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Abstract

This paper considers the problem of optimal filtering for partially observed signals taking values on the rotation
group. More precisely, one or more components are considered not to be available in the measurement of the attitude
of a 3D rigid body. In such cases, the observed signal takes its values on a Stiefel manifold. It is demonstrated how
to filter the observed signal through the anti-development built from observations. A particle filter implementation
is proposed to perform the estimation of the signal partially observed and corrupted by noise. The sampling issue
is also addressed and interpolation methods are introduced. Illustration of the proposed technique on synthetic data
demonstrates the ability of the approach to estimate the angular velocity of a partially observed 3D system partially
observed.

I. INTRODUCTION

In numerous engineering problems, systems with states having values and evolving on the special orthogonal
group SO(n) can be encountered [1], [2], [3], [4], [5], [6]. In order to control such systems, their angular velocity
must be estimated from possibly noisy measurements. This paper considers the case where only partial observations
of the system are available, i.e. not all the components of the movement are recorded. The observation signal is
modeled as a process taking its values on a Stiefel manifold. In addition, the presence of a multiplicative noise
is considered in the observation process. Classical methods, including extended Kalman filter [7], [8] can not be
applied directly here as they rely on the independent increments assumption. As explained later, it is not the case in
the model we consider here. We propose to use the anti-development signal computed from the observed data. We
present the way to build this signal, and adress the sampling/interpolation issue as weel. We also demonstrate how
to perform optimal filtering on the anti-development signal. A numerical solution (particle filter) via a Monte-Carlo
method is provided to perform this filtering and illustrated on the Stiefel manifold S2. The proposed technique is
however valid for higher dimension Stiefel manifolds.

The rest of the paper is organized as follows. Section II presents the geometry of Stiefel manifolds based on the
geometry of SO(n) and the concept of horizontal space. Section III presents a time continuous theoretical solution
to the filtering problem with observations in Stiefel manifolds. As opposed to the usual case, the noise cannot be
considered additive anymore here in our model. The proposed solution is based on the antidevelopment, a defined
with respect to the observation process that satisfies an additive noise model. Section ?? presents a theorem to
overcome the problem of discrete sampling. Section V gives a practical solution based on a Monte-Carlo method
for filtering. Finally Section VI considers the case of observation in SO(n) and compare different approximation
to the optimal solution.

II. GEOMETRY OF STIEFEL MANIFOLDS

The Stiefel manifold Vn,k is the set of orthonormal k-frames in Rn. It is well known and used in linear algebra
to describe principal subspaces [9] and has found applications in sensors array [10], statistics [11], optimization
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[12], channel estimation in wireless communications [13] or in light independent scene representation in computer
vision [14].

First, recall that a n × n matrix R with real components is an element of the rotation group SO(n) if it is
orthogonal and has a unit determinant. This is to say that R ∈ SO(n) iff:

RTR = In and detR = 1 (1)

where In denotes the n× n identity matrix. Intuitively, SO(n) is the set of positively oriented orthonormal basis
vectors of Rn.

In Rn, the Stiefel manifold Vn,k is defined as the set of matrices P ∈ Rn×k such that:

PTP = Ik (2)

and with k ≤ n. For example, if k = 1, then Vn,1 is the hypersphere Sn−1, i.e. the set of unit vectors in Rn. If
k = n, then Vn,n corresponds to the orthogonal group O(n).

Let Π : SO(n) → Vn,k be the projection consisting in the truncation of the n − k last columns of a rotation
matrix, and let us denote:

Π(R) = P (3)

When k ≤ n− 2, the projection is not injective. In this case, a matrix P ∈ Vn,k can be completed by different
sets of orthonormal vectors to form an oriented orthonormal basis of Rn, which means that in such cases:

Π(R1) = Π(R2)⇔ R1 = R2

(
Ik 0
0 C

)
with R1, R2 ∈ SO(n), C ∈ SO(n− k).

However, if k ≤ n, then Π is clearly surjective, i.e Π(SO(n)) ∈ Vn,k as the k first columns of a rotation matrix
are orthonormal vectors. Therefore, Π(R)TΠ(R) = Ik for R ∈ SO(n). The Stiefel manifold Vn,k can then be
described as:

Vn,k = {Π(R), R ∈ SO(n)} (4)

Note that the case k = n needs special care. Indeed, Vn,n = O(n) is the group of orthonormal matrix and is
composed of two connected components: the set of orthonormal matrices with a positive determinant (positively
oriented basis) SO(n) and the set of orthonormal matrices with a negative determinant (negatively oriented basis).
In this study, we will consider continuous random processes Pt ∈ Vn,k which will solely belong to the same
component of Vn,k as their initial value P0 belongs to. Therefore, if det(P0) = +1, then Π = Id covers all
the reachable points in the Stiefel manifold from SO(n). If det(P0) = −1, considering Π(R) as the application
reversing the sign of the last column of R allows Π to cover all the reachable points in the Stiefel manifold from
SO(n). Consequently, expression (4) can be extended to the case where k = n, by considering only one connected
component. This case will be considered in Section VI.

As Vn,k can be constructed from SO(n), we now investigate how the geometry of Vn,k can be described using
the geometry of SO(n). From its definition, the projection Π is left invariant:

R1Π(R2) = Π(R1R2) (5)

with R1, R2 ∈ SO(n).
As Π is surjective, one also get the action of SO(n) on Vn,k. If R ∈ SO(n) and P ∈ Vn,k, then RP ∈ Vn,k.

This property will be used later on to describe a process on Vn,k via the action of SO(n). This group action can
be visualized by considering the example of the sphere V3,1 ∼= S2. Points at the surface of the sphere S2 can reach
all the locations on this manifold through the transitive action of SO(3) on the sphere: SO(3)× S2 → S2.

First, let us identify the tangent bundle of Vn,k, denoted TVn,k. It will be of use in Section III to define stochastic
processes via the action of SO(n) in the space tangent to a point in Vn,k. Denote so(n) the Lie algebra1 associated
to the Lie group SO(n) and let χ : so(n)× Vn,k → TVn,k be the application defined by:

χ(σ, P ) =

(
d

dt
exp(tσ)P

)∣∣∣∣
t=0

= σP (6)

1so(n) is the algebra of real-valued anti-symmetric matrices of size n× n.
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We can show by inclusion and dimension equality that χ(., P ) is surjective onto TPVn,k, i.e TPVn,k = {σP, σ ∈
so(n)}, where we used the notation TPVn,k for the tangent space attached to a point P ∈ Vn,k.

Now, for a given point P ∈ Vn,k, let R ∈ SO(n) be a pre-image of P via Π, i.e P = Π(R). As Π is surjective,
Π−1(P ) 6= ∅ and R is well defined. Then, the vertical space [14] at the point P , denoted VR, is defined as:

VR = Ker dΠR (7)

where dΠR is the differential of Π at the point R. By definition of dΠR, the vertical space VR is a subspace of the
tangent space TRSO(n). In the case when n = 3 and k = 1, then V3,1 ∼= S2 and P is a point on the unit sphere
in R3. The vertical space corresponds to the set of rotations which have their axis aligned with P . Such rotations
leave P invariant. Figure 1 displays a graphical interpretation of the vertical space VR.

Fig. 1. Graphical representation of the vertical space VR at P for the case P ∈ V3,1. For a rotation R acting on P , VR is the orthogonal
complement of HR in TPV3,1. If the axis of the rotation of R is parallel to P , then its action is in VR and it is not visible as P is rotating
about itself.

Fig. 2. Graphical representation of the horizontal space HR at P for the case P ∈ V3,1. For a rotation R acting on P , HR is a subspace of
TPV3,1. If the axis of rotation of R is orthogonal to P , then its action is in HR and it is visible.

Making use of the standard scalar product on so(n) which reads for any skew-symmetric matrices σ, ς ∈ so(n)
like:

< σ, ς >=
1

2
tr(σT ς) (8)

it is possible to construct the orthogonal complement of VR in TRSO(n), called the horizontal space and denoted
HR. We have then that:

TRSO(n) = VR ⊕HR (9)
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Fig. 3. Illustration of the different notions introduced to describe the Stiefel manifold Vn,k as the image from the projection Π of SO(n). The
horizontal HR and vertical VR spaces are dependent of the chosen pre-image but the translation into so(n) via ω is invariant with respect to
the choice of the pre-image.

Figure 2 displays a graphical interpretation of the horizontal space HR.
As dΠR is linear, the restriction of dΠR to HR is bijective. In other words, TPVn,k and HR are isomorphic. For

a vector v ∈ TPVn,k, let vH ∈ TRSO(n) be the vector defined as:

dΠR(vH) = v (10)

For example, consider again the case of the Stiefel manifold V3,1 ∼= S2. Considering P = (1, 0, 0)T ∈ V3,1, the
matrices R1 = (e1, e2, e3) and R2 = (e1, e3,−e2) for {ei}i≤3 the canonical basis of R3 are both pre-images of P ,
i.e. Π(R1) = Π(R2) = P . The application χ(., P ) describes the tangent space TPV3,1 like χ(σ, P ) = (0, σ21, σ31)T

where σij is the (i, j) matrix elements of σ ∈ so(3). At the pre-image R1, the vertical and horizontal spaces are
thus defined as:

VR1 =


0 0 0

0 0 α
0 −α 0

 , α ∈ R


and:

HR1
=


 0 β γ
−β 0 0
−γ 0 0

 , β, γ ∈ R

 .

At the pre-image R2, the vertical and horizontal spaces are defined as:

VR2
=


0 0 0

0 α 0
0 0 α

 , α ∈ R


and:

HR2 =


 0 β γ
γ 0 0
−β 0 0

 , β, γ ∈ R

 .

One can direclty check that spaces HR1
RT1 and HR2

RT2 are identical. This is true even if the horizontal subspaces
HR1 and HR2 are different, and is a consequence of the fact that they are defined by a different pre-image of P .
A graphical illustration of the notion of horizontal and vertical spaces is displayed in figure 3

Due to the isomorphism between TPVn,k and HR, the application χ(., P ) restricted to HRRT ∈ so(n) with
Π(R) = P is bijective. In other words, χ(., P )|HR

is invertible. Let ω : TVn,k → so(n) denote this inverse and let
us call it the restricited inverse. It then reads:

ω(v, P ) = vHRT . (11)

The term vH is the horizontal vector from the tangent space to R. Despite the definition of ω being dependent on
R, this is not the case because vH also depends on R, and, in the end, the term vHRT ii independent of R. Finally,

4



it is possible to define a metric on Vn,k using the metric on SO(n). Let < ., . >P be the metric defined as:

< v1, v2 >P=< vH1 , v
H
2 >R (12)

for any two vectors v1, v2 ∈ TPVn,k, with Π(R) = P , and where < .,>R denotes the scalar product defined in
TRSO(n).

III. FILTERING FROM OBSERVATIONS ON STIEFEL MANIFOLDS

We consider the problem of a partially observed system whose state evolves on the rotation group SO(n). In
practice, such observations may come from flawed sensors or devices, leading to the availability of a limited part
of the signal to filter. For example, in the context of satellite’s control, existing algorithms require the knowledge
of the angular velocity and the orientation of the satellite to monitor its orientation [2][1]. This angular velocity
is determined from different internal sensors. However, if some of these sensors become faulty, the velocity of the
satellite is no more available and the satellite cannot be controlled properly anymore.

The presented algorithm proposes to tackle the problem of lack in parts of the signal to filter and takes advantage
of the available observations to perform optimal filtering. More precisely, we present a technique to obtain an
estimate of the velocity of the system with only partial observations of its orientation, i.e. partial observations on
SO(n).

A. Observation model

The model considered is as follows: a process St ∈ SO(n) is defined by its angular velocity xt ∈ so(n) where t
represents time. Our aim is to obtain an estimate of the angular velocity xt based on observations of St which are
not complete as well as noisy. The process xt is here assumed to be the solution of the following linear stochastic
differential equation in so(n):

dxt = Fxt + dbt (13)

where bt ∈ so(n) is a Brownian motion with variance σ2
b . In this case, xt is a Markov process and its transition

kernel for time t+ s based on xs is denoted qt(xs, .).
The partial observation is here modeled as a process Pt on the Stiefel manifold Vn,k, i.e only k components of

St amongst the total of n components are known. The filtering problem then reads: we want to estimate xt ∈ so(n)
from Pt ∈ Vn,k defined as Pt = Π(St) in the presence of noise. The noise is modeled by a Brownian motion
wt ∈ so(n) with variance σ2

w independent from xt acting in so(n). As xt is the angular velocity of the observed
processed Pt, then Pt is solution of the stochastic differential equation:

dPt = (xtdt+ ◦dwt)Pt (14)

where notation ◦ is used to denote the Stratonovich integral.
Due to the presence of the noise wt, xt cannot be exactly determined. Instead, we want to determine the

distribution πt of xt conditioned by the observation of Ps = {Ps, s ≤ t}. It is possible to construct some estimator
for xt based on its conditional distribution πt.

It is noticeable that despite that the noise acts additively in the tangent space TPtVn,k, it acts as a multiplicative
noise for the process Pt, preventing us from using usual filtering methods. Indeed, classical methods like Kalman
filter rely on the independence of the increments dPt. However, this is not applicable in our case as the increments
depends of Pt.

B. The anti-development solution

We propose a solution based on the concept of anti-development. It consists in constructing a process zt in
one-to-one correspondence with Pt such that zt is solution of a stochastic differential equation with additive noise.
The likelihood used to compute the solution is then based on zt.

Let zt ∈ so(n) and Rt ∈ SO(n) be defined as:

dzt = ω(◦dPt, Pt)
dRt = (◦dzt)Rt

(15)
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where ω is as defined previously in (11), the restricted inverse of χ.
The process zt is called the anti-development of Pt and Rt is called the horizontal lift of Pt [15]. An illustrative

example of the anti-development on V3,1 = S2 is presented in figure 4.
The process zt is the accumulation of the increments in the tangent space TPVn,k whereas Rt is the rotational

process constructed by considering that the component in the vertical space is null. These processes are equivalent,
in terms of information to Pt because Pt can be constructed like Pt = RtR

T
0 P0 or dPt = χ(dzt, Pt). Conditioning

the distribution of xt by the observation of Pt is equivalent as conditioning by the observation of zt. However, the
anti-development is a solution, as opposed to Pt, of a stochastic differential equation with additive noise. It should
be noticed that in general cases, St 6= Rt. Despite the vertical component has no action in the Stiefel manifold
Vn,k, it still has some effect in SO(n). This involves that in general, St 6= Rt.

Replacing dPt in (15) by its expression from (14) gives:

dzt = ω(dPt, Pt)

= ω ((xtdt+ ◦dwt)Pt, Pt)
= ω((χ (xtdt+ ◦dwt) , Pt) , Pt)
= ω(Ht, Pt) + ◦dβt (16)

where Ht = χ(xt, Pt) and dβt = ω (χ (◦dwt, Pt) , Pt). By definition of dβt, the process βt is constructed from the
k first components of wt. Therefore, βt is a Brownian process with a variance that can be diagonalized as σ2

wIn,k
where In,k = diag(1, ..., 1, 0, ..., 0) with k non-zero elements.

This way, our filtering problem from observations in the Stiefel manifold Vn,k with multiplicative noise is
now reduced to a filtering problem in so(n) with additive noise. For a test function φ, we want to determine
π(φ) = E[φ(x)|Pt]. The solution is therefore given by applying usual filtering methods [16] to the anti-development
zt defined in (15):

πt(φ) =
ρt(φ)

ρt(1)
, (17)

with ρt(φ) = E [φ(x′)Lt(P, x
′)|Pt], where x′t is a copy of xt independent of Pt and Pt = {Ps, s ≤ t}. The

likelihood Lt is defined as:

Lt(P, x
′) = exp

(
1

σ2
w

∫ t

0

< x′s, dzs > −
1

2
||x′s||2ds

)
(18)

with dzt = ω(◦dPt, Pt). By definition of the inner product in (12), the likelihood in (18) can be rewritten like:

Lt(P, x
′) = exp

(
1

σ2
w

∫ t

0

< H ′s, dPs > −
1

2
||H ′s||2ds

)
(19)

with H ′s = χ(x′s, Ps) a copy of Hs in the distribution sense. Expression (19) is more amenable than the one from
equation (18) as it does not require the computation of Rt. The integrand can directly be determined from the
observations without constructing any auxiliary process. However, using expression (19), the model for Ht is not
linear, even if xt is the solution of a linear model. As a consequence, expressing ρt(φ) is a complicated task.
Nevertheless, it is still possible to get an approximation of the solution, using numerical methods, like the particle
filter for example. Before proposing a filtering solution, we address the issue due to the discrete nature of the
observation of Pt.

IV. INTERPOLATION FUNCTION

It must be noted that the likelihood function Lt given in (19) requires the full observation of the process {Ps}s≤t
to compute the integrand. In practice, it is not possible to have a continuous observation of Pt. Only discrete
samples are available. Let δt be the sampling period. Between two samples, Pt must be approximated using an
interpolation function. This interpolation function must be chosen to minimize the approximation error as a function
of the sampling period.

6



Fig. 4. Example of a trajectory of Pt (red on the sphere) on V3,1 = S2 at three successive times (Top to Bottom). The anti-development zt
is displayed in red in the plane over the sphere. It can be obtained by considering the trace left by the sphere when rolling without slipping on
the plane, and with Pt as a contact point. The anti-development is solution of a stochastic differential equation with additive noise, as opposed
to Pt.
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Let Int : Vn,k ×Vn,k → so(n) be an interpolation function. It is thus required that Int should be such that given
δzk = Int(Pkδt, P(k+1)δt), the likelihood based on discrete observation will converge to the continuous solution for
δt→ 0.

Theorem 1: The Riemann sum

S̃nδt =

n∑
k=0

< xkδt, Int(Pkδt, P(k+1)δt) >

with n = t/δt converges towards

St =

∫ t

0

< xs, dzs >

in the sense E[|S̃nδt − St|2]→ 0 when δ → 0 if the interpolation function Int : Vn,k × Vn,k → so(n) satisfies the
following conditions:
• Its diagonal elements are nul, i.e. Int(P, P ) = 0 for all P ∈ Vn,k.
• The function Int is C2 (Vn,k).
• ∇ Int(P, P )[v] = vHRT for all v ∈ TPVn,k and Π(R) = P .
• ∇2 Int(P, P )[v] = 0 for all v ∈ TPVn,k.

Where the differentials (∇I and ∇2I) are computed with respect to the second variable.
Proof 1: Considering the function f = Int(Pkδt, .), then condition 2) allows the use of Itō lemma:

f(P(k+1)δt)− f(Pkδt) =

∫ (k+1)δt

kδt

∇f [dPs]+

1

2

∫ (k+1)δt

kδt

trace
(
[dPs]

T∇2f [dPs]
)

Condition 4) sets the last term to o(δt) whereas condition 3) sets the first term to
∫ (k+1)δt

kδt
(dPs)

HRTs + o(δt).
Then, replacing f by Int(Pkδt, .)

Int(Pkδt, P(k+1)δt)− Int(Pkδt, Pkδt)

=

∫ (k+1)δt

kδt

(dPs)
HRTs

Now, thanks to condition 1), one gets that Int(Pkδt, Pkδt) = 0.
Separating the integral St into t/δt short integrals gives, up to a remaining integral between t and kt/δt, the

following expression:

E
[
|S̃nδt − St|2

]
= E


∣∣∣∣∣∣
∑
k≤t/δt

∫ (k+1)δt

kδt

< xkδt − xs, dzs >

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣
∑
k≤t/δt

∫ (k+1)δt

kδt

< xkδt − xs, (dRs)RTs >

∣∣∣∣∣∣
2


(as σ2
wIn is orthogonal to so(n))

≤
∑
k≤t/δt

E

∣∣∣∣∣
∫ (k+1)δt

kδt

< x̂kδt − x̂s, (dPs)HRTs >

∣∣∣∣∣
2


8



The square variations of xt during a time δt being bounded by O(δt), the variation of xt are bounded by O(δt)
too. The integral is then bounded by O(δt2) thanks to the Itō isometry property of the integral

E
[
|S̃nδt − St|2

]
= E

 ∑
k≤t/δt

∫ (k+1)δt

kδt

O(δt)||(dPs)HRTs ||2


=
∑
k≤t/δt

O(δt2)

= O(δt)

This means that Sδ converges towards I in the mean square error sense when δt shrinks to 0 with a linear
convergence rate.

Based on this theorem, we can show that a linear interpolation between successive samples can be used to
approximate the likelihood.

Proposition 1: The interpolation function Int(P ′, P ) = 1
2dΠR′

(
RR′T −R′RT

)
with Π(R) = P and Π(R′) = P ′

satisfies the conditions of Theorem 1.
Proof 2: The conditions 1) and 2) from theorem 1 are directly verified. Using the notation σ = vHRT , Condition

3) is verified as:

∇ Int(P, P )[v] =
d

dt
Int(P, exp(tσ)P )|t=0

=
d

dt

1

2

(
exp(tσ)RRT −RT exp(tσ)T

)
|t=0

=
d

dt

1

2
(exp(tσ) + exp(tσ)) |t=0

as σ ∈ so(n)

= σ = vRT

Finally, condition 4) is also satisfied because:

∇2 Int(P, P )[v]

=
d2

dtds
Int(P, exp(sσ) exp(tσ)P )|t=0,s=0

=
d

dt

1

2

(
exp(sσ) exp(tσ)RRT−

RT exp(tσ)T exp(sσ)T
)
|t=0

=
d

dt

1

2
(exp((t+ s)σ)− exp((t+ s)σ)) |t=0

= 0

Thanks to Proposition 1, we are now able to implement a Monte-Carlo solution based on discrete samples. For a
better readability, the interpolation term between two successive samples Int

(
Pkδt, P(k+1)δt

)
will be denoted δPk

in the sequel.

V. PRACTICAL SOLUTION TO THE FILTERING PROBLEM

A. Implementation via a Monte-Carlo method

The particle filter is a Monte-Carlo method to approximate the solution given by Equation (17) for non linear
model. Despite that particle filters has been heavily used and studied [17], the application of this method to perform
estimation from partial observation on the Stiefel manifold has not been used before.
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The main idea of the particle filter is to approximate the expectation in (17) using the law of large numbers.
Recall that:

ρt(φ) = E [φ(x′)Lt(P, x
′)|Pt]

with Lt the likelihood defined in Equation (19). The process x′t is a copy of xt (in the sense with the same model
of propagation) but, contrary to xt, independent from Pt.

Let Xi
t , with i = 1, . . . , N , be N processes identical to xt called particles. They represent candidates to estimate

the process xt. The law of large numbers states that ρNt defined as:

ρNt (φ) =
1

N

N∑
i=1

φ(Xi)Lt(P,X
i)

will converge with N almost surely to ρt(φ). Therefore, the previous equation gives an approximation of the solution
by determining ρNt and normalizing it. It is noticeable that the particles are not observable and must be simulated.
This means that the model of propagation (13) for xt should be known.

Furthermore, it is assumed that the process Pt is not continuously observed and let denotes δt the sampling time.
These means that it is necessary to consider a time discretized version of ρNt , denoted ρNn , with n = bt/δtc, as:

ρNn (φ) =
∑
i

φ(X̃i)Lδt(P̃n, X̃i
0, ..., X̃

i
n)

where X̃i
n = Xi

nδt, P̃n = {Pkδt, k ≤ n} and the likelihood Lδt is defined by:

Lδt(i, n) = exp

 1

σ2
w

∑
k≤n

< Hi
k, δP̃k > −

1

2
||Hi

k||2


with Hi
k = χ(Xi, P̃k). It has been proved in Proposition 1 that the discrete likelihood Lδt converges towards the

likelihood Lt from (19).
In order to implement such a solution, two independent problems must be tackled:
• The simulation of the particles X̃i:

It will be supposed that xt is a Markov process. Consequently, X̃i is a Markov chain with transition kernel
qδt defined after (13) and X̃i

n+1 is directly sampled from qδt(X̃
i
n, . ).

• The computation of the likelihood Lδt(P̃n, X̃i
0, ..., X̃

i
n):

Considering the last term of the Riemannian sums:

Lδt(i, n) = exp

 1

σ2
w

∑
k≤n

< Hi
k, δP̃k > −

1

2
||Hi

k||2


= Lδt(i, n− 1)liδt

where liδt = exp
(

1
σ2
w
< Hi

n, δP̃n > − 1
2 ||H

i
n||2
)

, this decomposition shows that the likelihood can be computed
adaptively when new samples are available.

This leads to Algorithm 1, here described to estimate the conditional distribution πN,δtn (φ) as

πN,δtn (φ) =
ρN,δtn (φ)

ρN,δtn (1)
=

N∑
i=1

φ(X̃i
n)win

where the coefficient

win =
Lδt(P̃n, X̃i

0, ..., X̃
i
n)∑N

j=1 Lδt(P̃n, X̃
j
0 , ..., X̃

j
n)

is called the ”weight” associated to the particle i.
The normalization step (step 3) is not only here to compute πN,δtn instead of ρN,δtn but also to numerically stabilize

the computation of the weights. As they are usually smaller than 1, their consecutive multiplications lead to small
values.
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Algorithm 1 Particle filter algorithm

• For the initialization, generate N particles from a priori p0: X̃i
0 ∼ p0 and set wi0 = 1/N .

• At a time n > 0:
1) Propagate the particles X̃i

n ∼ qδt(X̃i
n−1, .)

2) Update the weight win of each particle as: win = win−1l
i
δt with

liδt = exp

(
1

σ2
w

< Hi
n, δP̃n > −

1

2
||Hi

n||2
)
.

3) Normalize the weights: win = win/
∑
j w

j
n

4) If
(∑

i(w
i
n)2
)−1

< N/2, generates [m1 ... mN ] ∼ multinomial(w1 ... wN ) such that
∑
im

i = N .
Then, clones X̃i

n m
i-times and set win = 1

N .
5) Estimate πt(φ) with

πN,δtn (φ) =
∑
i

φ(X̃i
n)win.

Step 4 is called resampling. It is here to prevent a degeneracy due to the finite number of particles. Indeed, the
particles are propagating without any restriction or drift imposed by the observation. Without resampling, particles
would just explore the space and as they tend to drift away from xt, they would become a bad approximation of xt,
because the mean square error E[(Xi

t − xt)2] is linearly growing with time. The number of particles being fixed,
their weights quickly degenerate as they are diffusing away from xt. Due to the normalization step, this leads to
the concentration of all the ponderation into one single particle. Even if this particle is the best candidate amongst
the all the particles, the mean square error is still linearly growing.

The resampling step consists in killing the particles far away from xt (in fact, killing the particles with low
weights) and cloning the remaining ones. In order to measure if the particles are scattered away from xt, one
commonly used criteria is a threshold based on the Effective Sample Size (ESSw) defined as

ESSw =

(∑
i

(win)2

)−1
.

When ESSw is lower that say N/2, then particles need to be resampled (the criteria ESSw is small when only
a few particles have a preponderant weight). To resample the particles, one can for example sample [m1 ... mN ]
from a multinomial distribution

[m1 ... mN ] ∼ multinomial(w1 ... wN )

such that
∑
im

i = N (to keep the number of particles constant) and clone the ith particle mi times. If wi is high
(particle with a good likelihood, thus a good candidate), then mi should be high too. This effect will tend to keep
only the good candidates, based on the likelihood. However, instead of resampling when the Effective Sample Size
becomes too low, resampling is made after a fixed given time. In fact, resampling can be realized at every iteration
but it is, computationally speaking, expensive and does not bring noticeable improvements [17].

B. Simulation results

This subsection describes the results obtained from a numerical implementation of the particle filter detailled in
Algorithm 1. For this simulation, the chosen Stiefel manifold was the sphere V3,1 = S2. The process xt ∈ R3 is a
Brownian motion with a unit variance. The variance of the noise is fixed to σ2

w = 1.
To approximate xt, N = 500 particles are generated from a normal prior distribution p0 centered around the

origin with a variance of 2. Using more particles does not significantly improve the results. Considering a bad prior
for generating the particles is not a big issue as the resampling step quickly eliminates the wrong candidates for
the estimation. In the first two cases displayed in Figure 5 (Top and Bottom), the time step for the observation is
δt = 10−2s and it is set to δt = 0.5s for the last case (Bottom). The time step for creating the simulation has been
fixed to 10−3s, which is sufficient to consider the process continuous with respect to the observation time step.
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Fig. 5. Evolution of the estimation (red) of each component of xt (black), namely x1, x2 and x3. (Top) The model used for xt is a stair
function and the times at which changes occur are known. The sampling time is δt = 10−2. The particle algorithm properly converges. (Middle)
xt is a Brownian motion in R3 with unit variance. The algorithm can still estimate properly as the variations are not too fast. (Bottom) For
the same model, the sampling time is reduced to δt = 0.5 and the filter is not able to track xt anymore. The component in the vertical space
changes too quickly.
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Fig. 6. Projection of the particles (yellow), the state to estimate (blue) and the estimation (green) on the plane Ox,Oy and Ox,Oz. At the time
of the snapshot, Pt ≈ [0, 1, 0]T . Consequently, the component along Oy cannot be estimated. The particles are distributed within an ellipse
whose large axis is directed along Oy.

Figure 5 illustrates the results obtained for the estimation when the state xt is a stair function (Top), then when xt
varies slowly (Middle) and finally when the sampling period is too large to be able to track properly the evolution
of xt (Bottom). As long as xt is slowly varying with respect to δt, the algorithm is able to completely estimate xt.
In the case where xt follows a stair function model, one could use a classical algorithm to detect abrupt changes
in xt in order to estimate the time instants where the particles should be sampled [18] (this was not effectively
implemented in the results presented in the Top figure of 5, where it was simply assumed that the time where
changes occur were known). When a change is detected, the particles are once again sampled from the initial priori
to converge toward the new value. In the presented case (Top of figure 5), the particles will not drift away because
they are at a constant position (they propagate with the same model as xt). Particles strongly merge when they are
resampled, leaving less and less possible choice.

It was mentioned earlier that the vertical component could not be estimated. However, the vertical space is defined
with respect to the observation point Pt. As Pt will evolve on Vn,k, the vertical space will change too and the
component on the initial vertical space can thus be estimated. As a consequence, it is finally possible to completely
estimate the angular velocity. Note that in the case where xt evolves slowly, the vertical component can still be
estimated.

Now, if the angular velocity is evolving too quickly (with respect to the amount of time particles need to
converge), it will not be possible to estimate the vertical component of xt from the observation of Pt. The particles
are distributed within an ellipse (see Figure 6, Top), whose large axis coincides with the direction of Pt. Along
the direction of Pt, the estimation of xt, the empirical average of the particles (yellow dots), is not satisfactory.
However, in the other direction, the estimation is correct. This is due to the fact that the particles can only track
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the component of xt that has an impact on Pt. As the innovation term in Equation (19) is < Hs, dPs >, only
the horizontal component can be observed and therefore estimated. Consequently, particles propagating along the
vertical subspace (wich is, for S2, the line defined by Pt) are not penalized (their weight does not decrease) and
are still considered as good candidates. As a consequence, the estimate is correct in the horizontal direction, but
not in the vertical one. This last comment can be understood as highlighting the cases where the proposed particle
filter failed at estimating correctly the complete set of components of xt due to the lack of information in the
observation.

In the next section, we consider a special case of our problem, namely when observations are complete.

VI. SPECIAL CASE FOR OBSERVATION FROM SO(n)

A. Optimal filtering in SO(n)

The special case when observations are in Vn,n can be described using the technique presented in previous
sections. However, the fact that Pt is in one of the continuous component of O(n) allows us to treat it also in a
different manner. As it is described in Section II, the process Pt can be considered like a process with values in
SO(n) (which is one of the two continuous components of O(n)) without any loss of generality.

As Pt ∈ SO(n), then the map Π is the identity map and the application χ is invertible. Therefore, there is no
vertical space over Pt and the tangent space is simply the horizontal space. Equation (16) then reads:

dzt = xtdt+ ◦dwt (20)

where dzt = (◦dPt)PTt . In this case, a numerical method is no more required as the full process is observed, i.e
Ht = xt. As the increments in Equation (20) are independent, and the noise is additive, a classic Kalman filter can
be used where the anti-development zt replaces the observed process Pt. The conditional distribution of xt is then
a Gaussian distribution with mean µt and a variance Vt such that:

dµt = Fµtdt+ 1
σ2
w
Vt(dzt − µtdt)

dVt = FVt + VtF
T − 1

σ2
w
V 2
t + σ2

b . (21)

This solution represents the optimal filter for observation in SO(n). However, in practice, the same issue as in
Section III occurs due to the discretization of the observation.

B. Implementation of the solution

The discrete nature of the observation of Pt does not allow to continuously determine zt. An approximation must
be performed using an interpolation function. The linear interpolation function Int(P ′, P ) = 1

2dΠR′
(
PP ′T − P ′PT

)
still converges towards the continuous solution as the sampling period δt shrinks to 0. Amongst all the possible
functions, one can also choose to use Int(P ′, P ) = log(PP ′T ) as it satifies the conditions of Theorem 1.

Proposition 2: The interpolation function Int(P ′, P ) = log(PP ′T ) satisfies the conditions of Theorem 1.
Proof 3: The conditions 1) and 2) are direct. For condition 3), an element v ∈ TPSO(n) is described with right

invariant vector fields V = σP with σ ∈ so(n).

∇ Int(P, P )[v]

=
d

dt
Int(P, exp(tσ)R)|t=0

=
d

dt
log
(
exp(tσ)PT

)
|t=0

=
d

dt
tσ|t=0

= σ = vPT
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Fig. 7. Comparison of estimation results (MSE) between linear interpolation, geodesic interpolation, and classic Kalman filter with δt = 0.01s.
The state to estimate is constant and the variance of the observation is σ2

w = 1

Condition 4) is also satisfied as:

∇2 Int(P, P )[v]

=
d2

dtds
Int(P, exp(sσ) exp(tσ)P )|t=0,s=0

=
d2

dtds
log
(
exp((t+ s)σ)PT

)
|t=0

=
d2

dtds
(t+ s)σ|t=0,s=0

= 0

The function Int(P ′, P ) = log(PP ′T ) is called geodesic interpolation. This interpolation function has a higher
computational cost than the linear interpolation one, but it is also more accurate for approximating the incremental
term dzt.

In order to illustrate this point, Figures 7 and 8 present the difference between a Kalman filter directly applied
on the discrete observation of zt (which is an optimal filter), and the different methods of interpolation based on
the discrete observation of Pt.

Because the equation of the variance Vt does not depend on the observation and is just an isolated differential
equation (with respect to the innovation), the variance for each algorithm used in Figure 7 is the same (considering
that the initial value V0 has always been chosen with the same value) and is consequently not displayed for this
kind of comparison.

In the presented simulations, the process xt is considered constant. The use of another model might not imply
any significant change. The process zt is first generated with a small time step (10−4s) and with a variance σ2

w = 1
via an Euler scheme from the stochastic differential equation (20).

At the same time, a rotational process Pt is constructed from zt. The construction of zt and Pt is then realized
with a time step small enough to consider them as ”time continuous”.

The process Pt is then sampled with a time step δt with δt >> 10−4. The performances of the filter from (21)
with different methods of interpolation (linear and the geodesic) to approximate δzkδt are displayed in figure 7.
In parallel, as zt has been continuously generated, these performances are compared to a classical Kalman filter
taking directly δzkδt = z(k+1)δt − zkδt. Recall that this term is not available due to the discrete observation of Pt.
Knowing that in the case of additive noise, the Kalman filter is optimal [16] and because the anti-development is in
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Fig. 8. Comparison of estimation results (MSE) between linear interpolation, geodesic interpolation, and classic Kalman filter with δt = 0.2s.
The state to estimate is constant and the variance of the observation is σ2

w = 1.

Fig. 9. Cumulated error of estimation for 0 ≤ t ≤ 50 for the linear interpolation, the geodesic interpolation, and the classic Kalman filter for
different values of δt. The state to estimate is constant and the variance of the observation is σ2

w = 1. Each point represents the average of 20
simulations configured with the same parameters. For a sampling time larger than 0.45 (arbitrarily chosen), the performances are too poor to
consider the filters to converge properly any-more.

one-to-one correspondance with the observation, the Kalman filter is used here as a reference filter (as it is known
that it is not possible, in the mean square sense, to outperform it).

The results presented in Figure 7 have been obtained with δt = 10−2s. This time step is small enough so
that similar performances for the different methods of interpolation (geodesic and linear) as they should converge
towards the same solution. However, differences start to appear if δt has larger values.

In Figure 8, δt is increased to 0.2s. The variation in the observation time step changes the approximation of
the process zt and differences between the two interpolation methods (linear and geodesic) are visible. The linear
interpolation is not as accurate as the geodesic interpolation. The linear approximation adds another source of error
to the estimation, as a drawback to its simpler computational form.

16



Finally, in order to observe the influence of the sampling step δt on the performance of each interpolation method,
Figure 9 illustrates the evolution of the cumulated error for 0 ≤ t ≤ 50 at a fixed sample step for each method. Just
like previously, the cumulated errors should be compared with the cumulated error induced by a proper Kalman
filter. It appears that the geodesic interpolation does not create another error term despite that it is an approximation
of δznδt. The cumulated error is the same as the Kalman filter one. The linear interpolation, however, is adding a
supplementary error term. As the sampling step is increasing, the approximation is worse and worse. In the end,
for δt > 0.45s, the sampling step is too high for any filter to perform a proper estimation of the state. For such
cases, solutions such as the extended Kalman filter presented in [7] should be privileged.

VII. CONCLUSION

In this paper, a solution to the problem of filtering from partial observations is presented. The observed process
takes its values in the Stiefel manifold while the signal of interest evolves on the rotation group. Due to the
multiplicative nature of the noise, standard methods cannot be applied directly. A solution relying on the construction
of an intermediate process, namely the anti-development, is proposed. This solution uses a Monte-Carlo method to
overcome the problem of missing information. It is shown that the proposed algorithm allows, in certain contexts,
to recover the whole set of components of the signal of interest despite the lack of observations. Finally, in the
special case where the entire process can be observed, an optimal filter, together with interpolation methods, is
given. This filter can be interpreted as a Kalman filter for observations on the rotation group.
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