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Abstract

Suppose that a solutioñx to an underdetermined linear systemb = Ax is given. x̃ is approximately sparse meaning
that it has a few large components compared to other small entries. However, the total number of nonzero components
of x̃ is large enough to violate any condition for the uniqueness of the sparsest solution. On the other hand, if only
the dominant components are considered, then it will satisfy the uniqueness conditions. One intuitively expects thatx̃
should not be far from the true sparse solutionx0. We show that this intuition is the case by providing an upperbound
on ‖̃x − x0‖ which is a function of the magnitudes of small components ofx̃ but independent fromx0. This result is
extended to the case thatb is perturbed by noise. Additionally, we generalize the upper bounds to the low-rank matrix
recovery problem.

Keywords: Approximately sparse solutions, low-rank matrix recovery, restricted isometry property, sparse vector
recovery

1. Introduction

Let x0 ∈ Rm denote a sparse solution of an underdetermined system of linear equations

b = Ax (1)

in which b ∈ R
n andA ∈ R

n×m,m > n. Suppose that‖x0‖0 = k, where‖x0‖0 designates the number of nonzero
components or theℓ0 norm ofx0. Further, let spark(A) represent the spark ofA, defined as the minimum number of
columns ofA which are linearly dependent, and letδ2k(A) denote the restricted isometry constant of order 2k for the
matrix A [1]. It is well known that ifk < spark(A)/2 or δ2k(A) < 1, thenx0 is the unique sparsest solution of the
above set of equations [1, 2].

When the sparsest solution of (1) is sought, one needs to solve

min
x
‖x‖0 subject to Ax = b. (2)

However, the above program is generally NP-hard [3] and becomes very intractable when the dimensions of the
problem increase. Since finding the sparse solution of (1) has many applications in various fields of science and
engineering (cf. [4] for a comprehensive list of applications), many practical alternatives for (2) have been proposed
[5–8]. If the solution obtained by these algorithms satisfies one of the above sufficient conditions, then, assuredly, this
solution is the sparsest one.

Now, consider the case that the solution given by an algorithm is only approximately sparse meaning that it has
some dominant components, while other components are very small but not equal to zero. If the total number of
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nonzero components is large such that neither of the mentioned conditions hold, it is not clear whether this solution is
close to the true sparse solution or not. However, intuitively, one expects that if the number of effective components is
small, then the obtained solution should not be far away fromthe true solution. Immediately, the following questions
may be raised. Is this solution still close to the unique sparse solution ofb = Ax? Is it possible in this case to establish
a bound on the error of findingx0 without knowingx0? Similar questions can be asked when there is error or noise in
(1). Taking the noise into account, (1) is updated to

b = Ax + e, (3)

wheree is the vector of noise or error. In this setting, to estimatex0 givenb andA, the equality constraint in (2) is
relaxed, and the following optimization problem should be solved:

min
x
‖x‖0 subject to ‖Ax − b‖ ≤ ǫ, (4)

whereǫ ≥ ‖e‖ is some constant and‖ · ‖ designates theℓ2 norm.
The answers to the above questions were firstly given in [9]. Let x̃ denote the output of an algorithm to find or

estimatex0 from (1) or (3). Particularly, [9] provides two upper boundson the error‖x0 − x̃‖. The first one is rather
simple to compute but turns out to be loose. On the other hand,while the second bound is tight, generally, it is much
more complicated to compute.

Herein, in the spirit of the loose bound in [9], we provide a better bound which is based on the same parameter
of the matrixA, but it is strictly tighter than the loose bound in [9]. Moreover, our proposed bound is obtained in a
much simpler way with ashorteralgebraic manipulation. The proposed bound is extended to the noisy setting defined
in (3). Furthermore, these results are also generalized to the problem of low-rank matrix recovery from compressed
linear measurements [10].

The bounds introduced in this paper can be used in analyzing the performance of algorithms in sparse vector and
low-rank matrix recovery, especially those algorithms that provide approximately sparse or low-rank solutions such as
[7] and [11, 12].Other algorithms, under some conditions, can also benefit from the analysis presented in this paper. It
is known that the solution obtained by some numerical solvers of basis pursuit [13], likeℓ1-magic [14], is not usually
exactly sparse. In fact, due to limited numerical accuracy,the obtained solution has some very small nonzero entries.
Our results can be used to find upper bounds on theℓ2 norm of this kind of errors. Finally, when greedy algorithms
[6] are used with an overestimated number of nonzero components of the true solution, our bound can be exploited to
characterize the conditions under which the given solutionis close to the true one.However, the bounds are obtained
without any assumption on the recovery algorithm, and it is possible to improve them by exploiting properties of a
specific algorithm. A similar upper bound on the error of sparse recovery in the noisy case has been proposed in [15].
This upper bound, however, is only applicable when the givensolution has a sparsity level, the number of nonzero
components,not greater than that of the true solution, while our bounds are obtained under the opposite assumption
on the sparsity level of the given solution.

The rest of this paper is organized as follows. After introducing the notations used throughout the paper, in Section
2, we first present the upper bounds on the error of sparse vector recovery and, next, generalize them to the low-rank
matrix recovery problem. Section 3 is devoted to the proofs of the results in Section 2, followed by conclusions in
Section 4.

Notations: For a vectorx, ‖x‖, ‖x‖1, and‖x‖0 denote theℓ2, ℓ1, and the so-calledℓ0 norms, respectively. Moreover,
x↓ denotes a vector obtained by sorting the elements ofx in terms of magnitude in descending order, andxi designates
the ith component ofx. xI represents the subvector obtained fromx by keeping components indexed by the set
I . A vector is calledk-sparse if it has exactlyk nonzero components. For a matrixA, ai denotes theith column.
Additionally, spark(A) and null(A) designate the minimum number of columns ofA that are linearly dependent and
the null space ofA, respectively. Similar to the vectors,A I represents the submatrix ofA obtained by keeping those
columns indexed byI . It is always assumed that the singular values of matrices are sorted in descending order, and
σi(X) denotes theith largest singular value ofX. Let X =

∑q
i=1σiuivT

i , whereq = rank(X), denote the singular value
decomposition (SVD) ofX. X(r) =

∑r
i=1σiuivT

i represents a matrix obtained by keeping ther first terms in the SVD
of X, andX(−r) = X − X(r). ‖X‖F denotes the Frobenius norm, and‖X‖∗ ,

∑q
i=1σi(X), in whichq = rank(X), stands

for the nuclear norm.
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2. Upper Bounds

In this section, the upper bounds on the error of sparse vector and low-rank matrix recovery are presented.

2.1. Sparse Vector Recovery

Following the common practice in the literature of compressive sensing (CS), we refer tob,A, ande in (3) as
the measurement vector, sensing matrix, and noise vector, respectively. Before stating the results, we recall two
definitions.

Definition 1 ([1]). For a matrixA ∈ Rn×m and all integers k≤ m, the restricted isometry constant (RIC) of order k is
the smallest constantδk(A) such that

(1− δk(A))‖x‖2 ≤ ‖Ax‖2 ≤ (1+ δk(A))‖x‖2 (5)

holds for all vectorsx with sparsity at most k.

Definition 2 ([9]). For a matrixA ∈ Rn×m, letσmin,p(A) > 0 for p ≤ spark(A) − 1 be the smallest singular value of
all
(
m
p

)
possible n× p submatrices ofA.

The following theorem presents the upper bounds for both noisy and noiseless cases. We deliberately separate the
noisy and noiseless cases in order to be able to provide a tighter bound in the noiseless setting.

Theorem 1. Let A ∈ Rn×m, m> n, denote a sensing matrix. We have the following upper bounds.

• Noiseless case: Suppose thatx0 is a k-sparse solution ofAx = b, where k< spark(A)/2. For all x̃ solutions of
Ax = b satisfying̃x↓k+1 ≤ α,

‖x0 − x̃‖2 ≤
(
1+ (m− 2k)

maxi ‖ai‖2

σ2
min,2k(A)

)
(m− 2k)α2. (6)

• Noisy case: Letx0 be any arbitrary vector with‖x0‖0 = k < spark(A)/2, and letb = Ax0 + e, wheree is noise
with ‖e‖ ≤ ǫ. For all x̃ vectors satisfying‖b − Ax̃‖ ≤ ∆ andx̃↓k+1 ≤ α, the error‖x0 − x̃‖ is bounded by

‖x0 − x̃‖ ≤
(
1+
√

m− 2k
maxi ‖ai‖
σmin,2k(A)

)√
m− 2k α

+
∆ + ǫ

σmin,2k(A)
. (7)

In brief, the above bounds say that if we have a solutionx̃ that consists ofk large components, then this vector
is not far from the sparse solution provided thatσmin,2k(A) is not very small. In particular, the bound in (6) vanishes
whenx̃ is k-sparse, reducing to the well-known uniqueness theorem in [2]. Moreover, notice that these bounds work
uniformly for all sparse vectorsx0 of sparsity levelk; that is, they are independent from the position and magnitude
of nonzero component ofx0.

Remark 1.The loose bounds in [9, Theorems 2 & 4] translated to our notations in the noiseless and noisy settings
are

‖x0 − x̃‖ ≤
(
1+

1
σmin,2k(A)

)
mα, (8)

‖x0 − x̃‖ ≤
(
1+

1
σmin,2k(A)

)
mα +

∆ + ǫ

σmin,2k(A)
. (9)
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The bounds in (8) and (9) are applicable only if the sensing matrix has unitℓ2 norm columns, whereas Theorem 1 is
valid without this restriction. To compare our bounds in Theorem 1 to (8) and (9), letU denote the square root of the
upper bound in (6). Substituting maxi ‖ai‖ with 1 in U, one can write that

U =

√(
1+

m− 2k

σ2
min,2k(A)

)
(m− 2k) α

<

(
1+

√
m− 2k
σmin,2k(A)

)√
m− 2k α = U2

=

( 1
√

m− 2k
+

1
σmin,2k(A)

)
(m− 2k)α

<

(
1+

1
σmin,2k(A)

)
(m− 2k)α

<

(
1+

1
σmin,2k(A)

)
mα,

whereU2 is the first term in the upper bound in (7) with maxi ‖ai‖ = 1. The above inequalities prove that the bounds
(6) and (7) are strictly tighter than the corresponding bounds in [9] formulated in (8) and (9).

Remark 2.In general, findingσmin,2k(A) is a combinatorial problem1 and NP-hard [9]. However, for a random
matrixA, under some conditions, the smallest singular value of alln× 2k submatrices is highly concentrated around
a certain value. In particular, letA(2k) denote anyn × 2k submatrix ofA. If all the entries ofA are independent and
identically distributed (iid) from a normal distributionN(0, 1

n) and 2k < n, then for anyt > 0, we have [9]

p
{
σmin(A(2k)) < 1−

√
2k
n
− t
}
≤ e−

nt2

2 ,

wherep{·} andσmin(·) denote the probability of the event described in the bracesand the smallest singular value,
respectively. This shows that when the dimensions ofA increase, the smallest singular value of alln× 2k submatrices

is equal to or larger than 1−
√

2k
n with very high probability. In line with this, for any matrixwith iid entries from

a zero-mean,1n-variance distribution with a finite fourth-order moment, whenn,m→ ∞ while 2k
n → c, σmin(A(2k))

converges to 1−
√

c almost surely [16].
Remark 3.In addition to the above probabilistic values forσmin,2k(A), the bounds in Theorem 1 can be also stated

in terms ofδ2k(A) instead ofσmin,2k(A). In fact,

σmin,2k(A) = min
‖x‖0≤2k

‖Ax‖
‖x‖
,

or ‖Ax‖2 ≥ σ2
min,2k(A)‖x‖2 for all x with sparsity at most 2k. Sinceδ2k(A) in (5) is in such a way that both inequalities

are satisfied, it can be concluded thatσ2
min,2k(A) ≥ 1−δ2k(A). Consequently, the following bounds,under the condition

δ2k(A) < 1, are a reformulation of the bounds in Theorem 1 in terms ofδ2k(A) which is frequently used in CS literature.

• Noiseless case:

‖x0 − x̃‖2 ≤
(
1+ (m− 2k)

maxi ‖ai‖2

1− δ2k(A)

)
(m− 2k)α2.

• Noisy case:

‖x0 − x̃‖ ≤
(
1+
√

m− 2k
maxi ‖ai‖√
1− δ2k(A)

)√
m− 2k α

+
∆ + ǫ

√
1− δ2k(A)

.

1Since one should calculate the singular values of all
(

m
2k

)
possiblen× 2k submatrices ofA.
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2.2. Low-rank Matrix Recovery

Recovery of a low-rank matrix from compressed linear measurements [10] is the task of finding the low-rank
matrix X0 ∈ R

n1×n2 from underdetermined measurementsb = A(X0) whereb ∈ R
m,A : Rn1×n2 → R

m is a linear
operator, andm < n1n2. In the presence of noise, the measurement model is changed to b = A(X0) + e wheree is
the vector of noise.2 This recovery is a generalization of sparse vector recoveryintroduced in Section 1 to matrix
variables. Consequently, the naive approach for recovering X0 from either noiseless or noisy measurements is

min
X

rank(X) subject to ‖A(X) − b‖ ≤ ǫ, (10)

whereǫ is some constant not less than‖e‖ in the noisy case and equal to 0 in the noiseless case.
In this subsection, we present upper bounds on the error of recovering or estimating low-rank matrices from

noiseless and noisy measurements when the obtained solution is approximately low-rank. Similar to the vector case, a
matrix is approximately low rank, if it is composed of a few dominant singular values, while its other singular values
are very small. Before stating the results, first the definition of the RIC is recalled.

Definition 3 ([17]). For a linear operatorA : Rn1×n2 → R
m and all integers r≤ min(n1, n2), the RIC of order r is the

smallest constantδr(A) such that

(1− δr (A))‖X‖2F ≤ ‖A(X)‖2 ≤ (1+ δr(A))‖X‖2F

holds for all matricesX with rank at most r.

Theorem 2. LetA : Rn1×n2 → R
m,m< n1n2, denote a linear operator, and let n= min(n1, n2). We have the following

upper bounds.

• Noiseless case: Suppose thatX0 is a rank r solution ofb = A(X). If 0 < δ2r (A) < 1, then, for allX̃ solutions
of b = A(X) satisfyingσr+1(X̃) ≤ α,

‖X0 − X̃‖2F ≤
(
1+ (n− 2r)

1+ δ1(A)
1− δ2r (A)

)
(n− 2r)α2. (11)

• Noisy case: LetX0 be any arbitrary matrix of rank r, and letb = A(X0) + e, wheree is noise with‖e‖ ≤ ǫ. If
0 < δ2r (A) < 1, then for allX̃ estimates ofX0 satisfying‖b −A(X̃)‖ ≤ ∆ andσr+1(X̃) ≤ α, the error‖X0 − X̃‖
is bounded by

‖X0 − X̃‖F ≤
1+
√

(n− 2r)
1+ δ1(A)
1− δ2r (A)


√

n− 2r α

+
∆ + ǫ

1− δ2r (A)
. (12)

3. Proofs of Results

3.1. Proof of Theorem 1

We need the following lemmas.

Lemma 1. Let A ∈ R
n×m, m > n, be a sensing matrix. For everyx ∈ null(A) and any subset I of{1, · · · ,m} with

cardinality m− p, where p≤ spark(A) − 1, we have that

‖x‖2 ≤
(
1+ (m− p)

maxi ‖ai‖2

σ2
min,p(A)

)
‖xI ‖2. (13)

2The parametersb,m, e, andn (to be defined later on in this subsection) should not be confused with the similar parameters defined in Subsection
2.1.
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Proof: First, we notice that

∥∥∥∥
∑

i∈I
xiai

∥∥∥∥
2
≤
(∑

i∈I
‖xiai‖

)2
=

(∑

i∈I
|xi |‖ai‖

)2
,

≤ max
i
‖ai‖2
(∑

i∈I
|xi |
)2
,

= max
i
‖ai‖2‖xI ‖21,

≤ (m− p) max
i
‖ai‖2‖xI‖2, (14)

where, for the last inequality, we used∀z ∈ Rl , ‖z‖21 ≤ l‖z‖2 [18]. Next, fromAx =
∑

i∈I xiai +
∑

i<I xiai = 0, we get

∥∥∥∥
∑

i∈I
xiai

∥∥∥∥
2
= ‖A Ī xĪ ‖2 ≥ σ2

min,p(A)‖xĪ‖2, (15)

whereĪ = {1, · · · ,m} \ I. Combining inequalities(14) and (15) and using‖x‖2 = ‖xI‖2 + ‖xĪ‖2 prove(13). Note that
p ≤ spark(A) − 1 implies thatσmin,p(A) , 0 and inequality(13) is not trivial.

Lemma 2. LetA ∈ Rn×m, m> n, be a sensing matrix. For everyx satisfying‖Ax‖ ≤ η and every subset I of{1, · · · ,m}
with cardinality m− p, where p≤ spark(A) − 1, we have that

‖x‖ ≤
(
1+
√

m− p
maxi ‖ai‖
σmin,p(A)

)
‖xI‖ +

η

σmin,p(A)
. (16)

Proof: Similar to the proof of Lemma 1, we have
∥∥∥∥
∑

i∈I
xiai

∥∥∥∥ ≤
√

m− pmax
i
‖ai‖‖xI ‖. (17)

Furthermore, fromAx =
∑

i∈I xiai +
∑

i<I xiai , we get
∥∥∥∥
∑

i∈I
xiai

∥∥∥∥ ≥ ‖A Ī xĪ ‖ − ‖Ax‖,

≥ σmin,p(A)‖xĪ‖ − ‖Ax‖,
≥ σmin,p(A)‖xĪ‖ − η. (18)

Combining inequalities(17) and(18) leads to

σmin,p(A)‖xĪ‖ ≤
√

m− pmax
i
‖ai‖‖xI‖ + η

which is equivalent to

‖xI‖ + ‖xĪ ‖ ≤
(
1+
√

m− p
maxi ‖ai‖
σmin,p(A)

)
‖xI ‖ +

η

σmin,p(A)
.

The above inequality together with

‖x‖ =

∥∥∥∥∥∥∥


xI

xĪ



∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥


xI

0



∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥


0

xĪ



∥∥∥∥∥∥∥
= ‖xI ‖ + ‖xĪ‖,

where0 is a vector of zeros of appropriate length, proves(16).

Proof of Theorem 1: To prove (6), we first notice that becausex0 hask nonzero components and̃x↓k+1 ≤ α,
x = x0 − x̃ has at most 2k components with magnitude larger thanα. Alternatively,x possesses at leastm − 2k
components with magnitude not greater thanα. Now, let I denote a set of indexes of components ofx with magnitude

6



less than or equal toα such that|I | = m− 2k. It is clear that‖xI ‖2 ≤ (m− 2k)α2. Consequently, sincex ∈ null(A), we
can apply Lemma 1 to get

‖x0 − x̃‖2 ≤
(
1+ (m− 2k)

maxi ‖ai‖2

σ2
min,2k(A)

)
‖xI ‖2,

≤
(
1+ (m− 2k)

maxi ‖ai‖2

σ2
min,2k(A)

)
(m− 2k)α2.

For proving (7), we start with

‖A(x0 − x̃)‖ = ‖b − Ax̃ + Ax0 − b‖,
≤ ‖b − Ax̃‖ + ‖Ax0 − b‖,
≤ ∆ + ǫ. (19)

Following the same reasoning as in the proof of (6), the application of Lemma 2 proves (7).

3.2. Proof of Theorem 2
Lemma 3. LetA : R

n1×n2 → R
m,m < n1n2, denote a linear operator. For every r< n = min(n1, n2) and every

X ∈ null(A), if 0 < δr(A) < 1, then

‖X‖2F ≤
(
1+ (n− r)

1+ δ1(A)
1− δr (A)

)
‖X(−r)‖2F . (20)

Proof: LetX =
∑n

i=1σiuivT
i denote the SVD ofX. We can write that

∥∥∥∥A(X(−r))
∥∥∥∥

2
=

∥∥∥∥A
( n∑

i=r+1

σiuivT
i

)∥∥∥∥
2
,

=

∥∥∥∥
n∑

i=r+1

σiA(uivT
i )
∥∥∥∥

2
,

≤
( n∑

i=r+1

σi

∥∥∥A(uivT
i )
∥∥∥
)2
,

(a)
≤
( n∑

i=r+1

σi

√
1+ δ1(A)

)2
,

=
(
1+ δ1(A)

)∥∥∥X(−r)

∥∥∥2∗,
(b)
≤ (n− r)

(
1+ δ1(A)

)∥∥∥X(−r)

∥∥∥2
F
, (21)

where (a) follows from the definition of the RIC and‖uivT
i ‖F = 1 and for (b), we used the inequality‖Y‖∗ ≤√

rank(Y)‖Y‖F [18].
Additionally,A(X) = A(X(r)) +A(X(−r)) = 0 implies that

∥∥∥A(X(−r))
∥∥∥2 =

∥∥∥A(X(r))
∥∥∥2 ≥

(
1− δr (A)

)
‖X(r)‖2F . (22)

Combining(21)and (22) together with‖X‖2F = ‖X(r)‖2F + ‖X(−r)‖2F leads to inequality(20).

Lemma 4. LetA : Rn1×n2 → R
m,m < n1n2, denote a linear operator. For every r< n = min(n1, n2) and everyX

satisfying‖A(X)‖ ≤ η, if 0 < δr (A) < 1, then

‖X‖F ≤
1+
√

(n− r)
1+ δ1(A)
1− δr(A)

‖X(−r)‖F

+
η

√
1− δr (A)

. (23)
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Proof: Inequality(21)holds for everyX; thus, it is possible to write

‖A(X(−r))‖ ≤
√

(n− r)(1+ δ1(A))‖X(−r)‖F . (24)

Furthermore, applying the triangle inequality onA(X(−r)) = A(X) −A(X(r)), one can obtain
∥∥∥A(X(−r))

∥∥∥ ≥
∥∥∥A(X(r))

∥∥∥ −
∥∥∥A(X)

∥∥∥,
≥
√

1− δr (A)‖X(r)‖F − η. (25)

Combining inequalities(24) and(25) together with‖X‖F ≤ ‖X(r)‖F + ‖X(−r)‖F gives inequality(23).

Proof of Theorem 2:To prove (11), let us first defineX = X0 − X̃. According to [19, Thmeorem 3.3.16], for
any 1≤ i, j ≤ n andi + j ≤ n+ 1,

σi+ j−1(X) ≤ σi(X0) + σ j(X̃).

Substitutingi and j with r + 1 in the above inequality leads to

σ2r+1(X) ≤ σr+1(X0) + σr+1(X̃) ≤ α.

Consequently, Lemma 3 implies that

‖X0 − X̃‖2F ≤
(
1+ (n− 2r)

1+ δ1(A)
1− δ2r(A)

)
‖X(−2r)‖2F ,

≤
(
1+ (n− 2r)

1+ δ1(A)
1− δ2r(A)

)
(n− 2r)α2.

For proving (12), we start with

‖A(X0 − X̃)‖ = ‖b − A(X̃) +A(X0) − b‖,
≤ ∆ + ǫ.

Following the same reasoning as in the proof of (11), the application of Lemma 4 completes the proof.

4. Conclusion

In this paper, we proposed upper bounds on the error of sparsevector recovery from both noiseless or noisy mea-
surements when the obtained solution is approximately sparse. While these bounds are based on the same parameters
as in the loose bounds of [9], they are strictly tighter. We further generalized them to the problem of low-rank matrix
recovery, when the solution at hand to recover the true low-rank matrix is approximately low rank.
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