arxiv:1504.03195v2 [cs.IT] 26 Jun 2015

Upper Bounds on the Error of Sparse Vector and Low-Rank M&ecovery

Mohammadreza Malek-MohammagiCristian R. Roja& Magnus Janss8nMassoud Babaie-Zadeh

aACCESS Linnaeus Centre, KTH, Stockholm, 10044, Sweden
bElectrical Engineering Department, Sharif University etfinology, Tehran 1458889694

Abstract

Suppose that a solutionto an underdetermined linear systén= Ax is given.X is approximately sparse meaning
that it has a few large components compared to other smaikenHowever, the total number of nonzero components
of X is large enough to violate any condition for the uniquendsh® sparsest solution. On the other hand, if only
the dominant components are considered, then it will satfief uniqueness conditions. One intuitively expectsXhat
should not be far from the true sparse solutignWe show that this intuition is the case by providing an uggmemd
on|[X — Xol| which is a function of the magnitudes of small components béit independent fromg. This result is
extended to the case thats perturbed by noise. Additionally, we generalize the ufqmeinds to the low-rank matrix
recovery problem.

Keywords: Approximately sparse solutions, low-rank matrix recoveegtricted isometry property, sparse vector
recovery

1. Introduction
LetXo € R™denote a sparse solution of an underdetermined systemeatfrleguations
b = Ax 1)

in whichb € R" andA € R™ m > n. Suppose thatxollo = k, where|xgllo designates the number of nonzero
components or thé& norm ofxg. Further, let sparl4) represent the spark @&, defined as the minimum number of
columns ofA which are linearly dependent, and &k(A) denote the restricted isometry constant of ordefa2 the
matrix A [E|] It is well known that ifk < spark@)/2 or 6x(A) < 1, thenxp is the unique sparsest solution of the
above set of equations [1, 2].

When the sparsest solution @1 (1) is sought, one needs te solv

min||x]lo subjectto Ax =b. (2)
X

However, the above program is generally NP-hatd [3] and imesovery intractable when the dimensions of the
problem increase. Since finding the sparse solutiorilof (&)rhany applications in various fields of science and
engineering (cf.[[4] for a comprehensive list of applicati many practical alternatives féi (2) have been proposed
]. If the solution obtained by these algorithms satisfire of the above flicient conditions, then, assuredly, this
solution is the sparsest one.
Now, consider the case that the solution given by an algorithonly approximately sparse meaning that it has
some dominant components, while other components are weail but not equal to zero. If the total number of
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nonzero components is large such that neither of the mesttioonditions hold, it is not clear whether this solution is
close to the true sparse solution or not. However, intditiane expects that if the number dfective components is
small, then the obtained solution should not be far away fiteartrue solution. Immediately, the following questions
may be raised. Is this solution still close to the unique spaolution ob = Ax? Is it possible in this case to establish
a bound on the error of finding, without knowingxy? Similar questions can be asked when there is error or noise i
(@). Taking the noise into accourf] (1) is updated to

b=AX+e (3

wheree is the vector of noise or error. In this setting, to estimatgivenb andA, the equality constraint i[2) is
relaxed, and the following optimization problem should bkved:

mXin||X||o subjectto ||JAx — bl <€, 4)

wheree > ||€| is some constant and || designates th& norm.

The answers to the above questions were firstly giveE| in [@LxLdenote the output of an algorithm to find or
estimatexo from (@) or [3). Particularly/[9] provides two upper bouratsthe errofjxo — X||. The first one is rather
simple to compute but turns out to be loose. On the other hahite the second bound is tight, generally, it is much
more complicated to compute.

Herein, in the spirit of the loose bound id [9], we provide dtdebound which is based on the same parameter
of the matrixA, but it is strictly tighterthan the loose bound iE|[9]. Moreover, our proposed boundbiaioned in a
much simpler way with ahorteralgebraic manipulation. The proposed bound is extenddtetnaisy setting defined
in (3). Furthermore, these results are also generalizduetprioblem of low-rank matrix recovery from compressed
linear measuremen@lO].

The bounds introduced in this paper can be used in analyzengdrformance of algorithms in sparse vector and
low-rank matrix recovery, especially those algorithmg giravide approximately sparse or low-rank solutions swech a
[Iﬂ] and ].Other algorithms, under some conditions, can also benefit the analysis presented in this paper. It
is known that the solution obtained by some numerical seleébasis pursuit [13], liké;-magic [14], is not usually
exactly sparse. In fact, due to limited numerical accurtdmeypbtained solution has some very small nonzero entries.
Our results can be used to find upper bounds orftheorm of this kind of errors. Finally, when greedy algorithms
[Ia] are used with an overestimated number of nonzero comyeé the true solution, our bound can be exploited to
characterize the conditions under which the given soluianose to the true onélowever, the bounds are obtained
without any assumption on the recovery algorithm, and itassible to improve them by exploiting properties of a
specific algorithm. A similar upper bound on the error of spaecovery in the noisy case has been propos@in [15].
This upper bound, however, is only applicable when the ga@untion has a sparsity leyeghe number of nonzero
componentsnot greater than that of the true solution, while our bourrdsoltained under the opposite assumption
on the sparsity level of the given solution.

The rest of this paper is organized as follows. After intreidg the notations used throughout the paper, in Section
[2, we first present the upper bounds on the error of sparservectovery and, next, generalize them to the low-rank
matrix recovery problem. Secti@h 3 is devoted to the probthe results in Sectionl 2, followed by conclusions in
Sectiori 4.

Notations For a vecto, |[x||, [[X||1, and||X||o denote the>, £1, and the so-calleéy norms, respectively. Moreover,

x! denotes a vector obtained by sorting the elementsioterms of magnitude in descending order, andesignates
the ith component ok. X, represents the subvector obtained frarby keeping components indexed by the set
I. A vector is calledk-sparse if it has exactlig nonzero components. For a matAx a denotes théth column.
Additionally, sparkA) and null@) designate the minimum number of columnsfothat are linearly dependent and
the null space oA, respectively. Similar to the vector&, represents the submatrix Afobtained by keeping those
columns indexed by. It is always assumed that the singular values of matricesaurted in descending order, and
oi(X) denotes théth largest singular value of. Let X = Ziq:l o-iuiviT, whereq = rank(X), denote the singular value
decomposition (SVD) oK. X = X1_; oiuiv| represents a matrix obtained by keepingttHiest terms in the SVD

of X, andXr) = X = X(»y. |IX||r denotes the Frobenius norm, gtXl|. £ Ziq:l oi(X), in whichg = rank(X), stands
for the nuclear norm.



2. Upper Bounds

In this section, the upper bounds on the error of sparse vantblow-rank matrix recovery are presented.

2.1. Sparse Vector Recovery

Following the common practice in the literature of compressensing (CS), we refer to A, andein (3) as
the measurement vector, sensing matrix, and noise veespectively. Before stating the results, we recall two
definitions.

Definition 1 ([1]). For a matrixA € R™™ and all integers k< m, the restricted isometry constant (RIC) of order k is
the smallest constank(A) such that

(1= Sk(ADIXI? < IIAXIZ < (1 + Si(A)IXI* (5)
holds for all vectors< with sparsity at most k.

Definition 2 ([9]). For a matrixA € R™™, |et ominp(A) > 0 for p < spark@) — 1 be the smallest singular value of
all () possible nx p submatrices oA.

The following theorem presents the upper bounds for botsyraind noiseless cases. We deliberately separate the
noisy and noiseless cases in order to be able to providetetigbund in the noiseless setting.

Theorem 1. LetA € R™™, m> n, denote a sensing matrix. We have the following upper baund

e Noiseless case: Suppose tlgis a k-sparse solution ofx = b, where k< spark@)/2. For all X solutions of
Ax=b satisfying>~q£+l <a,

112
o X1 = (1 + (m - 2 T AL

)(m — 2K)a?. (6)

O-min,zk(A)

e Noisy case: Lexg be any arbitrary vector withixg|lo = k < spark@)/2, and letb = Axq + €, whereeis noise
with ||g]| < e. For all X vectors satisfyingb — AX|| < A and’)?i+1 < a, the error|jxo — X|| is bounded by

X0 — I 3(1 +Vm= 2k%)«/m— 2K o

0'min,2k(A)
A+e

0'min,2k(A) . (7)

In brief, the above bounds say that if we have a solukidhat consists ok large components, then this vector
is not far from the sparse solution provided thain 2«(A) is not very small. In particular, the bound [d (6) vanishes
whenX is k-sparse, reducing to the well-known uniqueness theoreﬁl]jri\,loreover, notice that these bounds work
uniformly for all sparse vectorg, of sparsity levek; that is, they are independent from the position and magdaitu
of nonzero component 6.

Remark 1The loose bounds il|ﬂ[9, Theorems 2 & 4] translated to our fwtatin the noiseless and noisy settings
are

1

Xo — X|| £ (1 + —
o ~” 0'min,2k(A)

)m, 8)
A+ e

— 1
[[Xo = X|| < (1+ —)ma+ e
0 0'min,2k(A) 0'min,2k(A)

(9)



The bounds in[{8) and9) are applicable only if the sensingirbas unitf; norm columns, whereas Theoréin 1 is
valid without this restriction. To compare our bounds in @ten1 to[B) and(9), let) denote the square root of the
upper bound in{6). Substituting mae;|| with 1 in U, one can write that

U= \/(1+ %)(m— ) @
min2

vm-— 2k ——T
O'mln Zk(A)) Xa=Us

2+
( 1 )(m — XK
2+

A

Vvm k Omin,2k(A)

L O min, 2k(A) )(m - 2a

A

1
<(rr =2 e
( O'min,zk(A)
whereU; is the first term in the upper bound [d (7) with m#a || = 1. The above inequalities prove that the bounds
(8) and [T) are strictly tighter than the corresponding latsLin [9] formulated in[(B) and{9).
Remark 2.In general, findingrmin2k(A) is a combinatorial probleﬂrand NP-hard [9]. However, for a random
matrix A, under some conditions, the smallest singular value af alPk submatrices is highly concentrated around

a certain value. In particular, l1ét, denote anyr x 2k submatrix ofA. If all the entries ofA are independent and
identically distributed (iid) from a normal distributidd(0, r—l]) and X < n, then for anyt > 0, we havel[9]

2k nt?
p{O'min(A(zk)) <1-4f e t} <€z,

where p{-} and omin(-) denote the probability of the event described in the bracesthe smallest singular value,
respectively. This shows that when the dimensiom& afcrease, the smallest singular value ofrel 2k submatrices

is equal to or larger than 4 %‘ with very high probability. In line with this, for any matriwith iid entries from
a zero-mean%-variance distribution with a finite fourth-order momenfiemn, m — o while %“ — C, omin(Ax)
converges to + +/c almost surelyl[16].

Remark 31n addition to the above probabilistic values fafin 2(A), the bounds in Theoref 1 can be also stated
in terms ofé(A) instead oformin2k(A). In fact,

IIAX|

- _
min2c(A) = o2 [IXI|

or ||Ax|[? > o-mIn 2k(A)||x||2 for all x with sparsity at mostR Sincedx(A) in (B) is in such a way that both inequalities

are satisfied, it can be concluded thﬁ]l; «(A) = 1-62(A). Consequently, the following boundmder the condition
Sa(A) < 1, are areformulation of the bounds in Theofdm 1 in termsi@R\) which is frequently used in CS literature.

e Noiseless case: 5
max |lal|

X—Y23(1+ m—2K) —————
Ixo = | (m-207=5 75

)(m — 2K)a?.

¢ Noisy case:

o — X <(1+«/ ok—maxliaill_ )\/—m X a

V1-6x(A)
L Ate
VI=oxA)

Lsince one should calculate the singular values offgaipossiblen x 2k submatrices oA.
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2.2. Low-rank Matrix Recovery

Recovery of a low-rank matrix from compressed linear mezsents[[10] is the task of finding the low-rank
matrix Xo € R™*™ from underdetermined measuremebts A(Xp) whereb € R™, A : R™™ — RMis a linear
operator, anan < nin,. In the presence of noise, the measurement model is chaodped tA(Xo) + € wheree is
the vector of noisg. This recovery is a generalization of sparse vector recowergduced in Sectioh]1 to matrix
variables. Consequently, the naive approach for recog&grfrom either noiseless or noisy measurements is

rr;(inrank()() subjectto [A(X) - bl <€, (20)

wheree is some constant not less thigl in the noisy case and equal to 0 in the noiseless case.

In this subsection, we present upper bounds on the errorcoveging or estimating low-rank matrices from
noiseless and noisy measurements when the obtained sakiipproximately low-rank. Similar to the vector case, a
matrix is approximately low rank, if it is composed of a fewntioant singular values, while its other singular values
are very small. Before stating the results, first the deéinitf the RIC is recalled.

Definition 3 ([|ﬂ]). For a linear operatorA : R™*™ — R™ and all integers r< min(ny, ny), the RIC of order r is the
smallest constant; (A) such that

(1= S (ANIXIE < IAXIP < (L+ 6 (AIXIIE
holds for all matricesX with rank at mostr.

Theorem 2. LetA : R™*™ — R™ m < nyny, denote a linear operator, and let:a min(ng, nz). We have the following
upper bounds.

» Noiseless case: Suppose thatis a rank r solution ob = A(X). If 0 < 52 (A) < 1, then, for allX solutions
of b = A(X) satisfyingo,1(X) < «a,

+ 61(A)

“Xo— X“F (1+ (n Zr)m

)(n _2n)a?. (11)

¢ Noisy case: LeK, be any arbitrary matrix of rank r, and léd = A(Xo) + €, wheree is noise withe|| < e. If
0 < 6x(A) < 1, then for allX estimates oK satisfyinglb — A(X)|| < A ando,1(X) < «, the error|[Xo — X]|

is bounded by
v 1+51(ﬂ)
Xo—X 1 -2r)———=~ -2
X0 — Xllr s[ +\/(n r)l_(szr(ﬂ)]\/n ra
A+e
——— 12
+1—(52r(~7() (12)

3. Proofs of Results

3.1. Proof of Theorein 1
We need the following lemmas.

Lemma l. LetA € R™™ m > n, be a sensing matrix. For everye null(A) and any subset | ofL, - -- , m} with
cardinality m— p, where p< spark@) — 1, we have that

% llail?
—)nx.uz.

IXI? < (1 +(m- p) )
9 min,p

(13)

2The parameters, m, e, andn (to be defined later on in this subsection) should not be eaafwith the similar parameters defined in Subsection

2.



Proof: First, we notice that
|3 xal < (Z Ixal) = (Z ilal)
iel
< maxtal?( 3" )

iel

= miaX“ai” XI5,

< (m— p) maxjiai|*|x . (14)

where, for the last inequality, we used € R', ||z||? < 1||z||? [@]. Next, fromAXx = iq; Xia + g Xia = 0, we get

2
1> xa|” = A2 = o (AT (15)
iel
wherel = {1,---,m} \ I. Combining inequalitiegId) and (I5) and using|x|[2 = [Ix|1? + [IX{l? prove (I3). Note that
p< spark(A) 1 |mpI|es thatominp(A) # 0 and inequality(I3) is not trivial. [ |
Lemma 2. LetA € R™™ m> n, be a sensing matrix. For evexysatisfying|Ax|| < n and every subset | ¢1,--- , m}

with cardinality m— p, where p< spark@) — 1, we have that

XII&II) Ui
X[ <1+ Xl + ————. 16
Pl < (14 V=B o) Ll R—ry (16)
Proof: Similar to the proof of Lemnid 1, we have
| > xa| < V=B maxialix|l. (17)
i€l

Furthermore, fromAX = }iq; Xiai + Yig Xiai, we get

1> xa| = il - 1A,
i€l

> ormin.p(A)lIXil = 1AX]],
> oinp(A)lIXi1l - 17. (18)

Combining inequalitie§I7) and (I8) leads to
ominp(A) Xl < vVm— pmiaX”ai“”XI” +7

which is equivalent to

max ||all n
Xi|l + [Ix <(1+ )x + —.
Il + Il < (1 V=P il +
The above inequality together with
X| 0
IXIF= 1. ||| < = X+ 1l
X Xi
where0Q is a vector of zeros of appropriate length, pro&8). |

Proof of Theorerfi]1: To prove [6), we first notice that becausghask nonzero components ana‘ﬁLl <
X = Xp — X has at most R components with magnitude larger than Alternatively,x possesses at least — 2k

components with magnitude not greater thamow, letl denote a set of indexes of componentg afith magnitude
6



less than or equal t@ such thatl| = m— 2k. It is clear that|x||> < (m— 2k)e?. Consequently, sincee null(A), we
can apply Lemma@l1 to get

ma 2
X0~ X7 < (1+ (m- 2k)ﬂ)ux|n2,
m|n Zk(A)

may ||ay][?

1+ (m-2K)
( " m|n2k(A)

)(m — 2K)a?.

For proving [T), we start with

IA(Xo = X)II = llb = AX + Axg — Db,
<|lb — AX|| + [IAXo — bll,
<A+e. (29)

Following the same reasoning as in the proofdf (6), the appibn of Lemm&R proveBl(7). [ |
3.2. Proof of Theoreifd 2

Lemma 3. Let A : R™*™ — R™ m < niny, denote a linear operator. For every « n = min(ny, n2) and every
X € null(A), if 0 < 6;(A) < 1, then

+ 01(A)
1-6(A)

Proof: LetX = 3., ojuiv] denote the SVD of. We can write that
[ =l 5 )
|| 3, s

i=r+1

IXI < 1+ (n- oA Jix o (20)

Hﬂ(x(—r))

n

< (Y ellawvD)-

i=r+1

() eTra)

i=r+1

= (1+ 62(A)|X -

ol (21)

where (a) follows from the definition of the RIC afigv||lr = 1 and for (b), we used the inequality|l. <

Vrank(V)|1Y [ [18].
Additionally, A(X) = AX(n)) + A(X(ry) = 0implies that

AKX = |AX@| = (1~ ()X 2. (22)

Combining(ZJ)) and (22) together with|X[I2 = [IX()lI2 + IX(r)lI2 leads to inequality20). ]

(2 (n- r)(l + 61(3{))

Lemma 4. Let A : R™™ — R™ m < niny, denote a linear operator. For every< n = min(ny, nz) and everyX
satisfying|lAX)|| < n, if 0 < §;(A) < 1, then

X[l < (1+ (n- r)i+ ;g;)ux(_r)np

1
+ T (23)
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Proof: Inequality(21)) holds for everyX; thus, it is possible to write

IAX =)l < V(0 =1L+ 62(ADIX ()l (24)
Furthermore, applying the triangle inequality ofi(X(_r)) = A(X) — A(X()), one can obtain

[AX )| = [AX )] = A,
> V1= 6 (AXpllF 7. (25)

Combining inequalitie§24) and (25) together with|X|l < [[Xlle + IX(-nllF gives inequalityZ3). ]
Proof of Theorerfil2: To prove [I1), let us first definé = Xo — X. According to [1D, Thmeorem 3.3.16], for

anyl<i,j<nandi+j<n+1, —
O'i+j_1(X) < O'i(XO) + O-i(X)-

Substituting andj with r + 1 in the above inequality leads to
oar1(X) < Trra(Xo) + o (X) < @

Consequently, Lemnid 3 implies that

_ 1
X0 - X|E < (1 +(n- ZV)%;((?%)IIX(—Z)II%,
< (1 +(n- 2r)%)(n - 2r)a?.

For proving [I2), we start with

IA(Xo = X)II = lIb - AX) + A(Xo) - bll,
<A+e

Following the same reasoning as in the proofof (11), theieapbn of Lemmd} completes the proof. |

4. Conclusion

In this paper, we proposed upper bounds on the error of spacser recovery from both noiseless or noisy mea-
surements when the obtained solution is approximatelyssp&¥hile these bounds are based on the same parameters
as in the loose bounds of [9], they are strictly tighter. WeHfer generalized them to the problem of low-rank matrix
recovery, when the solution at hand to recover the true Emkmatrix is approximately low rank.
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