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ABSTRACT—Recently, cyclostationarity (CS) based detection methods exploiting the 

autocorrelation periodicity property of the orthogonal frequency division multiplexing (OFDM) 

signals attracted a lot of attention. These detection methods are more complex than energy 

detection but they have better detection performance in low-SNR regimes. The drawback, 

however, is their extensive computational complexity. In this paper, we propose a 

computationally efficient spectrum sensing method for detecting unsynchronized OFDM signals 

in additive white Gaussian noise (AWGN). The proposed method exploits the second-order CS 

property of OFDM signals to set an adaptive threshold, which achieves the desired constant false 

alarm rate (CFAR) property. The complexity of the proposed method is significantly reduced 

compared with the scheme proposed in [22]. Monte-Carlo simulations illustrate that the 

performance of the proposed detector outperforms the classical energy detector (ED) and the 

other existing spectrum sensing algorithms in the open literature in addition to guaranteeing a 

low sensing time.  

Keywords—Cognitive radio (CR), spectrum sensing (SS), energy detection, CFAR, adaptive 

threshold, cyclostationarity (CS), OFDM.  

1. Introduction 

Many studies carried out in various countries show that a great portion of the licensed 

spectrum is severely underused [1], [2]. The unused resources referred to as spectrum holes can 

then be reused by secondary users called cognitive radios. In recent years, the Federal 

Communications Commission (FCC) has considered the use of cognitive radio (CR) technology 

as a new strategy [3]. Mitola [4], [5] introduced the dynamic spectrum access concept in 

cognitive radios and since then CR is considered as a way of increasing spectrum utilization of 

modern wireless technologies which received a lot of interest in recent years [6]–[9]. CR systems 

are equipped with the capability to adapt the transmission parameters according to the 

interactions with the surrounding radio environment to achieve predefined objectives. An 

interesting characteristic is that mobile and stationary terminals can adjust their parameters of 
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transmission by the modification of the software embedded in the radio without any 

modifications on the hardware [10]. In the context of dynamic spectrum access [4], the 

secondary users (SUs) have no spectrum licenses but are allowed to use temporarily the licensed 

spectrum originally allocated to primary users (PUs) provided they avoid causing harmful 

interferences to the primary users. This opportunistic usage of the spectrum makes spectrum 

sensing (SS) an important and challenging topic in CR systems [11]. Indeed, SS is one of the 

most essential components and it has been of great interest recently [12], [13]. The crucial task of 

the SU is to obtain awareness about the spectrum usage and detection of the presence or absence 

of a PU’s signals in a geographical area. Various SS methods have been proposed in the 

literature such as energy detectors (ED), waveform or matched filter based detectors, feature 

based detectors, and some emerging eigenvalue-based and wavelet-based detectors [10]. Each of 

these detectors has its advantages and disadvantages with varying detection capabilities, 

implementation complexity, sensing time, assumptions and requirements on the PU signal. For 

instance, the ED is simple to implement and it does not make any assumptions on the PU signal 

structure. In fact, the ED displays an effect known as ―SNR wall‖ beyond which energy detection 

is theoretically infeasible [14]. Waveform or matched filter detection algorithms make explicit 

assumptions about the known pilot waveform or the exact transmitted signal which affect the 

confidentiality of the communication. Feature based detectors exploit only the structural or 

statistical properties of the PU signal. Since almost all man-made communication signals contain 

a redundancy added for example by coding, modulating, and burst formatting schemes used at 

the transmitter, they can be modeled as cyclostationary (CS) processes. Several works on CS 

based signal detection were proposed in [15]–[17]. In [18] a detection algorithm exploiting the 

property of boosted pilot subcarriers in OFDM signals is proposed where a two-threshold 

decision procedure based on the constant spacing property of spectral correlation at different 

cyclic frequencies was used. Another multi-cycle detector based on the Fourier representation of 

the cyclic autocorrelation function has been proposed in [19], the authors employ the test 
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statistics as a ratio of two quadratic cyclic autocorrelation functions (CAF) exploiting the fact 

that the (CAF) is non-zero for some cyclic frequencies when an OFDM signal is present and zero 

otherwise because the noise is wide-sense stationary (WSS) with no correlation. In general, it is 

hard to detect OFDM signals using the general cyclostationary detection methods, which are 

robust to random noise at the cost of high computational complexity and long sensing times as 

the test statistics is computed for various values of the cyclic frequencies. To overcome such 

high computational complexities and long sensing times, we focus in this paper on spectrum 

sensing of OFDM signals by exploiting only the stationary part of the periodic autocorrelation 

function. This significantly simplifies the detector design and helps avoid the implementation of 

a large FFT operator as in [18] and [19]. Correlation based techniques are commonly used for 

hypothesis testing problem in various radar and communications applications. In wireless 

communications, it has been used in spread spectrum direct sequence code division multiple-

access DS-CDMA systems for the PN code synchronization [20] and [21], while in CRs, the 

design of detectors that utilize the built-in periodicity autocorrelation property of the CP-OFDM 

primary users have been derived in [22], [23], [24] and [25], and is also considered in this paper. 

Detection of OFDM signals in the region of low SNR is an important research problem and it has 

actually attracted significant attention [22]–[26]. In case of noise and signal powers are known, 

the optimal Neyman-Pearson (NP) spectrum sensing was derived and evaluated in [25]. The 

derived optimal NP detector needs a priori knowledge of the signal and noise power level to set 

the decision threshold, which unfortunately may not be available in practice. On the other hand, 

the ED does not require any a priori knowledge about the structure of detected signals or their 

parameters and it performs well if the noise power is perfectly known. However, even a small 

uncertainty in the noise power value causes severe performance degradation [27]. In addition, the 

spectrum sensing algorithm developed in [25] incorporates a non-declared synchronization 

mechanism, which result in more complexity and delay in the sensing task. These drawbacks of 

the above mentioned detectors motivated us to develop a fast and adaptive spectrum sensing 
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algorithm based on the generalized likelihood ratio test (GLRT). An adaptive Constant False 

Alarm Rate (CFAR) thresholding approach is used based on the estimation of the noise power as 

a function of second order cyclic statistics of recorded signals as shown in the following sections. 

This capability of adaption to noise fluctuations by maintaining a constant false alarm rate CFAR 

(CFARness) is a much desired property in many applications and especially when detecting 

signals in unknown and fluctuating noise power environments [28]–[30].  

In this paper, we investigate the performance of the proposed detector in terms of the 

probability of detection (𝑃𝑑) versus SNR for a given probability of false alarm (𝑃𝑓𝑎 ). In addition, 

we study the performance of the proposed detector compared to the classical energy detector, the 

sliding window detector [24] and Axell’s detector [25]. Numerical analysis shows that of the 

proposed detector is not only robust against varying noise or non-stationary interferences but 

also it achieves better detection performances than the existing detectors.  

The rest of the paper is organized as follows. Section II introduces the data model and the 

spectrum sensing problem formulation in OFDM-based cognitive radio systems. Section III 

provides a short description of existing algorithms. Section IV describes in detail the proposed 

spectrum sensing algorithm. Section V describes the results of our performance analysis. Finally, 

Section VI draws the main conclusions.  

2. OFDM spectrum sensing background 

The basic concept of dynamic spectrum access is to unlock the licensed spectrum to 

secondary users under the condition that the interferences caused to primary users are limited 

[31]. The secondary user senses the spectrum to detect the presence or absence of the primary 

user in the licensed spectrum before data transmission. In addition, when the primary user 

reclaims its band during second user data transmission, the secondary user must interrupt 

transmitting data and vacate the spectrum as fast as possible. We assume that the primary and 

secondary users operate in the time domain and that the secondary users have data symbols to 

transmit.  
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2.1. OFDM-based system model   

The primary user transmitter is modeled as an orthogonal frequency division multiplexing 

(OFDM) based system with 𝑁𝑑  subcarriers, an OFDM signal consists of a sum of subcarriers that 

are modulated using phase shift keying (PSK) or qudrature amplitude modulation (QAM). Then 

one OFDM symbol of 𝑁𝑑  duration can easily obtained by introducing 𝑁𝑑  complex symbols 

 𝑑𝑖  , 𝑖 = 0, …𝑁𝑑 − 1 to an 𝑁𝑑 -point inverse discrete Fourier transform (IDFT) efficiently 

implemented through the fast Fourier transform (FFT) algorithm. Assuming that the sampling 

factor is 1, the IDFT output can be written as 

                                                𝑠 𝑛 =  𝑑𝑖

𝑁𝑑−1

𝑖=0

𝑒𝑗2𝜋𝑛 ∗𝑖/𝑁𝑑              0 ≤  𝑛 ≤ 𝑁𝑑 − 1                         (1) 

where, 𝑛 is a discrete time index, 𝑁𝑑  denotes the number of samples in an OFDM data block, 

𝑖/𝑁𝑑  is the i-th subcarrier frequency and 𝑑𝑖  , 𝑖 = 0, …𝑁𝑑 − 1 is the PSK or QAM complex 

symbol modulating the 𝑖-th subcarrier. The IDFT data are then, converted to form a serial 

stream. Furthermore, to reduce the effect of ISI a guard time of length 𝑁𝑐  is introduced in every 

OFDM symbol. The OFDM transmitter copies the last 𝑁𝑐  samples at the front of each OFDM 

symbol forming the overhead called cyclic prefix CP. This yields a new sequence of duration 

 𝑁𝑠 = 𝑁𝑐 + 𝑁𝑑  samples, which can be expressed as 

                                    𝒔 =  𝑠 −𝑁𝑐  𝑠 −𝑁𝑐 + 1 ⋯ 𝑠 0  𝑠 1 ⋯ 𝑠 𝑁𝑑 − 1  𝑇                              (2) 

where 𝑇 denotes transpose. Usually an OFDM frame contains several such blocks. The entire 

endless serial stream is transmitted over the wireless channel to the receiver.  

Now denote by 𝜃 the time offset, i.e. the delay after which the secondary user receiver receives 

the first OFDM symbol. If we consider that the received signal contains 𝐾 OFDM symbols, we 

use an observation window of length 𝐿 samples 𝐿 = 𝐾(𝑁𝑑  +  𝑁𝑐) + 𝑁𝑑  as illustrated in Fig. 1. 

In an additive white Gaussian noise (AWGN) channel, the received signal at the secondary user 

can be written as  

                                     𝑦 𝑘 = 𝑠 𝑛 + 𝑛 𝑘 , 𝑘 = 0,1, ⋯ , 𝐾 𝑁𝑑 + 𝑁𝑐 + 𝑁𝑑 − 1.                 3  
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2.2. Spectrum sensing problem formulation  

Basically, the problem of spectrum sensing is to decide whether a transmitted signal is present or 

not, based on the received signal. That is, it can be formulated as a binary hypothesis testing 

problem, where we need to discriminate between the two hypotheses:  

                            
 𝐻1:  𝑦 𝑘 = 𝑠 𝑛 + 𝑛 𝑘 , 𝑘 = 0,1, ⋯ , 𝐾 𝑁𝑑 + 𝑁𝑐 + 𝑁𝑑 − 1

 𝐻0:  𝑦 𝑘 = 𝑛 𝑘 ,                       𝑘 = 0,1, ⋯ , 𝐾 𝑁𝑑 + 𝑁𝑐 + 𝑁𝑑 − 1.
                 (4) 

where 𝐻1 and 𝐻0 correspond to presence and absence of an OFDM signal respectively. The 

number of samples collected during a sensing interval is 𝐿 =  𝐾 𝑁𝑑 + 𝑁𝑐 + 𝑁𝑑 . In the proposed 

model, we have assumed an AWGN channel, i.e. the noise is complex white zero-mean Gaussian 

with variance 𝑛
2 . Under the assumption of a sufficiently large IFFT size and according to the 

central limit theory, the signal is also assumed complex white zero-mean Gaussian with 

variance 𝑠
2. In practice, sensing errors are inevitable due to additive noise, limited time 

observations, and the inherent randomness of the observed data. False alarms occur if an idle 

channel is detected as busy. On the other hand, missed detections occur when a busy channel is 

detected as idle. Consequently, a false alarm may lead to a potentially missed transmission 

opportunity for the secondary user, which results in a lower spectrum utilization. In addition, a 

missed detection could potentially lead to a collision with the primary user, leading to wasted 

transmissions for both PU and SU. Based on the above definitions of false alarms and missed 

detections, the performance of any spectrum sensing detector are characterized by two 

parameters, the probability of detection 𝑃𝑑 = 1 − 𝑃𝑚𝑑 = 𝑃(  𝐻1
 𝐻1  ), where 𝑃𝑚𝑑  is the 

Fig. 1.  OFDM signal structure with cyclic prefix CP. 

CP Data   CP  CP Data 

 
𝐿 

𝑁𝑐 𝑁𝑑  

1 2 3 𝐾 𝐾 + 1 

CP

CP 

Data  ⋯ 

Data 
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probability of missed detection and the probability of false alarm 𝑃𝑓𝑎 = 𝑃(  𝐻1
 𝐻0  ).  In addition, 

due to lack of information about the primary user activity, it is difficult to have a knowledge of 

the a priori probabilities 𝑃(𝐻0 ) and 𝑃 𝐻1  = 1 − 𝑃 𝐻0  . Therefore, the design of the optimal 

spectrum sensing detector is based on the Neyman-Pearson (NP) hypothesis test, which 

maximizes  𝑃𝑑  for a given  𝑃𝑓𝑎  [29]. 

3. Survey of the spectrum sensing algorithms 

The algorithms discussed in this section range from energy detectors to feature detectors. A 

common point to all the feature detectors discussed here is the exploitation of some known 

structure of the transmitted signal.  

3.1. Energy detector 

An energy detector (ED) simply measures the received energy during a finite time interval 

called sensing time, and compares the estimated energy to a predetermined threshold. The 

decision rule of the ED is given by [32] 

                                                            𝑇𝐸𝐷 =  𝑦 2 =   𝑦𝑖 
2

𝑁

𝑖=1

  

𝐻1
>
<
𝐻0

  𝜆𝐸𝐷                                               5  

where  𝑦𝑖  denotes the module of the measured signal 𝑦𝑖 , 𝑖 = 1,2, ⋯ , 𝑁, , which is given by  

                                                           𝑦𝑖   
2 =  𝑦𝑖

𝐼 2 +  𝑦𝑖
𝑄 2       𝑖 = 1,2, … , 𝑁.                              (6) 

 𝑦𝑖
𝐼 and 𝑦𝑖

𝑄  are the in-phase and quadrature phase components respectively, and  𝜆𝐸𝐷  is the 

threshold chosen to satisfy a desired 𝑃𝑓𝑎 . The ED is a universal detector in the sense that the 

decision on the presence of a PU is obtained by comparing the received signal energy with a 

threshold, but it does not differentiate the PU from other unknown signal sources. Besides its low 

computational complexity, the design of a good energy detector is a challenging task. In low 

signal-to-noise ratio (SNR) regimes and in the presence of noise uncertainty, it is not possible to 

detect the primary signal at SNR values lower than a given value called the ―SNR wall” even if 

the sensing time goes to infinity [27]. In addition, the detection threshold depends on the noise 

power, which may change over time and this may trigger false alarms frequently and/or a 
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low  𝑃𝑑 . All these issues motivated the search for a new SS technique that can exploit additional 

signal features along with a capacity of adapting the threshold to a varying noise environment 

which will be presented in Section IV. 

3.2. CP based sliding window detector  

The original sliding window (SW) detector used for sensing Digital Video Broadcasting 

Terrestrial (DVB-T) signals was proposed in [24]. It exploits the correlation property of OFDM 

signals. For only one ODFM symbol, a sliding window of size 𝑁𝑐  is used to compute the 

absolute value of the sum of the estimated autocorrelation over 𝑁𝑐 consecutive samples and then 

to take the maximum of the 𝑁𝑐 + 𝑁𝑑  obtained statistics corresponding to the possible values 

of 𝜃 by moving the window by one sample each time to obtain the decision rule given by  

                                        𝑇𝑆𝑊 = 𝑚𝑎𝑥
𝜃𝜖  0,…,𝑁𝑐+𝑁𝑑−1 

   𝑟 𝑗  

𝜃+𝑁𝑐−1

𝑗=𝜃

 
H1

   ≷   
H0

𝜆𝑆𝑊  ,                                        (7) 

where 𝑟 𝑗 = 𝑦𝑗  𝑦𝑗 +𝑁𝑑
 ,   ∙   is the modulo operator and 𝜃 is the time when the first sample is 

observed or equivalently the synchronization mismatch between the transmitter and the receiver. 

A generalization of this detector for the case of 𝐾 OFDM symbols using the whole signal and not 

one symbol only is obtained as [33]: 

                                        𝑇𝑆𝑊 = 𝑚𝑎𝑥
𝜃𝜖  0,…,𝑁𝑐+𝑁𝑑−1 

   𝑅 𝑗  

𝜃+𝑁𝑐−1

𝑗=𝜃

 
H1

   ≷   
H0

𝜆𝑆𝑊 ,                                        (8) 

where 𝑅 𝑗 =
1

𝐾
  𝑟 𝑗+𝑘 𝑁𝑑 +𝑁𝑐 

𝐾−1
𝑘=0 . However, the test statistic and the threshold of the detectors in 

(7) or (8) are affected by a scaling of the problem such as multiplying the received data by a 

constant. Hence the main drawback of these detectors is the knowledge of the noise variance 𝜎𝑛
2 

to set the decision threshold 𝜆𝑆𝑊 , which may not be available.   

3.3. Axell’s detector  

In [25], a (GLRT) based spectrum sensing for CR systems is proposed based on the second 

order statistics of the observed signals, when the signal power 𝜎𝑠
2, noise power 𝜎𝑛

2, and 
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synchronization mismatch 𝜃 are unknown. The proposed detector employs the following 

decision strategy:  

             𝑇𝐴𝑋 = 𝑚𝑎𝑥
𝜃𝜖  0,…,𝑁𝑐+𝑁𝑑−1 

  
   𝑅 𝑗  

2
 

𝑁𝑑 +𝑁𝑐−1
𝑗=0

  𝑅 𝑗 −
1

𝑁𝑐
 𝑅 𝑘𝑘∈𝐶𝑃  

2

𝑗∈𝐶𝑃 +    𝑅 𝑗  
2

𝑗∉𝐶𝑃

 
H1

   ≷   
H0

𝜆𝐺𝐿𝑅𝑇           (9) 

𝑅 𝑘  represents the real part of the correlation 𝑅 𝑘  over 𝐾 OFDM symbols, 𝐶𝑃 are the indices of the 

𝑁𝑐  consecutive correlated OFDM samples given 𝜃, while 𝑅 𝑘  is obtained by 

                                           𝑅 𝑗 =
1

𝐾
  𝑦𝑗 +𝑘𝑁𝑠

 𝑦∗
𝑗 +𝑘𝑁𝑠+𝑁𝑑

   ;  𝑗 = 0,1, … , 𝑁𝑠 − 1                       (10)

𝐾−1

𝑘=0

 

𝐾 is the number of OFDM symbols in the observation window. We observe, however, that 

unlike the energy detector the test statistic of Axell’s detector (Eqn. 9) has a CFAR property 

since it is not affected by the term containing the received data multiplied by a constant, and 

hence in this case the decision threshold can be set for a desired false alarm probability without 

knowledge of the noise power. 

4. A CS-based Spectrum Sensing Algorithm 

In this section, we derive a spectrum sensing algorithm by exploiting the cyclostationarity 

property of the OFDM signals by means of a GLRT approach. The GLRT is a likelihood ratio 

test where the unknown parameters are replaced by their maximum-likelihood (ML) estimates 

[29]. The test statistic is derived under the assumptions that: 

(i) The noise variance 𝜎𝑛
2 and signal variance 𝜎𝑠

2  are unknown. 

(ii) The receiver is not synchronized to the transmitter (𝜃 ≠ 0), that is the receiver does 

not know the starting point of each OFDM symbol as shown in Fig. 1.  

(iii) The parameters 𝑁𝑑  and 𝑁𝑐  are known. This is a reasonable assumption about the 

PU waveforms since this is specified by the standards and can therefore be assumed 

to be known to the detector. 
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(iv) At the receiver, we have 𝐾  observed consecutive OFDM symbols out of the stream 

of OFDM modulated data, so that the received signal contains  

𝐿 =  𝐾 𝑁𝑑 + 𝑁𝑐 + 𝑁𝑑  samples.  

We define the sample value products 𝑟𝑛  of two samples of the received signal 𝑦𝑛  and 𝑦𝑛+𝑁𝑑
 with 

distance 𝑁𝑑  over the observation window of length 𝐿 as  

                                              𝑟 𝑛 = 𝑦𝑛  𝑦𝑛+𝑁𝑑
,     𝑛 = 0, … , 𝐾 𝑁𝑑 + 𝑁𝑐 − 1                                  (11) 

Exploiting the periodicity of the autocorrelation function in the case of OFDM signals that is due 

to the presence of the cyclic prefix (CP) in the data. This period is equal to one OFDM symbol of 

length 𝑁𝑠 = 𝑁𝑐 + 𝑁𝑑 . Assuming that the OFDM symbols are independent and averaging the 

second order statistics of (11) over 𝐾 multiple OFDM symbols, we obtain the measure of the 

correlation between two samples with distance 𝑁𝑑  during one period defined by 

                                                       𝑅 𝑖 =
1

𝐾
  𝑟 𝑖+𝑘 𝑁𝑑 +𝑁𝑐 ,   𝑖 = 0, … , 𝑁𝑑 + 𝑁𝑐 − 1

𝐾−1

𝑘=0

                       (12) 

In the binary hypothesis detection problem considered, all the values 𝑅 𝑖  under 𝐻0 are identically 

distributed since the received signal consists of noise only without CP, while under 𝐻1 and due 

to the repeated data caused by the insertion of the CP with length 𝑁𝑐  there will be 𝑁𝑐  values of 

𝑅 𝑖  with high correlation starting at the value   and the other 𝑁𝑑  values have negligible 

correlation.  In Fig. 2, we illustrate this property in the presence of an OFDM signal with 

𝑁𝑑 = 32 (IFFT block size), cyclic prefix  𝑁𝑐 = 𝑁𝑑 4 = 8,  number of OFDM symbols is 

𝐾 = 500 and the first OFDM symbol is assumed to be received at some instant, say  = 19. 

The eight samples corresponding to the CP region of any OFDM symbol exhibit stronger 

correlation values than the others. Hence, when an OFDM signal is present the autocorrelation 

function has peak values at the time instants corresponding to the CP region. On the other hand, 

noise or signals without this property of cyclic-correlation induced by CP are uncorrelated and 

the correlation values will be small. 
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Based on this observation, we propose a detector that is able to distinguish an OFDM signal from 

noise, taking into consideration the practical difficulty that the detector does not know the 

starting point of an OFDM symbol  , the signal power 𝜎𝑠
2 and the noise power 𝜎𝑛

2. 

We define the correlation vector 𝑹 =  𝑅 0 𝑅 1 ⋯ 𝑅 𝑁𝑑 +𝑁𝑐−1  
𝑇
and calculate the natural 

logarithm of the likelihood ratio (LLR): 

         Λg 𝐑  = 𝑙𝑛  

𝑚𝑎𝑥
𝜃,𝜎𝑛

2 ,𝜎𝑠
2
𝑓𝑹 𝐻1  𝑹 𝐻1 , 𝜃, 𝜎𝑛

2 , 𝜎𝑠
2 

𝑚𝑎𝑥
𝜎𝑛

2
𝑓𝑹 𝐻0  𝑹 𝐻0 , 𝜎𝑛

2 
 = 𝑚𝑎𝑥

𝜃
 𝑙𝑛  

𝑓𝑹 𝐻1  𝑹 𝐻1 , 𝜃, 𝜎𝑛
2 , 𝜎𝑠

2  

𝑓𝑹 𝐻0  𝑹 𝐻0 , 𝜎𝑛
2  

 
H1

≷
H0

    (13) 

where 𝑙𝑛 ∙  denotes the natural logarithm, 𝛼  is the ML estimate of the parameter 𝛼 and  is the 

decision threshold. For simplicity, we assume that 𝑅 𝑖  are independent, so that the probability 

density functions (pdf’s) of (13) can be written as 

                         𝑓𝑹 𝐻𝑖  𝑹 𝐻𝑖 , 𝜃, 𝜎𝑛
2, 𝜎𝑠

2 =  𝑓𝑅 𝑘 𝐻𝑖  𝑅 𝑘 𝐻𝑖 , 𝜃, 𝜎𝑛
2, 𝜎𝑠

2 ,    𝑖 = 0,1.       (14)

𝑁𝑑 +𝑁𝑐−1

𝑘=0

 

Since 𝑅 𝑘 , 𝑘 = 0,1, … , 𝑁𝑑 + 𝑁𝑐 − 1, are complex random variables, they can be defined as the 

sum of two real random variables (RV’s) 𝑅 𝑘  and 𝑅  𝑘 , i.e., 𝑅 𝑘 = 𝑅 𝑘 + 𝑗𝑅  𝑘   as in [25], then we 

have 
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Fig. 2.  Example of the autocorrelation function of the received OFDM signal with CP. 
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                                         𝑅 𝑘 =
1

𝐾
  𝑟 𝑘+𝑙 𝑁𝑑 +𝑁𝑐 ,   𝑘 = 0, … , 𝑁𝑑 + 𝑁𝑐 − 1

𝐾−1

𝑙=0

                              (15) 

and 

                                        𝑅  𝑘 =
1

𝐾
  𝑟  𝑘+𝑙 𝑁𝑑 +𝑁𝑐 ,   𝑘 = 0, … , 𝑁𝑑 + 𝑁𝑐 − 1

𝐾−1

𝑙=0

                               (16) 

The conditional pdf’s given in (14) can be rewritten using (15) and (16) as follows: 

            𝑓𝑹 𝐻𝑖  𝑹 𝐻𝑖 , 𝜃, 𝜎𝑛
2 , 𝜎𝑠

2 =  𝑓
𝑅 𝑘 ,𝑅  𝑘 𝐻𝑖 

 𝑅 𝑘 , 𝑅  𝑘 𝐻𝑖 , 𝜃, 𝜎𝑛
2, 𝜎𝑠

2 ,    𝑖 = 0,1.       (17)

𝑁𝑑 +𝑁𝑐−1

k=0

 

Hence, we need to determine the joint pdf’s of 𝑅 𝑘  and 𝑅  𝑘  under the hypotheses 𝐻0 and 𝐻1.  

4.1. Distribution of 𝑅 𝑖  and 𝑅  𝑖  under hypotheses 𝐻0 and 𝐻1 

In CR systems, the sensing time defined in many wireless standards is usually at the level 

of hundreds of milliseconds, which corresponds to an observation window with hundreds to 

thousands of OFDM symbols. Under these conditions 𝑅 𝑘  and 𝑅  𝑘  can be assumed to be a 

Gaussian distributed random variables based on the central limit theory. Moreover, we use the 

Gaussian approximation to model the complex random variables 𝑅 𝑖 , 𝑖 = 0,1, … , 𝑁𝑑 + 𝑁𝑐 − 1, 

(see [22], [23], and [25]) to derive a closed form expression of the log-likelihood ratio test. In 

addition, the detection of OFDM signals is more crucial at low-SNR (𝜎𝑛
2 >> 𝜎𝑠

2) and hence we 

use a low-SNR approximation to simplify the computation of the ML estimates. In low-SNR 

regime, 𝑅 𝑘  and 𝑅  𝑘  are uncorrelated Gaussian RV’s [25]. Hence, the pdf’s of  𝑅 𝑘  and 𝑅  𝑘  under 

hypothesis  𝐻0 are given by  

                            𝑓
𝑅 𝑘 𝐻0 

 𝑅 𝑘 𝐻0  =
1

 2𝜋𝜎0

exp  −
(𝑅 𝑘)2

2𝜎0
2  ,    𝑘 = 0, 1, ⋯ , 𝑁𝑑 + 𝑁𝑐 − 1    (18) 

and  

                           𝑓𝑅  𝑘 𝐻0  𝑅  𝑘 𝐻0  =
1

 2𝜋𝜎0

exp  −
(𝑅  𝑘)2

2𝜎0
2  ,    𝑘 = 0,1, ⋯ , 𝑁𝑑 + 𝑁𝑐 − 1      (19) 

where 𝜎0
2 = 𝜎𝑛

4 2𝐾 , 𝜎𝑛
2 is the noise power and 𝐾 is the number of OFDM symbols. Under 

hypothesis 𝐻1, we have two possible cases. In the first one, an OFDM signal is present and the 
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signal samples are equal, i.e. 𝑘 falls in the CP region as shown in Fig. 2. In this case the pdf’s of  

𝑅 𝑘  are given by  

                                𝑓
𝑅 𝑘 𝐻1 

 𝑅 𝑘 𝐻1  =
1

 2𝜋𝜎0

exp  −
(𝑅 𝑘 − 𝜎𝑠

2)2

2𝜎0
2  ,        𝑘 ∈ 𝐶𝑃 𝑟𝑒𝑔𝑖𝑜𝑛    (20) 

where 𝜎𝑠
2 is the power of the received signal. In the second case, an OFDM signal is present but 

𝑘 is not in the CP region and the resulting pdf’s of 𝑅 𝑘  are given by 

                                    𝑓
𝑅 𝑘 𝐻1 

 𝑅 𝑘 𝐻1  =
1

 2𝜋𝜎0

exp  −
(𝑅 𝑘)2

2𝜎0
2  ,      𝑘 ∉ 𝐶𝑃 𝑟𝑒𝑔𝑖𝑜𝑛            (21) 

We note that the pdf’s of 𝑅  𝑘  under hypothesis 𝐻1 are independent of 𝑘 and are given by 

                            𝑓𝑅  𝑘 𝐻1  𝑅  𝑘 𝐻1  =
1

 2𝜋𝜎0

exp  −
(𝑅  𝑘)2

2𝜎0
2  ,    𝑘 = 0, 1, ⋯ , 𝑁𝑑 + 𝑁𝑐 − 1    (22) 

From (19) and (22) we observe that the random variables 𝑅  𝑘  have the same probability 

density function for 𝑘 = 0, 1, ⋯ , 𝑁𝑑 + 𝑁𝑐 − 1 and do not depend on which hypothesis is true. 

Only R k  for k = 0, 1, ⋯ , 𝑁𝑑 + 𝑁𝑐 − 1 depend on the hypothesis 𝐻1 and  𝐻0. That is the 

imaginary part of the correlation  𝑅  𝑘  is not a discriminating function which leads to a ―nice‖ 

simplification of the ratio test as will be shown in the next section. An intuitive interpretation of 

the obtained result is as follows. Since the imaginary part of the correlation  R  k  is a measure of 

the cross-correlation between the in-phase and quadrature phase components of the received 

signal which are independent and identically distributed, using the central limit theorem and in 

particular in the low SNR region considered in the paper, this cross-correlation will have the 

same distribution (mean zero and same variance) under both hypotheses 𝐻0 and 𝐻1. This is a 

direct result of the independence of the quadrature components of the signal and thus the cross-

correlation is not a discriminating function. 

4.2. CS-based sensing detector  

Since 𝑅 𝑘  and 𝑅  𝑘  are uncorrelated Gaussian RV’s [25], the joint pdf of 𝑹  in (17) becomes  
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 𝑓𝑹 𝐻𝑖  𝑹 𝐻𝑖 , 𝜃, 𝜎𝑛
2 , 𝜎𝑠

2 = 

                                   𝑓
𝑅 𝑘 𝐻𝑖 

 𝑅 𝑘 𝐻𝑖 , 𝜃, 𝜎𝑛
2 , 𝜎𝑠

2 𝑓𝑅  𝑘 𝐻𝑖  𝑅  𝑘 𝐻𝑖 , 𝜃, 𝜎𝑛
2, 𝜎𝑠

2 ,   𝑖 = 0,1.   (23)

𝑁𝑑 +𝑁𝑐−1

𝑘=0

 

Substituting (23) in (13), the LLRT we get: 

    Λg 𝐑  = 𝑚𝑎𝑥
𝜃

𝑙𝑛  
 𝑓

𝑅 𝑘 𝐻1 
 𝑅 𝑘 𝐻1 , 𝜃, 𝜎𝑛

2 , 𝜎𝑠
2   𝑓

𝑅  𝑘 𝐻1 
 𝑅  𝑘 𝐻1 , 𝜃, 𝜎𝑛

2 , 𝜎𝑠
2  

𝑁𝑑 +𝑁𝑐−1
𝑘=0   

𝑁𝑑+𝑁𝑐−1
𝑘=0

 𝑓
𝑅 𝑘 𝐻0 

 𝑅 𝑘 𝐻0 , 𝜎𝑛
2   𝑓

𝑅  𝑘 𝐻0 
 𝑅  𝑘 𝐻0 , 𝜎𝑛

2   
𝑁𝑑 +𝑁𝑐−1
𝑘=0  

𝑁𝑑 +𝑁𝑐−1
𝑘=0

          

                                                          = 𝑚𝑎𝑥
𝜃

 𝑙𝑛  
 𝑓

𝑅 𝑘 𝐻1 
 𝑅 𝑘 𝐻1 , 𝜃, 𝜎𝑛

2 , 𝜎𝑠
2    

𝑁𝑑 +𝑁𝑐−1
𝑘=0

 𝑓
𝑅 𝑘 𝐻0 

 𝑅 𝑘 𝐻0 , 𝜎𝑛
2   

𝑁𝑑 +𝑁𝑐−1
𝑘=0

 
H1

≷   
H0

    (24) 

From (24), we observe that the test static depends only of the real part 𝑅 𝑘  of the complex RV’s 

 𝑅 𝑘 , whereas the imaginary part doesn’t contribute or add any information in obtaining the 

sufficient statistic, unlike the decision rule obtained in [25], which was dependent on both the 

real and imaginary parts. This is because the imaginary parts of 𝑅 𝑘  have the same distributions 

under both hypotheses. Fig. 3 illustrates nicely the fact that only the real parts  𝑅 𝑘  have a 

distribution that depends on 𝑘 and the imaginary parts distribution of  𝑅 𝑘  are independent on k. 

 

0 50 100 150 200 250 300 350 400
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

k

c
o

rr
e

la
ti
o

n
 v

a
lu

e
 

N
c
=80, N

d
=320 and SNR= - 6 dB.

 

 

: Real ( R
k
 )

: Imag ( R
k
 )

Fig. 3.  Real and imaginary parts of the correlation function of an OFDM signal. 
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Substituting (18), (20), and (21) in (23) we obtain the pdf’s of the real part 𝑅 𝑘  under both 

hypotheses 𝐻0 and 𝐻1 as  

 𝑓
𝑅 𝑘 𝐻0 

 𝑅 𝑘 𝐻0 , 𝜎𝑛
2 =  

1

  2𝜋𝜎0 
𝑁𝑑 +𝑁𝑐

exp  −
1

2𝜎0
2  (𝑅 𝑘)2

𝑁𝑑 +𝑁𝑐−1

𝑘=0

 

𝑁𝑑 +𝑁𝑐−1

𝑘=0

           (25) 

and 

            𝑓
𝑅 𝑘 𝐻1 

 𝑅 𝑘 𝐻1 , 𝜃, 𝜎𝑛
2, 𝜎𝑠

2 =                                                                                           

𝑁𝑑 +𝑁𝑐−1

𝑘=0

 

                                                      
1

  2𝜋𝜎0 
𝑁𝑑+𝑁𝑐

exp  −
 (𝑅 𝑘 − σs

2)2
𝑘∈𝐶𝑃 +  (𝑅 𝑙)

2
𝑙∉𝐶𝑃

2𝜎0
2      (26) 

It is easy to show that the ML estimate of the signal variance 𝜎𝑠
2 is     

                                                                    𝜎𝑠
2 =

1

𝑁𝑐
 𝑅 𝑘                                                                 (27)

𝑘∈𝐶𝑃

 

For the estimation of 𝜎0
2, we consider only the 𝑁𝑑  random variables 𝑅 𝑘  that do not lie in the CP 

region, and thus the ML estimate of  σ0
2 under the two test hypothesis signal absent (H0) and 

signal present (H1) respectively are the same given by  

                                                   𝜎0
2 𝐻0 = 𝜎0

2 𝐻1 =  
1

𝑁𝑑
 (𝑅 𝑘)2                                           (28

𝑁𝑑 +𝑁𝑐−1

𝑘=0
𝑘∉𝐶𝑃

) 

We observe also that the choice of taking 𝑁𝑑  samples (i.e. data outside the CP) to estimate 𝜎0
2 is 

really judicious because with having the same estimate of 𝜎0
2   for the 𝑁𝑑  samples resulted in a 

much simple decision rule as given in (28). Substituting for the estimated values of 𝜎0
2 and 𝜎𝑠

2 in 

(25) and (26) and after some mathematical manipulations we get the following decision rule:  

                                  Λg 𝑹 
  = 𝑚𝑎𝑥

𝜃𝜖 0,…,𝑁𝑐+𝑁𝑑−1 
  𝑅 𝑘

𝑘∈𝐶𝑃

 

2 H1

   ≷   
H0

  𝜎0
2                                         (29) 

The interpretation of (29) says that a synchronization process is implicitly incorporated in the 

detection algorithm and the maximum correlation is obtained when perfect synchronization 
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occurs. To override the need of (implicit) synchronization, we can order the  𝑅 𝑘’s in an 

ascending order and take only the 𝑁𝑐  largest samples as follows: 

                                               Λg 𝑹 
  =     𝑅  𝑜𝑠,𝑗

𝑁𝑑 +𝑁𝑐−1

𝑗 =𝑁𝑑

 

2
H1

   ≷   
H0

  𝜎0
2                                             (30) 

The obtained test statistic Λg 𝑹 
   and the threshold  𝜎0

2   are unaffected by a scaling of the 

problem such as multiplying the received data by a constant, then the detector has a CFAR 

property where the threshold can be set for a desired 𝑃𝑓𝑎  without knowledge of 𝜎𝑛
2. This is easily 

shown by normalizing the received data  𝑦𝑛  in (4) by 𝜎𝑛  to obtain 𝑥𝑛 = 𝑦𝑛/𝜎𝑛  .  Exploiting the 

fact that 𝑦𝑛  are Gaussian with mean zero and variance 𝜎𝑛
2 we obtain the probability density 

function of 𝑥𝑛  as  𝑓𝑋𝑛 𝐻0  𝑥𝑛/𝐻0 = 1  2𝜋 exp −𝑥𝑛
2 2   which are independent of the noise 

power 𝜎𝑛
2 under 𝐻0 in the case of receiving just noise.  Replacing 𝑦𝑛  by 𝑥𝑛  in the decision rule 

given by (29) the parameter 𝜎𝑛
4 simplified from both sides of (29) and the probability of false 

alarm  𝑃𝑓𝑎   becomes equal to Prob   𝛬𝑔 𝑅   >  𝜎0
2 /𝐻0  which is independent of the noise 

power and thus the detector has the desired CFAR property since the threshold can be set from 

the design 𝑃𝑓𝑎  without knowledge of 𝜎𝑛
2 as just mentioned above. We observe also that the test 

obtained is more computationally efficient than the one in (29), since it does not require any 

information about the timing synchronization parameter 𝜃. This results in a reduced sensing 

time, obtained after removing the serial search process implemented as a sliding window.  This 

represents an interesting property especially for real time implementation of the algorithm. To 

validate the proposed ranking procedure, we compare the decision statistic of (30) with that of 

(29), which is implemented as a sliding window.  

In the simulations, we chose the number of subcarriers 𝑁𝑑 = 32, the CP length  𝑁𝑐 = 𝑁𝑑 4 = 8,  

the number of OFDM symbols 𝐾 = 500 , and the first OFDM symbol received at an instant  =

19. We observe from Fig. 4 that the decision statistics are very close to each other for 𝑆𝑁𝑅𝑠  

higher than −15 𝑑𝐵.  
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Fig. 4.  Comparison of the test statistics in (29) and (30) as a function of the SNR. 

 

The proposed algorithm for the detection of OFDM signals can be summarized as follows: 

(i) Using the observed samples during a window with length of 𝐾 OFDM symbols, we 

compute 𝑁𝑐 + 𝑁𝑑  values of the real part of the autocorrelation function at time lag  𝑁𝑑 . 

We call these values correlation bins, which correspond to one period of the 

autocorrelation function defined in (15), this terminology is widely used in radar 

nomenclature.  

(ii) The output of the correlator representing the correlation bins are sent serially into a 

shift register of length 𝑁𝑐 + 𝑁𝑑 . 

(iii)  The 𝑁𝑐 + 𝑁𝑑  cells are ranked in an ascending order according to their magnitude and a 

test statistic is formed from the upper bound values of  𝑅 𝑘 , while the other lower values 

are used to form an estimate of the background noise level 𝜎0
2 . This estimate is then 

multiplied by a constant  called threshold multiplier, which is selected so that to 

achieve a desired false alarm probability 𝑃𝑓𝑎 . 

(iv) Finally, we compare the computed sufficient statistic Λg 𝑹 
    given by (30) with the 

obtained threshold   𝜎0
2  in order to make a decision about the presence or absence of 

an OFDM signal, as shown in Fig. 5.  
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The proposed test in [25] is more computationally heavy than the proposed one. Since in [25], 

we first need to compute the empirical averages 𝑅𝑖  and then compute the LRT for each 

synchronization mismatch value  , 0 ≤   < 𝑁𝑐 + 𝑁𝑑 , and after that we take the maximum as 

the test statistic. Recall that in the proposed spectrum sensing detector the prior information 

about the synchronization parameter   is not necessary, since the decision is reliably made in 

one scan instead of (𝑁𝑐 + 𝑁𝑑) scans. This results in a significant decrease in the sensing time 

theoretically by a factor of (𝑁𝑐 + 𝑁𝑑). This is a very interesting property when the primary user 

becomes active and reclaims its band, since in such a case a small reaction time is necessary to 

reduce the disturbance caused to the primary user when it began to transmit. 

5. Simulation results 

In this section, we investigate by Monte-Carlo simulation the performance of the proposed 

CS-based GLRT detector in terms of 𝑃𝑑  versus 𝑆𝑁𝑅 of the primary user. To this end, we first 

Fig. 5.  Proposed CFAR spectrum-sensing algorithm for OFDM signal detection. 
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discuss how the prior information about the noise power (i.e. the noise power uncertainty) affects 

the performance of the energy detector spectrum sensing algorithm. It is worth noting that it 

provides an upper bound for the spectrum sensing detection performance over the other detectors 

when the receiver knows the noise power and it is near optimal as shown in [25]. Then, we 

compare the performance of the proposed CS-based GLRT detector to the energy detector (ED), 

the sliding window (SW) detector and Axell detector (Ax) for some realistic scenarios. The 

wireless channel is assumed to be an additive white Gaussian noise (AWGN) channel. For each 

secondary user, the sensing period is assumed to contain 𝐾 OFDM blocks such that 𝐿 = 𝐾 (𝑁𝑑 +

  𝑁𝑐) + 𝑁𝑑  samples are used in each sensing algorithm.  In all simulations, the transmitter sends 

an OFDM signal modulated with 16-QAM with 𝑁𝑑  subcarriers and a CP length of 𝑁𝑐 , and the 

results are averaged over 1000 realizations.  

The 𝑃𝑑  versus 𝑆𝑁𝑅1 of the proposed detector is evaluated while keeping constant 𝑃𝑓𝑎 . A design 

probability of false alarm 𝑃𝑓𝑎 =0.05 is used to find the threshold multiplier 𝜂 . Since we are 

interested by the low 𝑆𝑁𝑅 region, it is necessary to sense the primary user signal around the cell 

boundaries where the 𝑆𝑁𝑅 of the primary user is low, so it is varied from −25 dB to 0 dB. The 

threshold multiplier was determined numerically because we could not obtain a closed form 

expression for the  𝑃𝑓𝑎 . In Fig. 6, we present the performance of the ED spectrum sensing 

algorithm with known noise power 𝜎𝑛
2 in the case of noise uncertainty (NU). The presence of 

thermal noise and noise due to transmissions by other users make the knowledge about the noise 

power impossible. Noise uncertainty is always present and there is at least about 1 − 2 𝑑𝐵 in a 

real environment [27]. In the simulations, ―𝐸𝐷 −  𝑑𝐵 ‖ indicates that the energy detection has 

 𝑑𝐵 of noise uncertainty.  

                                            
1
 The SNR in dB is defined as 10 𝑙𝑜𝑔10 𝜎𝑠

2 𝜎𝑛
2  . 
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Fig. 6.  Probability of detection versus SNR of the energy detector 

with and without noise power uncertainty. 

 

In theory, the degradation in the detection performance due to reduced 𝑆𝑁𝑅 can be 

countered by increasing the detection time, as shown in Fig. 6, but unfortunately in practice there 

is a limit referred to as ―𝑆𝑁𝑅 wall‖ below which the primary OFDM signal cannot be detected 

reliably, no matter how long the sensing time is. In fact, increasing the observation window does 

not add any significant improvement to the detection performance in the region of very low 𝑆𝑁𝑅. 

Hence, noise uncertainty imposes fundamental limitations on the detection performance of the 

energy detector. The existence of such limit has been also verified experimentally in [34]. On the 

other hand, cognitive radio systems do need detectors that perform well in low 𝑆𝑁𝑅 region, in 

order to avoid any interference to the primary users. To this end, we developed a detector that 

exploits the inherent characteristics of the primary signal to improve system performance. 

In the second scenario, we analyze the performance of the proposed detector varying the 

sensing time. Sensing time (or detection time) has an important role in determining the 

performance and energy consumption of the detector. In order to obtain reliable information 

about the impact of the observation window length 𝐿 = 𝐾(𝑁𝑐 + 𝑁𝑑) + 𝑁𝑑  on the performance, 
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we present in Fig. 7 the detection probability with different size of the observation window or 

equivalently with different values of  𝐾 as a function of the 𝑆𝑁𝑅.  The size of the IFFT is set to 

32 and thus 𝑁𝑑 = 32, the cyclic prefix CP is 𝑁𝑐 = 𝑁𝑑 4 = 8, representing 25 % of the symbol 

duration before introducing CP, and 𝐾 is changed from 200 to 800. We observe that the detector 

sensitivity improves as the number of OFDM symbols increases; in other words, longer detection 

time implies better the detection performance. We note that a compromise has to be made 

between the detection performance and the sensing time, since the opportunistic transmission 

must be interrupted quickly when the primary user needs to use its frequency band. In addition, 

the detection time has direct impact on power consumption, especially when the amount of data 

that needs to be processed is high. Therefore, the detection time is an important factor to be taken 

into account to optimize the detection performance and the power consumption of the algorithm. 

 

Fig. 7.  Probability of detection versus SNR of the proposed detector  

for different detection time. 

 

A comparison of the detection performance of the state of the art detectors described in 

Sect. III is provided in Fig. 8. The performance of the ED that knows 𝜎𝑛
2 are also plotted as a 

benchmark of the detection performance. No detection performance improvement can be 
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achieved over this clairvoyant ED [25]. From the obtained results, we also observe that the 

proposed detector outperforms Axell’s detector. For example, in the IEEE 802.22 WRAN 

standard, a primary user DVB-T signal must be detected by a secondary user with 𝑃𝑑  > 0.9 [35]. 

For 𝑃𝑑 = 0.9, the performance improvement is on the order of  0.84 𝑑𝐵. The SW detector is 

shown to perform better than the proposed scheme, but the SW detector requires knowledge of 

the exact value of the noise power 𝜎𝑛
2 , and thus its performance is strongly affected by the noise 

uncertainty, as will be shown in the following.  

From Fig. 8, we observe that when the number of OFDM symbols increases, the detection 

performance of the proposed detector approaches to that of the SW detector, which assumes 

exact knowledge of 𝜎𝑛
2, i.e. if the number of received OFDM symbols 𝐾 → ∞, these two 

detectors have the same performance. We also note that considering 𝐾 = 400 in the proposed 

sensing algorithm yields the same performance as Axell’s detector with 𝐾 = 500.   

 

Fig. 8.  Probability of detection versus SNR for various sensing algorithms. 

 

In practice, the noise power is never perfectly known. Moreover, in the presence of interference, 

which could come from other secondary users or is caused by another operating electronic device 

in the vicinity, the resulting total noise power 𝜎𝑛
2 is not known or is time varying. In the 
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simulations presented in Fig. 9, we evaluate the impact of such situation on the detector 

performance by considering a 2 𝑑𝐵 of noise uncertainty (i.e. the noise power deviate 2 dB from 

the true value). We observe that the proposed detector is not only robust but it is also able to 

adapt to the radio channel conditions. We also note that Axell’s detector is robust against the 

noise power variation. On the other hand, the probability of detection of the ED is seriously 

degraded by a small noise uncertainty while the sliding window detector seems to be less 

sensitive. In conclusion, we see that the proposed detector is an adaptive threshold detector that 

outperforms all the other detectors considered in the presence of a small noise uncertainty.    

 

Fig. 9.  Probability of detection versus SNR for various sensing algorithms  

with 2dB of noise uncertainty. 

 

We also investigated the effect of cyclic prefix (CP) length 𝑁𝑐  and of the number 𝑁𝑑  of 

subcarriers on the detection performance of the proposed detector. The primary signal is an 

OFDM based signal and, in order to maintain the same observation window length, we choose a 

sensing time corresponding to 20,000 OFDM signal samples, the CP length 𝑁𝑐  is varied from 1 

to the maximum value 𝑁𝑑 , and 𝑁𝑑  takes values from 16 to 128. We get from Fig. 10 that the CP 

length plays a relevant role on the performance. Moreover, increasing 𝑁𝑐  the performance of the 
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detector improves considerably, due to the stronger values of the correlation in the redundant 

data of the cyclic prefix. The best performance is obtained when 𝑁𝑐 = 𝑁𝑑 , i.e. when the cyclic 

prefix has the same length as the data length.  This case is however not realistic, but it provides 

an idea of how much the CP length of the OFDM signals can improve the detection performance 

when then noise power is unknown relative to that of the energy detector ED-0dB when the noise 

power is perfectly known. In reality, just only little set of values for 𝑁𝑐  are used, for exemple 

DVB-T standard 𝑁𝑐  has only four values.   

 

Fig. 10.  Probability of detection versus SNR of the proposed detector for different 

          values of the cyclic prefix CP, with a sensing time of 20,000 samples. 

 

 

In Fig. 11, we plot the detection performance of the CS-based GLRT detector for different values 

of the number 𝑁𝑑   of subcarriers. We observe that the larger  𝑁𝑑  is and the worse the 

performance of the detector are. The interpretation of the obtained result is increasing  𝑁𝑑  for a 

given  𝑁𝑐  is equivalent to decreasing  𝑁𝑐  for a given  𝑁𝑑  (less correlated samples in CP region as 

shown in figure 2) which reduces the probability of detection. On the contrary, the larger 𝑁𝑐  is 

and the better the performance are. These two observations about 𝑁𝑐  and  𝑁𝑑  suggest that the 

detection performance could be dependent only on the ratio  𝑁𝑐 𝑁𝑑 .  
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Fig. 11.  Probability of detection versus SNR of the proposed detector 

       for different time delay 𝑵𝒅 and a detection time of 20,000 samples. 

 

To validate this hypothesis, we plot in Fig. 12 the detection performance for three different 

wireless standards, the WLAN, DVB-T2 and LTE based on different CP lengths. The standards 

are summarized as [36]:  

 WLAN: 𝑁𝑑 = 52, 𝑁𝑐 = 13, number of OFDM symbols 𝐾 = 462 thus an observation 

window length 𝐿 =  462  𝑁𝑑  + 𝑁𝑐  and (𝑁𝑐 𝑁𝑑 = 1/4), 

 

 DVB-T2 1k mode: 𝑁𝑑 = 1024, 𝑁𝑐 = 128, number of OFDM symbols  𝐾 = 26 and 

observation window length 𝐿 = 26 𝑁𝑑  + 𝑁𝑐  and  (𝑁𝑐 𝑁𝑑 = 1/8), 

 

 LTE: 𝑁𝑑 = 512, 𝑁𝑐 = 36, number of OFDM symbols 𝐾 = 55 and observation 

window length 𝐿 =  55 𝑁𝑑  +  𝑁𝑐  and  (𝑁𝑐 𝑁𝑑 = 0.07). 

 

We have considered the same detection time corresponding to 30,000 samples of OFDM signal 

with the corresponding parameters 𝑁𝑐  and  𝑁𝑑  as shown above. We observe an enhancement of 

the detection performance when the ratio 𝑁𝑐/𝑁𝑑  for the corresponding OFDM based wireless 

standard increases, which confirms the aforementioned conclusion.  
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Fig. 12.  Probability of detection versus SNR of the proposed detector, for 

three wireless standards; observation window size = 30,000 OFDM samples. 
 

6. Conclusions 

In this paper, we have proposed a new fast spectrum sensing algorithm for the detection of 

unsynchronized OFDM signals embedded in additive white Gaussian noise. A CS-based 

spectrum sensing algorithm was derived that is computationally efficient by exploiting the data 

cyclostationarity, i.e. the periodicity of the data autocorrelation function, induced by the presence 

of the cyclic prefix CP in the data. The algorithm makes use of a sample estimate of the noise 

power to set an adaptive threshold, in order to maintain constant probability of false alarm in the 

presence of background noise fluctuations, due to varying thermal noise or interferences from 

other users.  

The performance of the proposed detector were investigated by Monte Carlo simulation 

using OFDM signals under various test scenarios, and compared to those of the energy detector, 

the sliding window detector, and Axell’s detector. The obtained results show an improvement in 

detection performance at low SNR, a significant reduction in complexity and a short sensing 

time of the proposed algorithm. This last property is of great interest for the implementation of 

the algorithm in cognitive radio systems. Moreover, contrary to the energy detector, the proposed 
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algorithm is robust against noise fluctuation and is superior to the method proposed in [25]. To 

conclude, we expect that the proposed spectrum sensing scheme can be considered as good 

candidate for practical implementation of OFDM-based cognitive radio systems attempting to 

improve the efficiency of radio spectrum usage especially in time varying background noise. 
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