted and 

tuned for a wide range of functions. 

Analog filter prototypes are used to design the multidimensional IIR filters in [18],[19]; whereas, a direct digital design 

approach is adopted here. Classical analysis offers the designer an array of well-established relationships to build analogue 

filters; however they do not transfer exactly into the digital domain so a ‘sympathetic’ discretization method must be chosen to 

ensure that the intent of the original design is preserved, which adds an extra layer of complexity to the design process.     

Matters relating to the use of multidimensional IIR filters, with maximally-flat responses, in enhance-before-detect 

algorithms, are addressed in this paper:  1) closed-form expressions for the coefficients of low-order linear-difference-equations 

in terms of the forgetting factor (𝜎, 𝑝 = 𝑒𝜎) and the synthesis offset (𝑞) are derived; 2) relationships between these design 

parameters and the frequency response (magnitude and phase) of the filter are described; 3) ways in which the filter response 

influences the performance of the enhance-before-detect algorithm are discussed; and 4) a technique for estimating point-target 

velocity by exploiting the local “Laguerre spectrum” is proposed. A particular filter arrangement that is very well-suited to 

enhance-before-detect roles is also presented – A background subtraction stage is cascaded with a foreground accumulation 

stage; both stages use non-causal filters in the spatial dimensions and causal filters in the temporal dimension.                  
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Not all of the relationships required for the task at hand have been tabulated in the literature, for instance, phase control is 

omitted in [9], only causal filters are considered in [8], and the discussion in [6] is limited to (recursive) FIR filters, with pole-

zero cancellation on the unit circle, which is good for efficiency but bad for immunity to rounding error accumulation. Non-

causal IIR smoothers and differentiators are presented in [20] however the treatment is restricted to first- and second-order 

filters. Frequency-domain properties are not analyzed in [8]-[11] and the usefulness of analysis-only operations, to yield the 

Laguerre spectrum [8], is typically overlooked in the modern literature. Recursive analysis-only filters are also derived and 

applied in this paper.  

There are a number of other non-iterative closed-form techniques for deriving the coefficients of low-pass digital filters 

with maximally-flat responses, that resemble the much-loved monotonic responses of classical, Bessel and Butterworth, 

analogue-filters [21]-[27].  

In Hermann’s early treatment of the problem, exactly linear-phase FIR solutions that satisfy magnitude flatness constraints 

up to a specified derivative order, at frequencies 𝜔 = 0 and 𝜔 = ±𝜋, are derived [21]. Low-latency low-pass FIR filters may 

also be designed to satisfy magnitude and group delay flatness constraints at 𝜔 = 0 only, which allows the group delay to be 

varied [22],[23]. Using the closed-form expressions in [24], specification of the filter order, the desired group delay, and the 

number of zeros at 𝓏 = −1, yields filters with good phase linearity at low-frequencies and very good high-frequency 

attenuation; however, the ability to control near-DC gain, i.e. bandwidth and roll-off, is limited for low-order filters. In an 

extension of this work, “partially flat” FIR filters with derivative-constraints are investigated in [25].  

Alternatively, maximally-flat IIR filters may be designed using continuous Legendre polynomials in the frequency domain 

[26]. Closed-form expressions for the solutions have been given in terms of the order of the numerator and denominator 

polynomials comprising the discrete-time transfer function of the filter, along with the desired group delay [27]. This is a very 

flexible technique that allows a wide range of low-order filters to be designed with good phase and magnitude properties; 

although unfortunately, it is difficult to know in advance whether a stable causal filter will be produced for a given combination 

of design parameters; furthermore, the magnitude response of the filter – i.e. whether the high-frequency gain is positive or 

negative – can be very sensitive to small changes in the desired group delay. These ‘quirks’ are a consequence of the low-

frequency flatness constraints imposed on the IIR solution, which may be difficult to satisfy for some order/delay combinations.  

The approach proposed in this paper may also involve a few iterations before the required filter response is attained; 

however, the link between the design parameters and the achieved filter response is easier to predict and understand, using the 

well-known properties of linear regression, with discrete Laguerre polynomials, directly in the spatiotemporal domain.              
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Closed-form solutions to the causal and non-causal regression problem (for 𝐵 = 2) are given in Section 3, resulting in 

expressions relating the impulse response and frequency response (phase and magnitude) parameters (𝑝 & 𝑞) to third-order 

linear-difference-equation coefficients (𝒃 & 𝒂); tuning considerations are also discussed. The rationale behind their derivation 

is given in Section 2, allowing higher order filters to be derived, if required; implementation notes are given briefly in Section 

4; and the link between the response parameters and the ability of these filters to enhance the detectability of a dim point-target 

in correlated clutter/interference is considered in Sections 5 & 6, using simulation.        

               

2. FORMULATION 

A background-cancelling filter (stage 1) is cascaded with a foreground-enhancing filter (stage 2). The background-cancelling 

filter is used to remove non-target related correlation from the sensor data due to clutter or interference. The intensity of the 

background is estimated (or ‘predicted’) and subtracted from the raw input image, ideally leaving foreground features plus 

white noise. The output of this estimation-error filter, or prediction-error filter, is then passed to the foreground-enhancing filter 

which is used to increase the SNR of weak point-like target signals ‘buried’ in white noise. The intensity of foreground features 

is estimated and ‘integrated’ over space and time, i.e. accumulated over adjacent pixels and frames. Without the prior pre-

whitening stage, this filter would also enhance the background and conceal the target features. 

One of the attractive features of the proposed approach is that both stages use the same general linear model and have the 

same general filter structure – The background and foreground features are assumed to be well represented by a local 

multidimensional polynomial model in the spatial and temporal dimensions. A polynomial of low degree is sufficient to capture 

‘rolling’ low-frequency ‘undulation’ in the background due to clutter/interference and the local curvature and motion of point-

like target returns in the foreground with a (possibly non-isotropic) Gaussian point-spread function (PSF). The use of a Gaussian 

spatial impulse response would be ideal; however, recursive, low-order linear-difference-equations are not easy to derive for 

these filters [20],[28]. Three-dimensional (3-D) filters are used here to fully utilize spatiotemporal correlation due to foreground 

motion and background translation. They are implemented efficiently as (separable and recursive) IIR filters in each dimension. 

Both stages employ non-causal filters in the spatial dimensions and a causal filter, with a tunable group-delay, in the temporal 

dimension.  

In summary, the filters used by both stages rely on local polynomial models to estimate the background or foreground 

signal. The stages differ in the way that the fitted polynomials are used – The first stage is a high-pass background-subtracting 

filter; the second stage is a low-pass foreground-accumulating filter.                    



Signal Processing, Volume 114, September 2015, Pages 251-264 

 
 

Both stages assume that the input has the following form: 

𝐼(𝑛𝑥 −𝑚𝑥 , 𝑛𝑦 −𝑚𝑦, 𝑛𝑧 −𝑚𝑧) = ∑ ∑ ∑  𝐵
𝑘𝑧=0

𝐵
𝑘𝑦=0

𝐵
𝑘𝑥=0

𝛽𝑘𝑥𝑘𝑦𝑘𝑧(𝑛𝑥, 𝑛𝑦 , 𝑛𝑧)𝜓𝑘𝑥(𝑚𝑥)𝜓𝑘𝑦(𝑚𝑦)𝜓𝑘𝑧(𝑚𝑧)   (1a) 

𝐽(𝑛𝑥, 𝑛𝑦 , 𝑛𝑧) = 𝐼(𝑛𝑥, 𝑛𝑦 , 𝑛𝑧) + 휀    (1b) 

where:  

 𝐼 is the “noise-free” 3-D signal and 𝐽 is the “noise-corrupted” 3-D image, as measured by the sensor;  

 𝑥 and 𝑦 refer to the spatial dimensions (sampled to yield ‘pixels’) and 𝑧 refers to the temporal dimension (sampled to yield 

‘frames’);   

 𝑛 and 𝑚 are the global cell (or voxel) and local offset indices, respectively, with indexes increasing in opposing directions, 

in accordance with filtering convention; 

 휀 is a Gaussian-distributed sensor noise term, with 휀~𝒩(0, 𝜎𝜀
2); 

 𝛽 are the (cell-dependent) model coefficients; 

 𝐵 is the model degree, assumed to be the same in each dimension, for convenience; and 

 𝜓𝑘 is the 𝑘th (real) local basis function.  

The basis functions are constructed by orthonormalizing polynomial components in each dimension, using a linear combination 

𝜓𝑘(𝑚) = ∑ 𝛼𝑘�́�𝑚
�́�𝐵

�́�=0   (2) 

where the 𝛼 coefficients are determined using the Gram-Schmidt procedure such that 

∑ 𝜓𝑘2(𝑚)𝑤±(𝑚)𝜓𝑘1(𝑚)
+∞
𝑚=−∞ = 𝛿𝑘1𝑘2   (3a) 

in the 𝑥 and 𝑦 dimensions and    

∑ 𝜓𝑘2(𝑚)𝑤+(𝑚)𝜓𝑘1(𝑚)
∞
𝑚=0 = 𝛿𝑘1𝑘2  (3b)  

in the 𝑧 dimension, where 𝛿 is the Kronecker delta function and 𝑤(𝑚) is a (non-normalized) weighting function with  

𝑤±(𝑚) = 𝑒
𝜎|𝑚|  (4a) 

in the 𝑥 and 𝑦 dimensions and  

𝑤+(𝑚) = 𝑒
𝜎𝑚  (4b) 

in the 𝑧 dimension. Note that numerical orthonormalization may be problematic/inaccurate for some combinations of 𝜎 and 𝐵, 

if the polynomial components are too similar over the specified scale. The 𝜎 parameter (with 𝜎<0, so that the resulting filter 

poles are inside the unit circle) is a ‘forgetting’ factor, which is assumed to be the same in each dimension, in this Section, for 

notational simplicity. The infinite summations required to form the orthonormal basis may be found by taking the (one-sided) 
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𝒵 transform of the summation argument products, multiplying by the 𝒵 transform of the accumulation operation 𝓏 [𝓏 − 1]⁄ , 

and invoking the final-value theorem, which simplifies to   

𝒵{𝑚�́�2𝑤+(𝑚)𝑚
�́�1}|

𝓏=1
+ 𝒵{(−𝑚)�́�2𝑤+(𝑚)(−𝑚)

�́�1}|
𝓏=1

− [𝑚�́�2𝑤+(𝑚)𝑚
�́�1]|

𝑚=0
  (5a) 

in the 𝑥 and 𝑦 dimensions and 

𝒵{𝑚�́�2𝑤+(𝑚)𝑚
�́�1}|

𝓏=1
  (5b) 

in the 𝑧 dimension. Discrete Laguerre polynomials are produced in the one-sided (temporal) case [8]. Note that the ‘script’ 

variable 𝓏, is used to refer to the complex frequency-domain plane, while the ‘regular’ variable 𝑧, is used to refer to the temporal 

dimension. The variable 𝑘 is the orthogonal basis-function index; whereas the accented variable �́�, is the polynomial component 

index. Note also that the final term in (5a) is required to remove an 𝑚 = 0 term from the infinite summation, which would 

otherwise be counted twice in the first two terms.          

To assist the theoretical development in this section, the data are assumed to be of infinite extent in both spatial dimensions 

and all pixels in a given frame are assumed to arrive at the processor from the sensor simultaneously; furthermore, to simplify 

notation, sample indices and the summations over those indices are abbreviated below using            

(𝒏) ≡ (𝑛𝑥, 𝑛𝑦 , 𝑛𝑧), (𝒒) ≡ (𝑞𝑥, 𝑞𝑦 , 𝑞𝑧), (𝒎) ≡ (𝑚𝑥, 𝑚𝑦 , 𝑚𝑧) and ∑ ≡ ∑ ∑ ∑  +∞
𝑚𝑧=0

+∞
𝑚𝑦=−∞

+∞
𝑚𝑥=−∞𝒎 .   (6) 

Similar notation is also used for the basis functions i.e. 

(𝒌) ≡ (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧) and ∑ ≡ ∑ ∑ ∑  𝐵
𝑘𝑧=0

𝐵
𝑘𝑦=0

𝐵
𝑘𝑥=0𝒌 .  (7) 

Subscripts may be dropped for brevity when a given relationship or variable applies to more than one dimension.  

The maximum likelihood estimates �̂�, of the model coefficients 𝛽, are determined in the usual way, by minimizing the 

(weighted) sum-of-squared errors (SSE),    

SSE(𝒏) = ∑ 𝜖(𝒏 −𝒎)𝑤(𝒎)𝜖(𝒏 −𝒎)𝒎  (8)  

where  

𝜖(𝒏 −𝒎) = 𝐽(𝒏 −𝒎) − 𝐼(𝒏 −𝒎) (9) 

and 

𝐼(𝒏 −𝒎) = ∑ �̂�𝒌(𝒏)𝒌 𝜓𝒌(𝒎). (10) 

In (8) the weighting function is  

𝑤(𝒎) = 𝑤±(𝑚𝑥)𝑤±(𝑚𝑦)𝑤+(𝑚𝑧) .  (11) 

For an orthonormal basis set, the parameter estimates are simply determined using the following analysis equations: 
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�̂�𝑘(𝑛) = ∑ 𝜓𝑘(𝑚)𝑤±(𝑚)𝐽(𝑛 −𝑚)
+∞
𝑚=−∞   (12a) 

in the 𝑥 and 𝑦 dimensions and    

�̂�𝑘(𝑛) = ∑ 𝜓𝑘(𝑚)𝑤+(𝑚)𝐽(𝑛 − 𝑚)
+∞
𝑚=0   (12b) 

in the 𝑧 dimension. Taking the 𝒵 transforms of the 𝜓𝑘(𝑚)𝑤(𝑚) products allows the convolutions to be evaluated recursively. 

With the model parameters �̂�𝒌(𝒏), or the so-called Laguerre spectrum, in the vicinity of 𝒏 determined using (12), the ‘noise-

free’ estimate of the input sequence may then be evaluated at 𝒏 − 𝒒, using the synthesis equation: 

𝐼(𝒏 − 𝒒) = ∑ �̂�𝒌(𝒏)𝒌 𝜓𝒌(𝒒)  (13) 

which is then used to form the estimation residual at a specific cell 

𝐼𝜖(𝒏 − 𝒒) = 𝐽(𝒏 − 𝒒) − 𝐼(𝒏 − 𝒒). (14) 

In general, the elements of 𝒒 need not be integers in (13), however integer values must be used if (14) is to be used. Substituting 

the 𝒵 transforms of (12a) or (12b) into (13) yields a linear difference equation (LDE) for a low-pass IIR filter. For the non-

causal (forward/backward) filters, 𝑞𝑥 = 𝑞𝑦 = 0; for causal filters, 𝐼𝜖 is formed by delaying 𝐼 by |𝑞𝑧| frames if 𝑞𝑧 < 0 (predictive 

case), whereas 𝐽 is delayed by 𝑞𝑧 frames if 𝑞𝑧 > 0. Using 𝐵 = 1 with 𝑞𝑧 < 0 and 𝑞𝑧 > 0  in the temporal dimension yields the 

lead and lag filters in [29], respectively. In the current application, when (14) is evaluated at 𝒒 over all pixels in the current 

frame,  𝐼𝜖 is the whitened image, with the background removed, which is output by stage 1. The operation in (14) converts the 

low-pass filtered output 𝐼, into a high-pass filtered output 𝐼𝜖.   

In some applications it is desirable to evaluate the weighted SSE at every pixel, to give an indication of how well the local 

polynomial model fits the input data around the cell at 𝒏, using              

SSE(𝒏) = ∑ 𝐽(𝒏 −𝒎)𝑤(𝒎)𝐽(𝒏 −𝒎)𝒎 − 2∑ 𝐽(𝒏 −𝒎)𝑤(𝒎)𝐼(𝒏 −𝒎)𝒎 + ∑ 𝐼(𝒏 −𝒎)𝑤(𝒎)𝐼(𝒏 −𝒎)𝒎    (15) 

which may also be evaluated recursively by taking 𝒵 transforms. In the current application, the second-stage is a simple 

quadratic filter that accumulates the weighted power of the 3-D polynomial fitted to the target signal using only the last term 

of (15) i.e.               

�̂�(𝒏) = ∑ 𝐼(𝒏 −𝒎)𝑤(𝒎)𝐼(𝒏 −𝒎)𝒎 . (16) 

Substitution of (10) into (16) yields  

�̂�(𝒏) = ∑ [∑ �̂�𝒌𝟐(𝒏)𝒌𝟐 𝜓𝒌𝟐(𝒎)]𝑤(𝒎)[∑ �̂�𝒌𝟏(𝒏)𝒌𝟏 𝜓𝒌𝟏(𝒎)]𝒎    (17) 

which, due to basis set orthonormality, simplifies to   

�̂�(𝒏) = ∑ �̂�𝒌
2(𝒏)𝒌  (18a) 
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or  

�̂�(𝒏) = ∑ �̂�𝒌
2(𝒏)𝒌∈𝛀   (18b) 

if it is known a priori that targets of interest only have non-negligible power in a subset (𝛀) of bins (see Appendix B). A 

weighted sum of coefficients could instead be used in (18) to favor targets with specific shapes and velocities [30]; however 

this slows down execution by adding another loop over all possible target classes. As the weighting functions used here are not 

normalized, the average signal power �̂�avg(𝒏) in the vicinity of 𝒏 is determined using �̂�avg(𝒏) = 𝑐nrm�̂�(𝒏), where the 

normalizing factor is determined using (5), i.e. 

 𝑐nrm = {[2 (1 − 𝑝𝑥)⁄ − 1][2 (1 − 𝑝𝑦)⁄ − 1][1 (1 − 𝑝𝑧)⁄ ]}
−1

.   (18c) 

 

3. PARAMETERIZATION  

Responses of a variety of filter tunings are given in Figs. 1-3. Both causal and non-causal variants are shown in Fig. 1. In all 

cases 𝐵 = 2, i.e. a quadratic model. These types of low-pass filters are used to generate 𝐼 in stage 1, i.e. background estimation. 

As 𝜎 becomes less negative, the (real & repeated) filter poles at 𝑝 = 𝑒𝜎 move radially outward from the origin of the 𝓏 plane 

towards the unit circle, which increases frequency selectivity and decreases temporal/spatial selectivity. For filters with a near-

unity pole radius, frequency selectivity further increases as 𝑞 becomes more positive, i.e. as the nominal group-delay increases. 

The ‘nominal’ qualifier is used here to highlight the fact that the phase response is only approximately linear in the low-

frequency pass-band. Note that 𝜎 (or 𝑝) determines the pole radius and influences the zero locations; whereas 𝑞 only influences 

the zero locations, in the analysis & synthesis filters (only used in stage 1). By definition, the non-causal filters have a group-

delay of zero, and as expected, greater frequency selectivity (i.e. flatter low-frequency gain and greater high-frequency 

attenuation) than their zero-latency (𝑞 = 0) causal counterparts. This is due to the symmetry (or anti-symmetry) of their impulse 

responses around the ‘current’ sample (at 𝑚 = 0).    

The implementation described in Section 4, which was used to process the data described in Section 5, used 𝜎𝑥 = 𝜎𝑦 =

−1 2⁄ , 𝑞𝑥 = 𝑞𝑦 = 0, & 𝐵 = 2 in stages 1 and 2; 𝜎𝑧 = −1 4⁄  and 𝑞𝑧 = 4 was used in stage 1, whereas 𝜎𝑧 = −1 2⁄  was used 

in stage 2. The filter coefficients (𝒃 & 𝒂) derived using these parameters are used in the (causal and recursive) linear-difference-

equation 

∑ 𝑎𝑚𝓎(𝑛 − 𝑚)
𝑀𝑎
𝑚=0 = ∑ 𝑏𝑚𝓍(𝑛 − 𝑚)

𝑀𝑏
𝑚=0   (19a)  

or 
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𝓎(𝑛) = ∑ 𝑏𝑚𝓍(𝑛 − 𝑚)
𝑀𝑏
𝑚=0 − ∑ 𝑎𝑚𝓎(𝑛 −𝑚)

𝑀𝑎
𝑚=1   (19b)  

for  𝑎0 = 1, where 𝓎(𝑛) and 𝓍(𝑛) are the 𝑛th filter outputs and inputs, respectively. This equation implements the following 

discrete-time transfer function, which has an IIR and a maximum order of 3 (𝑀𝑎 = 3), for 𝐵 = 2: 

𝐻(𝓏) =
𝑏0+𝑏1𝓏

−1+𝑏2𝓏
−2+𝑏3𝓏

−3

𝑎0+𝑏1𝓏
−1+𝑎2𝓏

−2+𝑎3𝓏
−3 .  (20) 

The low-pass analysis & synthesis filters that produce 𝐼(𝒏) in stage 1 are given in Table I; the analysis-only filters that produce 

�̂�𝒌(𝒏) in stage 2 are given in Table II. Non-causal filters are realized by summing the outputs of separate filters applied to the 

input data in the forward (fwd) and backward (bwd) directions. For symmetric basis components (e.g. 𝑘 = 0 & 𝑘 = 2), the 

filter coefficients are the same; for anti-symmetric components (e.g. 𝑘 = 1), some coefficients change sign. Care is required 

when interpreting the output of the analysis-only filters, because 𝑚 and 𝑛 increase in opposite directions.   

The frequency response 𝐻(𝜔), of the filter is found by substituting 𝓏 = 𝑒𝑗𝜔 into (20). Using the stage 1 filter coefficients 

given in Table I in (20) and evaluating derivatives of |𝐻(𝜔)|2 at 𝜔 = 0, reveals that the first, second and third derivatives are 

all equal to zero, confirming that the procedure does indeed result in some degree of flatness.      

The relationships used to determine the coefficient values in Tables I & II are given in Table III. A worked example 

presented in Appendix A, illustrates how the expressions in Table III are derived using (1) to (13). Only closed-form expressions 

for third-order filters resulting from quadratic polynomial models (𝐵 = 2) have been derived, as these yield an optimal balance 

between versatility and simplicity. For 𝑞 = 0 the expressions for the (zero-latency) causal filters used in stage 1 are the same 

as the third-order range-filter in [9] and the position element of the state-space recursive least-squares estimator in [10]; the 

causal stage 1 coefficients, for any 𝑞, may also be derived using (13.3.11) in [8]. When realized in canonical form, with 6 

multipliers and 5 adders, the filter is less complex than the corresponding recursive FIR implementation in [6], which uses 5 

multipliers and 12 adders. (Note, the author believes that the second term of (11) in [6] should have its sign reversed.)   

 

4. IMPLEMENTATION 

The proposed enhance-before-detect algorithm was implemented on a personal computer with a 64 bit operating system and 

an Intel ® i7-4810MQ CPU @ 2.8GHz using an interpreted MATLAB ® script. The processing architecture is summarized as 

follows: 𝐽
stage 1
→    𝐼𝜖

stage 2
→    �̂�𝜖. Thus stage 1 involves analysis and synthesis operations, which are combined to form a single 

separable IIR filter in each dimension, as described in (1) to (14); whereas stage 2 involves only analysis operations, as 

described in (1) to (12), which are implemented as a bank of IIR filters in each dimension, followed by the summation in (18). 
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Stage 2 is therefore somewhat more expensive than stage 1 because its software implementation involves nested loops over 𝑘𝑥, 

𝑘𝑦 and 𝑘𝑧 to populate the 3-D array containing the �̂�𝑘𝑥𝑘𝑦𝑘𝑧 coefficients; however, some coefficient combinations may be 

omitted for some target classes (see Appendix B). As the model coefficients are pixel dependent, a 5-D array is required to 

store the estimates in the current frame. Both stages avoid loops over 𝑛𝑥 and 𝑛𝑦 by using vectorized MATLAB operations. 

Loops over 𝒎 are of course avoided through the use of recursion. In both stages, the MATLAB filter() command was used 

to process the rows and columns of each frame. In a given spatial dimension, the non-causal IIR filters were realized by 

processing the input data once in the forward direction, then again in the backward direction by ‘flipping’ the input data in 

either the up/down or left/right directions. The causal IIR filters in the temporal dimension were implemented using delayed 

frame buffers for the raw input and processed output.     

At an operational level, the computational cost is dominated by the number of multiply and accumulate operations (MACs) 

associated with the spatial and temporal IIR filters employed in stages 1 and 2; there are also a few accompanying addition and 

subtraction operations which are not counted in the following analysis. Inspection of the non-zero and non-unity filter 

coefficients in Tables IA, IB, IIA & IIB gives an approximate indication of the computational complexity of the proposed 

algorithm, per pixel per frame. There are 4 × 7 + 6 MACs associated with the application of the stage 1 filters. The factor of 

four is due to application of the non-causal spatial filters in the left, right, upward and downward directions. If all bins of the 

Laguerre spectrum are evaluated, there are (2 × 13) + 3(2 × 13) + 9(12) MACs associated with application of the stage 2 

filters in the 𝑥, 𝑦 and 𝑧 dimensions, followed by 3 × 3 × 3 MACs to implement (18a). For frames with dimensions 128 ×128, 

with 𝐵 = 2 in all dimensions in both stages and when only 7 Laguerre spectrum bins are evaluated in stage 2 – as per (18b) 

and as explained in Appendix B – a throughput rate of approximately 88 frames per second was achieved.      

 

5. SIMULATION 

The performance of the filters was analyzed using simulated, (pseudo-) randomly-generated input-data, which were intended 

to be a ‘crude caricature’ of a detection/acquisition scenario in either an airborne infrared camera (long-range target set against 

blue-sky), or a sky-wave radar (small target at night, with Doppler information removed). A total of 64 frames of 128 × 128 

pixels were generated per scenario. A (real-valued) background texture was synthesized using 10 randomly generated 

sinusoidal components with: a spatial frequency randomly distributed over an interval of 0 to 1/33 cycles per pixel, a random 

phase, and an amplitude of 1/10. The clutter/interference texture was translated using a randomly generated (group) velocity 

of 𝒗clt. The components of 𝒗clt were uniformly distributed between 0 and 1 (pixels/frame). An additional DC component with 
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an amplitude of 1 was also included in the background. A foreground target was then added with: a maximum intensity of 1, a 

Gaussian PSF with a standard deviation (std. dev.) of 2 pixels and a random velocity of 𝒗tgt. The components of 𝒗tgt were 

uniformly distributed between -1 and 0 (pixels/frame). The target’s position in the final frame is 𝒑tgt = [64,64] (pixels), 

displaced by a random offset ∆𝒑tgt, of 0 to 1 pixels. Finally, white Gaussian noise was added to each frame with a std. dev. of 

𝜎𝜀. In the example shown in Fig. 4, 𝒗clt = [0.51,0.46], 𝒗tgt = [−0.73, −0.07] and   ∆𝒑tgt = [0.92, 0.54]. The sensor noise 

was generated to yield a (target) SNR of 6 dB (𝜎𝜀 ≅ 0.5).               

   

6. DISCUSSION 

6.1 Stage 1 Analysis 

Reducing 𝐵 in stage 1 resulted in a slight decrease in the SNR enhancement and a slight increase in the frame rate. This is 

because decreasing 𝐵 decreases the filter order and the -3 dB filter bandwidth, of the low-pass filters. For the randomly selected 

scenario depicted in Fig. 4 (i.e. the “selected scenario”), the average approximate SNR of the stage 2 output for 𝐵 = 2, 1 & 0, 

in stage 1, is 12.4, 11.7 & 11.8 dB, respectively. The discrete-time transfer function of the background subtraction filters used 

in stage 1 is required to account for the reasonable performance observed for the reduced-degree models. Each low-pass filter 

(lpf), designed using a delay of 𝑞, is converted into a high-pass filter (hpf) using (14); taking the 𝒵 transform yields  

𝐻hpf(𝓏) = 𝓏
−𝑞 − 𝐻lpf(𝓏).  (21) 

The frequency response of the resulting hpf is shown in Fig. 5 for a non-causal filter (𝑞 = 0) and causal filters with 𝑞 = 0 & 4. 

The responses for the lpf prototypes presented in Section 3 are quite good with magnitude and phase approximately linear in 

the low-frequency region; however this is not carried over into the hpf version, because the resulting high-frequency pass-band 

is wider and not so well defined. Using a quadratic model (𝐵 = 2), for a lpf pole multiplicity of 3, increases the width of the 

DC notch in the hpf, so that the background spatial components used in the simulation (with 𝑓 ≤ 0.03) all fall well within the 

notch of the non-causal spatial filters. Increasing the latency of the causal filter using 𝑞 = 4 instead of 𝑞 = 0 decreases the 

high-frequency attenuation which allows more of the target signal to reach stage 2. Using a simple two-sided moving 

exponential average (𝐵 = 0) as the lpf prototype in the spatial dimensions does still give reasonable attenuation near DC and 

near unity gain (0 dB) away from DC. The discrete-time transfer function for this simple hpf is derived using (21) and a 

smoothing lpf prototype, which may be derived using the procedure described in Section 2; alternatively, the hpf may be 

adapted from [20]:  
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𝐻hpf(𝓏) = 1 −
1−𝑝

1+𝑝
(

1

1−𝑝 𝓏⁄
+

1

1−𝑝𝓏
− 1).  (22) 

The proposed design technique produces filters with repeated poles on the real axis (0 < 𝑝 < 1), thus the ability to widen the 

pass band of the lpf is limited; unfortunately, increasing 𝐵 has diminishing returns. One of the benefits of the method described 

in [25], is the ability to generate solutions with complex poles, which allows low-pass filters with high cut-off frequencies to 

be realized with low-order filters.  

Translation of the spatial components due to apparent background motion causes the spatial spectrum to be ‘tilted’ out of 

the 𝑥-𝑦 plane in the 3-D frequency domain, where 𝑓𝑧 = 0, according to    

𝑓𝑧 = −𝑣𝑥𝑓𝑥 − 𝑣𝑦𝑓𝑦.  (23) 

This relationship [31], may be used to determine the width of the clutter/interference notch required of the temporal filter used 

in stage 1. Using 𝑓𝑥 = 𝑓𝑦 = ±0.03 and 𝑣𝑥 = 𝑣𝑦 = ±0.5 in (23) yields 𝑓𝑧 = ±0.03. The spatial filters used in stage 1 

(causal, 𝐵 = 2, 𝜎 = −1 4⁄  & 𝑞 = 4) apply an attenuation of 20 dB at this frequency but only 6 dB if the speed is doubled (see 

Fig 5); therefore, degraded target enhancement is expected due to residual background clutter/interference in the stage 1 output. 

Applying factors of 1, 2 & 4x to the velocity components of the background in the selected scenario results in average output 

SNRs of 12.4, 9.5 & 7.7 dB, respectively.        

As 𝜎 → 0 from the left (i.e. as 𝑝 → 1 from the left, where 𝑝 = 𝑒𝜎) the frequency selectivity (i.e. pass-band flatness and 

stop-band attenuation) of the background estimation filter in stage 1 increases in the spatial dimensions but the width of transient 

phenomena around the perimeter of the processed image also increase due to the longer mean impulse response. This has the 

effect of reducing the effective coverage of the sensor. Longer (mean) impulse responses are more useful in the temporal 

dimension, where startup transients are quickly ‘forgotten’, especially if the parameters of the background change only slowly 

(i.e. approximately wide-sense stationary). When 𝜎 is doubled, for a shorter average impulse response, in all dimensions in 

stage 1, the average output SNR in the selected scenario decreases by 5.4 dB. 

Using 𝑞𝑧 = 4 (i.e. a delay of four frames) in stage 1 also promotes frequency selectivity (see Fig. 2), to ensure that the 

low-frequency background is strongly attenuated in 𝐼𝜖, while preserving most of the high-frequency foreground content (see 

Fig. 5). However, using 𝑞𝑧 ≤ 0 may be beneficial in closed-loop control/guidance systems, to minimize delays and maximize 

stability margins [29], at the expense of frequency selectivity. To maximize noise attenuation, 𝑞𝑧 should be chosen to suit the 

selected value of  𝑝 in the 𝑧 dimension (i.e. 𝑝𝑧). If the spatiotemporal clutter frequencies are within the passband of the 

prediction filter employed in stage 1, i.e. if the selected polynomial degree (𝐵) is a reasonable approximation, then the so-called 

variance reduction factor (VRF), is a useful indication of the expected sensor noise attenuation in stage 1. As defined in [8] & 
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[32], the VRF is the ratio of the signal estimate variance –  i.e.  E 〈(𝐼 − 𝐼)
2
〉, where E〈∙〉 is the expectation operator – to the 

sensor noise variance 𝜎𝜀
2,  where 𝜎𝜀

2 = E〈(𝐽 − 𝐼)2〉, in the absence of a foreground signal. Using (13.6.20) in [8], the VRF of 

the temporal causal filter with 𝐵𝑧 = 2, as a function of 𝑝𝑧 and 𝑞𝑧 (subscripts dropped below) is  

VRF = 𝐹𝐴𝐹T  (24a) 

where    
        
𝐹 = [1 {𝑝 −  𝑞 +  𝑝𝑞} {2𝑝𝑞(𝑝 −  1)  +  1

2
𝑞(𝑝 −  1)2(𝑞 −  1)  +  𝑝2}]  (24b)  

and 

𝐴 = (1 − 𝑝)

[
 
 
 
 

1

(1+𝑝)

1

(1+𝑝)2

1

(1+𝑝)3

1

(1+𝑝)2

2

(1+𝑝)3

3

(1+𝑝)4

1

(1+𝑝)3

3

(1+𝑝)4

6

(1+𝑝)5]
 
 
 
 

 . (24c) 

Substituting the values used in the 𝑧 dimension of stage 1 (𝑝 = 𝑒−1 4⁄  and 𝑞 = 4) into (24) and evaluating, yields VRF ≅ 0.1, 

which suggests an improvement of 10 dB due to the temporal filtering alone. Taking the derivative of the VRF with respect to 

𝑞, setting it to zero, then solving for 𝑞, yields the ‘optimal’ value of 𝑞, for a given 𝑝, that minimizes the VRF. For 𝐵 = 2, 

 𝑞opt = [4𝑝 − √2(𝑝
2 + 4𝑝 + 1) + 2] [2(1 − 𝑝)]⁄  . (25) 

Use of 𝑞opt in the causal low-pass filters in stage 1 (see Table III) places a zero in the complex frequency-domain at 𝓏 = −1, 

for infinite attenuation at the Nyquist frequency. The VRF decreases, thus the noise attenuation and SNR increase, as 𝑝 → 1. 

Substituting the selected value of 𝑝 = 𝑒−1 4⁄  into (25) yields 𝑞opt ≅ 4.6. An integer value is required to form the prediction 

error in stage 1, as shown in (14), therefore a value of 𝑞z = 4 was used. As a rule of thumb, using a value of 𝑞 close to the 

centroid of the weighting function 𝑤(𝑚) in (4b) generally gives satisfactory results, as might intuitively be expected from the 

theory of linear regression.  

However, minimization of the VRF is not the only consideration when selecting values for the 𝑝 and 𝑞 parameters in stage 

1. As previously mentioned, decreasing 𝑝 reduces the impulse response duration, thus the impact of transients, and the 

associated bias errors, arising from sudden changes in the clutter parameters (𝛽) in the background; whereas decreasing 𝑞 

reduces the processing latency of the system, which may be a critical consideration in closed-loop systems. The average SNR 

of the stage 2 output, for the selected scenario is 11.1, 12.4, 12.4 & 11.9 dB, for 𝑞z values of 0, 2, 4 & 6, respectively; however, 

the expected trend is more noticeable if the structured background is omitted from the simulation, yielding outputs of 11.7, 

13.0, 13.6 & 13.4 dB, respectively. These results indicate that the VRF is a reasonable predictor of performance. 
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Unfortunately, stage 1 is responsible for some target signal attenuation, in the low-frequency region; however, for narrow 

target PSFs, there is sufficient high-frequency content to stimulate stage 2. The overall performance therefore depends on the 

overlap between the background and foreground power-density spectra. For instance, very little improvement in target 

‘visibility’ is expected for high-frequency backgrounds and wide target PSFs. Residual structure in the stage 1 output 

overwhelms the stage 2 accumulator and masks dim targets. In the absence of background clutter/interference, stage 1 could of 

course be bypassed with 𝐽 sent directly to stage 2; and when targets are relatively bright, stage 2 may be omitted. When the 

frequencies of the background components used in Fig. 4 are doubled, the average output SNR decreases by 3.1 dB.    

 

6.2 Stage 2 Analysis 

It is interesting to note that using 𝐵 = 0 in all dimensions of stage 2, which is equivalent to simply convolving the output of 

stage 1 with an exponential PSF that decays exponentially in time, actually improves the detection performance in the selected 

scenario by approximately 1 dB. Increasing the polynomial degree in all dimensions of stage 2 increases the noise power 

somewhat, due to the extra degrees of freedom available; however, it also results in a multidimensional Laguerre spectrum, as 

constructed using (12). This process is referred to in the literature as a Discrete Laguerre Transform (DLT) [33].  The resulting 

spectrum may then be processed to form a feature vector at each pixel in every frame, containing local shape and velocity 

estimates (i.e. an optical-flow field [34]), for instance. This information may then be exploited by ‘downstream’ processing 

stages, e.g. for target classification and/or target tracking purposes, and is the main motivation for using 𝐵 = 2 in stage 2 in 

this paper. An alternative approach was adopted by the author in [35], where banks of first-order recursive filters with a finite 

impulse response were used to compute the (short-time/space) Fourier spectrum for local motion analysis (using the local 3-D 

autocorrelation function) and filtering in an infrared target detection and tracking application. In that work, the primary 

objective was background clutter suppression, as sensor noise was assumed to be negligible, thus further integration of the 

foreground target signal was not required. A possible technique for exploiting the Laguerre spectrum to generate a velocity 

estimate is presented in Appendix B. The method is only presented here for illustrative purposes and its properties are not 

explored in detail. It is simply used demonstrate the feasibility of this approach, and to justify the extra complexity associated 

with using 𝐵 = 2 in stage 2. It was only applied to the pixel in each frame where the output of stage 2 is maximized. In the 

selected scenario, the average estimate of the target velocity was �̂�tgt = [−0.64, −0.08] which is not too far from the true value 

of 𝒗tgt = [−0.73, −0.07]. Preliminary investigations indicate that, like the gradient-based Lucas-Kanade method of computing 
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optical flow [34], the velocity estimates tend to be biased (towards zero) and gross errors are expected when speeds start to 

exceed 1 pixel per frame.   

For a perfectly whitened input 𝐼𝜖, stage 2 enhancement performance improves for slower targets with wider PSFs. Fast 

targets benefit less from target power accumulation in the temporal dimension; however this effect is offset by improved spatial 

accumulation, if the PSF is broadened (i.e. for near and/or large targets). If no background is added in the selected scenario, 

and stage 1 is bypassed, the SNR of the stage 2 output is 6.9, 13.0, 19.5 & 21.6 dB, for PSFs of ½, 1, 2 & 4 pixels, respectively. 

In stage 2, longer impulse responses are required to sufficiently accumulate target signal power when the target SNR is low; 

however the benefits are only fully realized if the target is slow. For the target speed and PSF combination used in Fig. 4, the 

target is still sporadically visible in the stage 2 output, with an average output SNR of 8.7 dB, if the input SNR is reduced by 6 

dB to 0 dB. 

The proposed foreground enhancement technique was compared with a 3-D matched filter. The matched filter is known 

to be optimal when the target signal is known precisely and when the sensor noise is zero-mean and uncorrelated. The 9 × 9 ×

9 convolution kernel of an FIR matched filter was created using the exact velocity and Gaussian PSF of the target and used to 

process the whitened output of stage 1. This ‘clairvoyant’ filter was able to attain an impressive output SNR of 16.8 dB in the 

selected scenario. However, in practice, the velocity of the target is rarely known in advance, therefore a bank of such filters 

must be applied, each tuned to a possible velocity hypothesis [36],[37]. At each pixel, the filter with the greatest output power 

is selected. A 3 × 3 bank of filters created using 𝑣𝑥 = [−1,01] and 𝑣𝑦 = [−1,01] yielded a disappointing output SNR of 10.9 

dB and �̂�tgt = [−1,0]; whereas a 5 × 5 bank of filters created using 𝑣𝑥 = [−1,−
1

2
, 0, 1

2
, 1] and 𝑣𝑦 = [−1,−

1

2
, 0, 1

2
, 1] yielded an 

improved output SNR of  12.1 dB and �̂�tgt = [−0.68, −0.01], at considerable computational expense, which is still less than 

the 12.4 dB achieved via the Laguerre spectrum. When the convolution kernels of the matched filters are simply applied (as 

done here) in the voxel domain, 9 × 9 × 9 MACs are required per velocity hypothesis, which is also substantially more 

expensive than the proposed method. While frequency domain and/or recursive implementations may reduce the complexity 

of matched filtering approaches somewhat, a complexity that is proportional to the number of filters in the bank is a burden 

that is difficult to avoid.                                    

 

7. CONCLUSION 

Unlike many other detect-before-track and track-before-detect approaches used to detect barely discernable targets in long-

range surveillance-sensor systems, the method proposed in this paper does not assume that targets are the only features in the 
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image that exhibit correlation in space and time. A flexible and efficient multidimensional digital filtering scheme is used to 

suppress background features and enhance foreground features. Foreground enhancement is achieved using a recursive Discrete 

Laguerre Transform (DLT); the resulting spectrum may also be used to characterize foreground features using shape and 

velocity attributes. The IIR filters are manually tuned using a small number of configuration parameters. A direct digital design 

approach is used to avoid discretization phenomena and optimization/numerical procedures are not required. Like FIR 

Savitzky-Golay filters, the least-squares formulation in the pixel/frame domain ensures: firstly, that mean-squared errors are 

minimized, when the foreground or background do indeed adhere to a low-degree polynomial model, over the scales specified 

by the weighting functions (using the 𝑝 or 𝜎 parameters); and secondly, that a maximally-flat low-frequency response is 

obtained. For causal filters, the trade-off between frequency selectivity and group delay (lag or lead) may be adjusted to suit 

requirements (using the 𝑞 parameter). The proposed framework and the closed-form expressions for the filter coefficients are 

intended to ease the burden of recursive multidimensional filter design. 

 

8. APPENDICES  

Appendix A 

The closed form expressions for the LDE coefficients, used in the low-pass (analysis-and-synthesis) filters of stage 1, and the 

(analysis-only) filters of stage 2, with 𝐵 = 2 (see Table III), are derived in this Appendix, by following the procedure outlined 

in Section 2. Only the causal case, as used in the temporal dimension, is considered. An analogous approach is taken for the 

non-causal filters, which for the sake of brevity, is not reproduced here. The first step is to determine the discrete Laguerre 

polynomial coefficients 𝛼𝑘�́� used in (2). This is done via the Gram-Schmidt procedure, which ensures that the resulting 

polynomials are orthogonal and normalized, as specified in (3b), with respect to the causal weighting function 𝑤+(𝑚) = 𝑒
𝜎𝑚. 

As indicated in (5b), the infinite summations over 𝑚 required in this procedure, i.e. ∑ 𝑚�́�2𝑒𝜎𝑚𝑚�́�1∞
𝑚=0 , are conveniently 

evaluated via an 𝑚 → 𝓏 transform using 𝒵{𝑚�́�2𝑒𝜎𝑚𝑚�́�1}|
𝓏=1

. The resulting coefficients 𝛼𝑘�́�, for the 𝑘th orthogonal polynomial 

𝜓𝑘(𝑚), in terms of the �́�th orthogonal polynomial component 𝜙�́�(𝑚) = 𝑚
�́�, with 𝜓𝑘(𝑚) = ∑ 𝛼𝑘�́�𝑚

�́�𝐵
�́�=0 , are given in Table 

A.I. Note that the discrete Laguerre polynomials used here assume that the weighting function is not multiplied by a normalizing 

factor. 

Convolution with the 𝑘th exponentially-weighted orthogonal polynomial 𝑤+(𝑚)𝜓𝑘(𝑚) = 𝑒
𝜎𝑚𝜓𝑘(𝑚), is achieved using 

a linear combination of the outputs of 𝐵 + 1 component filters. The LDE coefficients of the �́�th component filter are derived 
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from the weighted component transfer function ℱ�́�(𝓏), which is found by taking the  𝒵 transform of the exponentially-weighted 

polynomial component 𝑤+(𝑚)𝜙�́�(𝑚) = 𝑒
𝜎𝑚𝑚�́�, i.e. 

ℱ0(𝓏) = 𝒵{𝑒
𝜎𝑚} =

𝓏

𝓏−𝑝
 (A.1a) 

ℱ1(𝓏) = 𝒵{𝑒
𝜎𝑚𝑚} =

𝑝𝓏

(𝓏−𝑝)2
 (A.1b) 

ℱ2(𝓏) = 𝒵{𝑒
𝜎𝑚𝑚2} =

𝑝𝓏(𝓏+𝑝)

(𝓏−𝑝)3
 . (A.1c) 

The transfer function of the 𝑘th (causal) analysis filter 𝒢𝑘(𝓏), as used in stage 2, and as specified in Table III, is therefore      

𝒢𝑘(𝓏) =  𝜶𝑘𝓕(𝓏)  (A.2) 

where  𝜶𝑘 = [𝛼𝑘0 𝛼𝑘1 𝛼𝑘2], i.e. the 𝑘th row of Table A.I, and 𝓕(𝓏) = [ℱ0(𝓏) ℱ1(𝓏) ℱ2(𝓏)]
T, for 𝐵 = 2. As 

emphasized in Section 2 and as specified in (12b), the output of the 𝑘th temporal analysis filter �̂�𝑘(𝑛), for 𝑛 ≫ 0 (i.e. after the 

start-up transient has effectively passed), is the regression coefficient corresponding to the least-squares fitting of 𝜓𝑘(𝑚), to 

the input sequence 𝓍(𝑛), using a weight 𝑤+(𝑚), that decays exponentially with increasing 𝑚 (and decreasing 𝑛). In the context 

of the foreground-accumulating filters employed in stage 2, and in the absence of any spatial filtering, the input is the prediction 

error 𝐼𝜖(𝑛).  Note that inspection of the 𝓕(𝓏) components in (A.1) suggests that further efficiencies may be obtained using a 

cascaded filter structure [38]; however, this was not implemented here. 

With the regression coefficients �̂�𝑘(𝑛) determined using a bank of 𝐵 + 1 parallel analysis filters, a ‘noise-free’ estimate 

of the input is ‘reconstructed’ or ‘synthesized’ by evaluating the weighted least-squares fit at a point displaced by 𝑞 samples 

from the current sample at 𝑚 = 0. The transfer function ℋ(𝓏) of the resulting causal analysis-and-synthesis filter is    

ℋ(𝓏) =  𝝍(𝑞)T𝓐𝓕(𝓏)  (A.3a) 

where  𝝍(𝑞) = [𝜓0(𝑞) 𝜓1(𝑞) 𝜓2(𝑞)]
T for 𝐵 = 2 and the 𝑘th row of the square (lower-triangular) matrix 𝓐 is equal to 𝜶𝑘. 

Alternatively, using the fact that 𝝍(𝑞) = 𝓐𝝓(𝑞), where 𝝓(𝑞) = [𝜙0(𝑞) 𝜙1(𝑞) 𝜙2(𝑞)]
T = [1 𝑞 𝑞2]T  

ℋ(𝓏) =  𝝓(𝑞)T𝓐T𝓐𝓕(𝓏).   (A.3b) 

Expansion and simplification of (A.3b) yields the causal low-pass filter coefficients in Table III, used to estimate the 

background intensity in stage 1 as defined in (13). In the context of the background-subtraction filters employed in stage 1, and 

in the absence of any spatial filtering, ℋ(𝓏) transforms 𝐽(𝑛) into 𝐼(𝑛). This operation is recursively implemented in the time 

domain at each pixel using (19b).  

The gradient of the input at 𝑛 − 𝑞 is estimated by determining the derivative of the weighted least-squares fit before 

evaluating it at 𝑚 = 𝑞 using 
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𝒟(𝓏) =  𝝓(𝑞)T𝓑𝓐T𝓐𝓕(𝓏)  (A.4) 

where, for 𝐵 = 2,  

 𝓑 = [
0 −1 0
0 0 −2
0 0 0

]. (A.5) 

The discrete-time transfer function 𝒟(𝓏), may be realized using an IIR digital filter to compute the temporal derivatives 

required in gradient-based optical flow calculations, such as the Lucas-Kanade method used in [34]; however, this filter was 

not used in this paper. Like the prediction filter derived from ℋ(𝓏), the derivative filter may be tuned to attenuate high-

frequencies, which is a useful property when the input is known to be corrupted by sensor noise. See [8] or [32] for an alternative 

derivation of the filters considered in this Appendix.    

 

Appendix B 

Like the Fourier spectrum, computed using the Discrete Fourier Transform (DFT), the Laguerre spectrum, computed using the 

Discrete Laguerre Transform (DLT) [33], may be used to form a compact representation of a signal and exploited for data 

compression or information extraction purposes. A finite window, possibly in conjunction with a tapering function, is used to 

isolate data prior to the application of the (short-time) DFT; however an exponentially decaying window of infinite extent is 

used to ‘focus’ the DLT. The DFT is best suited to signals that consist of wide-band sinusoidal components; whereas the DLT 

is more appropriate when the signals have a polynomial structure, or are comprised of very low-frequency sinusoids. 

Multidimensional Fourier-spectrum analysis techniques have a long history, especially in image/video analysis 

[18],[19],[31],[35]-[37], and are well established; however, the potential benefits of multidimensional Laguerre-spectrum 

exploitation are not so widely appreciated; therefore a technique, that is particularly useful in the current application, namely 

the estimation of point-target velocity, is presented in this Appendix.  

In the spatial coordinates, the point target is assumed to be a scaled unit impulse, convolved with a 2-D Gaussian point-

spread function (PSF). The target intensity 𝐼tgt, in the immediate vicinity of the maximum at 𝒎 = [0 0 0] is modelled as a 

quadratic function using a linear combination of polynomial components 

𝐼tgt(𝑚𝑥, 𝑚𝑦) = 𝐼max + 𝜌𝑥𝑚𝑥
2 + 𝜌𝑦𝑚𝑦

2      (B.1) 

where 𝐼max is the maximum target intensity (typically positive) and 𝜌 is a PSF curvature parameter (typically negative). Now 

for a target moving with velocity 𝒗tgt = [𝑣𝑥 , 𝑣𝑦]  

𝐼tgt(𝑚𝑥, 𝑚𝑦 , 𝑚𝑧) = 𝐼max + 𝜌𝑥(𝑚𝑥 − 𝑣𝑥𝑚𝑧)
2 + 𝜌𝑦(𝑚𝑦 − 𝑣𝑦𝑚𝑧)

2
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                                = 𝐼max + 𝜌𝑥𝑚𝑥
2 + 𝜌𝑦𝑚𝑦

2 − 2𝜌𝑥𝑣𝑥𝑚𝑥𝑚𝑧 − 2𝜌𝑦𝑣𝑦𝑚𝑦𝑚𝑧 + (𝜌𝑥𝑣𝑥
2 + 𝜌𝑦𝑣𝑦

2)𝑚𝑧
2.  (B.2) 

Equating the target parameters with polynomial component coefficients 𝛾�́�𝑥�́�𝑦�́�𝑧, and omitting the 𝑚𝑧
2 term, yields 

𝛾000 = 𝐼max, 𝛾200 = 𝜌𝑥, 𝛾020 = 𝜌𝑦,  𝛾101 = −2𝜌𝑥𝑣𝑥, 𝛾011 = −2𝜌𝑦𝑣𝑦 .  (B.3)     

If estimates of the polynomial component coefficients 𝛾, are available, then the velocity estimate �̂�tgt, is simply computed from 

(B.3) using 

�̂�𝑥 = −
�̂�101

2�̂�200
 and �̂�𝑦 = −

�̂�011

2�̂�020
 .  (B.4)  

 (Note the similarity of Eq. B.4 and the motion constraint equations, used in Lucas-Kanade optical flow [34].)  

Unfortunately, the analysis filters described in Section 2 yield the Laguerre polynomial coefficients �̂�, not the required 

polynomial component coefficients 𝛾, therefore a �̂� → 𝛾 transformation step is required, involving the 𝓐 matrix from Appendix 

A, in the spatial and temporal dimensions. If �̂� is a tensor of order three (corresponding to the 𝑥, 𝑦 and 𝑧 axes) with dimensions 

(𝐵𝑥 + 1, 𝐵𝑦 + 1, 𝐵𝑧 + 1) and elements 𝛾�́�𝑥�́�𝑦�́�𝑧 , then for 𝐵 = 2,  

�̂� = ∑ ∑ ∑ �̂�𝑘𝑥𝑘𝑦𝑘𝑧
2
𝑘𝑥=0

2
𝑘𝑦=0

2
𝑘𝑧=0

{𝓐𝑥
T𝒖𝑘𝑥} ⊗ {𝓐𝑦

T𝒖𝑘𝑦} ⊗ {𝓐𝑧
T𝒖𝑘𝑧}  (B.5) 

where ⊗ is a tensor product (or vector outer product) and 𝒖𝑘 = [𝛿0,𝑘 𝛿1,𝑘 𝛿2,𝑘]T (i.e. unit basis vectors in the Laguerre 

space). If only estimates of the {𝛾000, 𝛾200, 𝛾020, 𝛾101, 𝛾011} coefficients are required to model the moving point target, as 

suggested above in (B.1)-(B.3), then the structure of the 𝓐 matrices dictates that only the 

{𝛽000, 𝛽010, 𝛽020, 𝛽100, 𝛽200, 𝛽011, 𝛽101} coefficients need to be estimated during analysis processing in stage 2 and considered 

when accumulating the target power using (18b). 

When modeling the foreground target signal in this way, two important points should be kept in mind when choosing the 

decay rate of the 3-D exponential weighing function 𝑤(𝒎). On the one hand, a rapidly decaying function strongly emphasizes 

the region close to 𝒎 = [0 0 0], therefore the ability to faithfully represent rapid motion is limited. On the other hand, the 

modeled target intensity may become very negative before the weight becomes negligible, if a gradually decaying function is 

used. These opposing considerations unfortunately reduce the fidelity of this approach for fast targets; however the 

computational savings brought about by recursion may compensate for the loss of accuracy in real-time applications.                         
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Fig. 1. Magnitude and phase responses, as a function of normalized frequency (cycles per sample) for causal (one dir) and non-causal (two dir) 

filters with 𝑞 = 0, and various 𝜎 (sig) values. Note that the phase is zero for all non-causal filters.     
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Fig. 2. Frequency responses for causal (one dir) filters with 𝜎 = −1 4⁄  and various 𝑞 (del) values.      

  



Signal Processing, Volume 114, September 2015, Pages 251-264 

 
 

 

 

 

Fig. 3. Impulse responses for causal (one dir) filters with 𝜎 = −1 4⁄  and various 𝑞 (del) values.      
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Fig. 4. Processing-sequence example, processed images cropped to remove (spatial) filter startup transients. Clockwise from top left: stage 

1 input, raw image, 𝐽; estimated background, 𝐼; stage 1 output, stage 2 input, background subtracted, 𝐼𝜖; stage 2 ouput, accumulated 

foreground power, �̂�𝜖, target clearly visible at centre of FOV.   
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Fig. 5. Frequency responses for the high-pass filters used in stage 1 (𝐵 = 2). Non-causal (two dir) filter with 𝜎 = −1 2⁄  and causal (one dir) 

filters with 𝜎 = −1 4⁄  and two different 𝑞 (del) values. Causal and non-causal exponential average subtraction filters (𝐵 = 0) also shown 

for comparison.        
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TABLE IA: STAGE 1 FILTER COEFFICIENTS, CAUSAL 

 𝑚 0 1 2 3 

Low-pass 𝑏 0.0920 -0.0913  0.0102 0 

𝑎 1.0000 -2.3364  1.8196 -0.4724 

 

TABLE IB: STAGE 1 FILTER COEFFICIENTS, NON-CAUSAL 

 𝑚 0 1 2 3 

Low-pass 

Fwd & Bwd 

𝑏 0.1463 -0.0925 -0.0561  0.0327 

𝑎 1.0000 -1.8196  1.1036 -0.2231 

 

TABLE IIA: STAGE 2 FILTER COEFFICIENTS, CAUSAL 

 𝑚 0 1 2 3 

𝑘 = 0 𝑏 0.4703 0 0 0 

𝑎 1.0000 -0.7788 0 0 

𝑘 = 1 𝑏 -0.4151  0.4151 0 0 

𝑎 1.0000 -1.5576 0.6065 0 

𝑘 = 2 𝑏 0.3663 -0.7326 0.3663 0 

𝑎 1.0000 -2.3364 1.8196 -0.4724 

 

TABLE IIB: STAGE 2 FILTER COEFFICIENTS, NON-CAUSAL 

 𝑚 0 1 2 3 

𝑘 = 0  

Fwd & Bwd 

𝑏 0.2474  0.1501 0 0 

𝑎 1.0000 -0.6065 0 0 

𝑘 = 1  

Fwd / Bwd 

𝑏 0 +/-0.1072 0 0 

𝑎 1.0000 -1.2131 0.3679 0 

𝑘 = 2    

Fwd & Bwd 

𝑏 -0.1093 0.0832 0.0505 -0.0244 

𝑎 1.0000 -1.8196 1.1036 -0.2231 
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TABLE III: LINEAR DIFFERENCE EQUATION (LDE) COEFFICIENTS* 

Stage 1 (background estimator) filter coefficients a: 

Causal, Low-pass: 

𝑐 = (1 − 𝑝) 2⁄   

𝑏0 = 𝑐(𝑞
2𝑝2 + 3𝑞𝑝2 + 2𝑝2 − 2𝑞2𝑝 + 2𝑝 + 𝑞2 − 3𝑞 + 2) 

𝑏1 = −𝑐(2𝑞
2𝑝2 + 8𝑞𝑝2 + 6𝑝2 − 4𝑞2𝑝 − 4𝑞𝑝 + 6𝑝 + 2𝑞2 − 4𝑞)  

𝑏2 = 𝑐(𝑞
2𝑝2 + 5𝑞𝑝2 + 6𝑝2 − 2𝑞2𝑝 − 4𝑞𝑝 + 𝑞2 − 𝑞), 𝑏3 =0    

𝑎0 = 1, 𝑎1 = −3𝑝, 𝑎2 = 3𝑝
2, 𝑎3 = −𝑝

3 

Non-causal (Fwd & Bwd) Low-pass: 

𝑐 = 2(𝑝2 + 8𝑝 + 1)  

𝑏0 =
1

𝑐
(𝑝2 + 10𝑝 + 1)(1 − 𝑝) (1 + 𝑝)⁄  

𝑏1 =
3

𝑐
𝑝(𝑝2 − 1), 𝑏2 =

3

𝑐
𝑝2(𝑝2 − 1)   

𝑏3 =
1

𝑐
𝑝3(𝑝2 + 10𝑝 + 1)(1 − 𝑝) (1 + 𝑝)⁄  

𝑎0 = 1, 𝑎1 = −3𝑝, 𝑎2 = 3𝑝
2, 𝑎3 = −𝑝

3  

Stage 2 (foreground accumulator) filter coefficients b: 

Causal, 𝑘 = 0:  

𝑏0 = √1 − 𝑝, 𝑏1 = 0        

𝑎0 = 1, 𝑎1 = −𝑝 

Causal, 𝑘 = 1:  

𝑐 = −√𝑝(1 − 𝑝)3 (1 − 𝑝)⁄   

𝑏0 = 𝑐, 𝑏1 = −𝑐, 𝑏2 = 0        

𝑎0 = 1, 𝑎1 = −2𝑝,  𝑎2 = 𝑝
2  

Causal, 𝑘 = 2:  

𝑐 = 𝑝√(1 − 𝑝)5 (1 − 𝑝)2⁄   

𝑏0 = 𝑐, 𝑏1 = −2𝑐, 𝑏2 = 𝑐, 𝑏3 = 0       

𝑎0 = 1, 𝑎1 = −3𝑝, 𝑎2 = 3𝑝
2, 𝑎3 = −𝑝

3 

Non-Causal (Fwd & Bwd), 𝑘 = 0  

𝑐 = 1

2
√(1 − 𝑝) (1 + 𝑝)⁄   

𝑏0 = 𝑐, 𝑏1 = 𝑐𝑝  

𝑎0 = 1, 𝑎1 = −𝑝  

Non-Causal (Fwd / Bwd), 𝑘 = 1  

𝑏0 = 0, 𝑏1 = (+ −⁄ )1
2
√2𝑝(1 − 𝑝)3 (1 + 𝑝)⁄  , 𝑏2 = 0 

𝑎0 = 1, 𝑎1 = −2𝑝,  𝑎2 = 𝑝
2  

Non-Causal (Fwd & Bwd), 𝑘 = 2  

𝑐 = √2(1 − 𝑝)2√𝑝3 + 9𝑝2 + 9𝑝 + 1  

𝑏0 =
−1

𝑐
√𝑝(1 − 𝑝)5 , 𝑏1 =

1

𝑐
√𝑝(1 − 𝑝)5(𝑝2 − 𝑝 + 1)  

𝑏2 =
1

𝑐
√𝑝3(1 − 𝑝)5(𝑝2 − 𝑝 + 1) , 𝑏3 =

−1

𝑐
√𝑝7(1 − 𝑝)5 

𝑎0 = 1, 𝑎1 = −3𝑝, 𝑎2 = 3𝑝
2, 𝑎3 = −𝑝

3  

*Pole location: 𝑝 = 𝑒𝜎 , 𝐵 = 2. 
a Analysis and synthesis; real poles with a multiplicity of 𝐵 + 1; nominal delay of 𝑞 samples applied on synthesis.     
b Analysis-only; real poles with a multiplicity of 𝑘 + 1.   
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TABLE A.I: DISCRETE LAGUERRE POLYNOMIAL COEFFICIENTS (𝛼𝑘�́�), WHERE 𝑝 = 𝑒𝜎 

 �́� = 0 �́� = 1 �́� = 2 

𝑘 = 0 √1 − 𝑝 0 0 

𝑘 = 1 −√𝑝(1 − 𝑝) √(1 − 𝑝)3 𝑝⁄  0 

𝑘 = 2 𝑝√(1 − 𝑝)5 (1 − 𝑝)2⁄  −(3𝑝 + 1)√(1 − 𝑝)5 [2𝑝(1 − 𝑝)]⁄  √(1 − 𝑝)5 (2𝑝)⁄  

 

 


