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Radar network topology optimization for joint target
position and velocity estimation

Inna Ivashkoa,∗, Geert Leusa, Alexander Yarovoya

aDelft University of Technology, 2628 CD Delft, The Netherlands

Abstract

In this paper, we tackle the problem of selecting the radar node positions to

provide an estimate of the target state vector with a prescribed accuracy. The

topology optimization problem is formulated as selection of a fixed number of

radar node positions from a set of available ones, where the radar observations

are modeled by a general non-linear model. We further propose a topology

optimization framework for the simultaneous estimation of the multi-modal pa-

rameter vector. In particular, the task of joint position and velocity estimation

is considered. The feasibility of the proposed approach is demonstrated for sev-

eral cost functions, namely, the frame potential, as well as the log-determinant

and maximum eigenvalue of the error covariance matrix.

Keywords: radar network, topology optimization, greedy optimization, frame

potential, log-determinant.

1. Introduction

In recent years the radar sensor application area experiences a booming

growth. Radar sensors, which are becoming much smaller and cheaper due to

advances in microwave technology, are widely used for different applications

that require 24/7 area monitoring, such as ground/air traffic control, environ-5

ment monitoring (precipitation, temperature, pollution), patient monitoring, to
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list a few [1], [2], [3]. The replacement of a single complex radar with a net-

work of simple radar units that enclose the observation area, enables a higher

detection probability and evaluation of 3D target data [4]. Although the idea

of the simultaneous exploitation of data from multiple radar nodes has been10

discussed several decades ago [5], [4] [6], radar networks have become widely

experimentally studied over the last few years due to advances on high-data

rate communications and signal processing capabilities, which made it possible

at low costs to synchronize radar nodes and process simultaneously (and in real

time) their output [7], [8].15

While the power budget and the waveform parameters determine the perfor-

mance of a single radar node [9], the overall performance of a radar network is

determined by the number of nodes and their spatial locations [10]. Along with

the single radar node characteristics, these network parameters define the total

coverage area in terms of predefined detection and accuracy of the target pa-20

rameter estimates, as well as the overall robustness of the system. Therefore, an

efficient exploitation of the radar network requires optimal node allocation. The

latter can be considered either as a real-time or off-line design task, depending

on the particular application. The selection of spatial positions of radar nodes

is one of the key tasks in radar network resource allocation. It aims to achieve25

the optimal system performance with minimum system costs.

1.1. Prior work

Different techniques for spatial radar (sensor) placement are presented in the

literature [11], [12], [13], [14], [15]. In general, they are aimed at tackling two

types of optimization problems:30

1. Selection of the minimal number of radar nodes to meet some prescribed

system performance requirements.

2. Selection of a fixed and known amount of radar nodes that corresponds

to the best possible system performance.
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Depending on the mission, different performance metrics are used for the35

system design. The three most common functionalities of the radar are: target

detection, state vector estimation, and tracking. Previous studies mostly focus

on the selection of the radar network configuration that ensures only accurate

target localization. However, a number of radar applications require knowledge

of the full target state vector, which includes not only the location, but also40

the velocity of the target at each time instant [16]. Additionally, the use of

the Doppler shift provides higher detection probability in a strong clutter [17].

Topology optimization for the joint position and velocity vector estimation of a

ground moving target (GMT) using pulse Doppler radars on-board unmanned

aerial vehicles (UAVs) was considered in [18], [16]. However, the assumption45

made in [18], is related to the constant accuracy of the UAV measurements and

does not allow for an optimal solution in terms of signal-to-noise ratio (SNR).

Both approaches from [18] and [16], explore the mobility of the sensors, which

requires a real-time optimization.

In this paper, we focus on the off-line problem of radar node positions se-50

lection to satisfy prescribed accuracy requirements of the target state vector

estimation. The estimation accuracy measures are often chosen to be scalar

functions of the error covariance matrix, such as 1) the maximum eigen-

value (E-optimality); 2) the trace (A-optimality); and 3) the log-determinant

(D-optimality). Other measures, like mutual information, entropy, and cross-55

entropy are frequently used as well [19], [20]. The sensor selection problem is

combinatorial in nature. Therefore, different optimization techniques are used to

solve it in polynomial time. For example, convex optimization methods, which

are based on the relaxation of the Boolean constraint {0, 1}N on the selection

coefficients, were shown to perform well in terms of mean square error (MSE).60

At the same time, these methods imply a high computational cost. In contrast

to convex methods, greedy algorithms have a linear complexity. While the first

class of methods requires the cost function to be convex, the second one requires

its submodularity. In particular, the log-determinant, the mutual information,

and the entropy were shown to be submodular functions. Another submodular65
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function, namely the frame potential (FP), which is a measure for the orthogo-

nality of the rows of the measurement matrix, was introduced in [13] as a proxy

for the mean square error. Together with a low computational complexity, the

FP-based greedy algorithm sometimes shows a competitive performance with

convex optimization [13].70

1.2. Our contributions

In this work, we tackle the problem of selecting the optimal radar node po-

sitions, which provide the most accurate estimation of the target parameters,

namely the position and velocity vectors. The radar network is assumed to

operate in a static mode, i.e. with fixed node positions. We develop a generic75

framework for topology optimization based on non-linear measurement models.

Both the frame potential and the log-determinant (LD) of the error covariance

matrix are used as performance metrics. These cost functions were shown to

be submodular, which allows one to use greedy optimization algorithms ensur-

ing a near-optimal performance and a low computational complexity [13], [21].80

We redesign the FP and the LD to our specific non-linear model, where the

parameter vector can take any value from the known parameter space and can

be represented by entries of different modalities (e.g., range and velocity). The

developed theoretical framework is applied to the problem of topology opti-

mization for a frequency-modulated continuous-wave (FMCW) radar network85

for only target position vector estimation as well as for the simultaneous posi-

tion and velocity estimation. Closed-form expressions of the FP and the LD cost

functions for an FMCW radar network are derived. The radar power budget and

the waveform parameters are incorporated in both performance metrics, which

provide both angular- and range-dependent solutions. The developed technique90

does not ensure a Doppler coverage model, like the one developed in [17]. This

means that although the target might be Doppler covered, the accuracy of the

velocity vector estimation might be very low and depends on its position (e.g.,

on the baseline between two radars).

The rest of the paper is organized as follows. The measurement model, the95
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cost functions and the optimization algorithm are introduced in Section 2. The

extension of the optimization approach to the case with multi-modal target pa-

rameters is provided in Section 3. Section 4 presents closed-form expressions

of the FP and the LD cost functions for an FMCW radar network with details

provided in Appendix A. Section 5 presents the results on topology optimiza-100

tion for an FMCW radar network. Section 6 concludes the paper. We use the

following notations. a and A denote a vector and matrix, respectively. E(·)

denotes the statistical average. (·)T denotes matrix transpose. (·)∗ is the com-

plex conjugate. (·)† is the Hermitian operator. tr
{
·
}

denotes the trace of the

matrix. frac(·) is the fractional part of a real number.105

2. General framework

2.1. Non-linear measurement model

We consider a general non-linear measurement model for a set of N possible

radar positions

y = f(α) + ξ, (1)

where y ∈ RNQ is the vector of accumulated measurements with Q being the

number of accumulated signal samples per integration time in a single radar,

α ∈ RK is the vector of parameters to be estimated, f is the non-linear vector110

function, and ξ ∈ RNQ is the measurement noise. We formulate the topology

optimization problem as the selection of the L most informative radar positions

from the N available ones, where L is known a priori. The sets of selected and

available radar positions are defined as L = {i1, . . . , iL} and N = {1, . . . , N},

respectively, where L ⊆ N and thus L ≤ N . For the sake of simplicity, we115

assume that all radars in the network have the same operating parameters,

although this assumption can easily be relaxed.

Since the error covariance matrix for a non-linear measurement model de-

pends on the parameter vector α, all covariance-based cost functions depend

on α as well [22]. Therefore, we grid the parameter space and perform the

optimization considering the complete set of M grid points {α1, α2, . . . ,αM}.
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Furthermore, we linearize the model (1) around every grid point αm applying

a first-order Taylor series expansion,

y ≈ f(αm) +G(N )
m (α−αm) + ξ, (2)

where the entries of the matrix G(N )
m ∈ RNQ×K are[

G(N )
m ](n−1)Q+q,k =

∂f(n−1)Q+q(α)

∂αk

∣∣∣
α=αm

; q = 1, . . . , Q; n = 1, . . . , N ; k =

1, . . . ,K; and m = 1, . . . ,M .120

In the presence of zero-mean i.i.d. Gaussian noise with variance σ2, the mean

square error, which is equal to the Cramér-Rao lower bound, of the estimate of

αm based on a set L of selected radars is given by:

MSE = E(||αm − α̂m||22) = σ2
K∑
k=1

1

λm,k
, (3)

where λm,k is the kth eigenvalue of the matrix T (L)
m = G†(L)

m G(L)
m ∈ R

K×K ,

with matrix G(L)
m ∈ RLQ×K such that

[
G(L)
m

]
(l−1)Q+q,k

=
[
G(N )
m

]
(il−1)Q+q,k

.

The MSE has many local minima in the optimal selection vector, and there-

fore cannot be efficiently optimized. Popular proxies to the MSE are the maxi-

mum eigenvalue and the log-determinant of the error covariance matrix, as well

as the frame potential. In particular, the FP and the LD were shown to be

monotonic submodular functions [13], [21], while the MSE is not. The sub-

modularity of the function is related to the concept of diminishing returns and

means the following. For two sets X and Y such that X ⊂ Y ⊂ N and element

j ∈ N − Y, the function f(·) is submodular if

f(X + j)− f(X ) ≥ f(Y + j)− f(Y). (4)

This property together with monotonicity allows one to reach a near-optimal

solution with greedy algorithms [23]. Moreover, greedy algorithms have a linear

complexity in the size of the problem, and therefore are of particular interest125

for large-scale problems. Next, we develop the FP and the LD for the defined

general non-linear measurement model (1) with an extension to the case of

multi-modal parameter vectors.
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2.2. Cost functions and optimization algorithm

We modify the definition of the frame potential given in [13] to the model

with Q measurements accumulated per integration time in each of the radars

from the set L:

FPm(L) =
∑
i,j∈L

∣∣∣tr{G(i)
mG

(j)†
m

}∣∣∣2 . (5)

whereG(i)
m ∈ RQ×K is the submatrix ofG(N )

m given by
[
G(i)
m

]
q,k

=
[
G(N )
m

]
(i−1)Q+q,k

.

As was shown in [13], the minimization of the FP is related to the minimization

of the MSE. While the MSE function has many local minima, the use of the FP

allows for a near optimal solution in terms of the minimum MSE. In order to

perform a joint optimization over all grid points of the parameter space, the FP

in (5) is modified to a weighted FP as [24]

FP(L) =

M∑
m=1

pmFPm(L), (6)

where pm > 0 is the weight that represents the probability that the true α lies130

on the grid point αm;
∑M
m=1 pm = 1.

Related to the weighted FP, the following monotonic submodular cost func-

tion is maximized

F (S) = FP(N )− FP(N\S), (7)

where S = N\L.

The log-determinant of the error covariance matrix, which indicates the log-

volume of the confidence ellipsoid is given by

LDm(L) = log det

[∑
i∈L

tr
{
G(i)
mG

(i)†
m

}]−1

. (8)

The weighted log-determinant over the set of grid points from the parameter

space is then modified to

LD(L) =

M∑
m=1

pm log det

[∑
i∈L

tr
{
G(i)
mG

(i)†
m

}]−1

. (9)
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In order to apply greedy optimization, the LD-based cost has to be mono-

tonic and submodular and is given by [25]

F(L) = −
M∑
m=1

pm

(
log det

[∑
i∈L

tr
{
G(i)
mG

(i)†
m

}
+ εIK

]−1

+K log ε

)
, (10)

where ε > 0 is a small positive number, IK is the identity matrix of size K,

and the term (K log ε) ensures that the function (10) is zero for an empty set

L. The maximization of the function F (·) from (7) corresponds to the removal135

of N − L rows from the matrix G(N )
m , while the maximization of F (·) from

(10) corresponds to the accumulation of L rows that form the matrix G(L)
m .

The pseudocode for the maximization of these two cost functions is given in

Algorithm 1.

3. Estimation of multi-modal parameters140

Without loss of generality, let us consider a model, where the parameter

vector α is represented by two modalities. Examples of such a model are com-

binations of the simultaneous estimation of target range, radial velocity, and

bearing in a single radar. Basically, the parameter vector for each grid point m

from the parameter space is composed of two vectors with different measure-145

ment units αm = [αm,1, αm,2]T , where αm,1 ∈ RK1 and αm,2 ∈ RK2 , with the

total number of parameters under estimation given by K = K1 +K2. This also

results in a splitting of the system matrix G(N )
m as G(N )

m =
[
G

(N )
m,1 , G

(N )
m,2

]
with

G
(N )
m,1 ∈ RQN×K1 and G

(N )
m,2 ∈ RQN×K2 .

The MSE is then expressed as:

MSE = E(
∣∣∣∣αm,1 − α̂m,1∣∣∣∣22) + E(

∣∣∣∣αm,2 − α̂m,2∣∣∣∣22). (11)

However, since αm,1 and αm,2 represent different modalities, their errors should

be treated differently. Therefore, we would like to introduce the weighting coef-

ficients wm,1 and wm,2 in the MSE, which allows us to put a different emphasis

on each term:

MSE = wm,1E(
∣∣∣∣αm,1 − α̂m,1∣∣∣∣22) + wm,2E(

∣∣∣∣αm,2 − α̂m,2∣∣∣∣22). (12)
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Algorithm 1: Greedy algorithm

Input : M matrices G(N )
m , the set of available radar positions N , the

number of radar positions to be selected L, and function F (·)

(from (7) or (10)).

Output : Positions of L radars.

Initialize: The radar set, I.

1. For (weighted) FP cost function:

I = arg mini,j∈N
∑M
m=1 pm

∣∣∣tr{G(i)
mG

(j)†
m

}∣∣∣2.

2. For (weighted) LD cost function:

I = arg maxi∈N F (G(i)
m ).

Repeat : Until L positions are found

1. Find the radar i = arg maxi/∈I F (I ∪ i).

2. Update I: I = I ∪ i

3. For (weighted) FP cost function:

(a) If |I| = N − L, stop.

(b) Assign the set of selected positions L = N\I.

4. For (weighted) LD cost function:

(a) If |I| = L, stop.

(b) Assign the set of selected positions L = I.

9



This can be implicitly realized by rewriting the model in (2) as

y ≈ f(αm) + G̃
(N )

m (α̃− α̃m) + ξ, (13)

where G̃
(N )

m is the modified weighted matrix:

G̃
(N )

m =
[

1√
wm,1

G
(N )
m,1 ,

1√
wm,2

G
(N )
m,2

]
, (14)

and where α̃m =
[√
wm,1αm,1,

√
wm,2αm,2

]T
is the weighted parameter vec-150

tor. Using the model (13) in the submodular costs (7) and (10) will implicitly

relate these costs to the weighted MSE (12). The possibility to operate with

the weights pm, wm,1, and wm,2, expands the set of application scenarios for

topology optimization of radar networks. For example, the radar network topol-

ogy can be optimized for scenarios, where some grid points from the parameter155

space are uni-modal, while others are multi-modal.

4. Topology optimization of the FMCW radar network

4.1. System model

We consider a 3D scenario with N widely distributed potential positions of

the radar nodes. These nodes are assumed to be monostatic FMCW radars that

explore the autonomous mode of the signal transmission-reception (see Fig. 1).

Each FMCW radar transmits a burst of the linear frequency-modulated (LFM)

pulses that can be represented by:

x(n)(t) = A0 exp

(
jt

[
ωc + frac

(
t

Ts

)
∆ω

])
, (15)

where A0 = |A0| exp(jϕ0) is the transmit signal amplitude, ωc = 2πfc with

fc the signal center frequency, ∆ω = 2π∆f with ∆f the signal bandwidth,160

n = 1, . . . , N , and Ts is the sweep time. Note that the data association problem

that arises in scenarios with multiple targets is not considered in this paper. It

is assumed that the signals from different targets are properly associated in the

preceding data processing step.

10



Radar 2

Radar 1

x

y

Figure 1: Target localization in a monostatic radar network with autonomous signal reception.

The signal reflected from the moving target related to the mth grid point is

shifted in time and frequency as

y(n)
m (t) = A(n)

m x(n)(t− τ (n)
m ) exp(−j(t− τ (n)

m )ω
(n)
dm

) + ξ(n)(t), (16)

where A
(n)
m = |A(n)

m | exp(jϕ
(n)
m ) is the non-fluctuating amplitude of the received

signal; τ
(n)
m is the signal time delay related to the target-radar distance R

(n)
m

R(n)
m =

√
(xm − x(n))2 + (ym − y(n))2 + (zm − z(n))2

as τ
(n)
m = 2R

(n)
m /c with c the speed of light; (xm, ym, zm) and (x(n), y(n), z(n))

are the target and the nth radar coordinates respectively; ω
(n)
dm

= 2πf
(n)
dm

with

f
(n)
dm

the Doppler frequency of the received signal, which is related to the radial

target velocity υ
(n)
rm =

(
υxm(xm−x(n))+υym(ym−y(n))+υzm(zm−z(n))

)
/R

(n)
m

(υxm , υym , and υzm are the projections of the target velocity υm on the x,

y, and z axes) as ω
(n)
dm

= 2ωcυ
(n)
rm /c; ξ(t)

(n) is a zero-mean i.i.d. Gaussian

noise with variance σ2. Following the model (1), we define f (n)(t;αm) =

|A(n)
m | exp(jϕ

(n)
m ) exp(−j(t− τ (n)

m )ω
(n)
dm

)x(n)(t− τ (n)
m ) and obtain

y(n)
m (t) = f (n)(t;αm) + ξ(n)(t), (17)
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where αm = [xm, ym, zm, υxm , υym , υzm ]T .165

In this scenario, we assume that the target location and velocity vector esti-

mation is realized via a two-step de-centralized approach. In the first step, the

target detection and the estimation of the time delay and Doppler frequency are

done in a single radar, based on the echo-signal reflected from the target. In the

second step, these local measurements are transferred to the central processing170

unit (CPU), where the estimation of the target position and/or velocity vectors

is performed. In order to simplify the evaluation of the FP and the LD cost

functions, first we evaluate the estimation performance of the target range and

radial velocity for a single FMCW radar. Next, we introduce the closed-form

expressions, based on a single radar node performance, for the evaluation of175

these FP and LD costs.

4.2. The performance of a single FMCW radar

Assuming a fixed sampling frequency that results in Q accumulated signal

samples per integration time DTs in each radar, the measurement model for

a single radar is then given by (1) for N = 1 (N = {1}). We linearize the

noiseless signal f(αm) around the parameter vector βm = [βm,1, βm,2]T with

J = 2 components, βm,1 = τm and βm,2 = ωdm . The matrix G(1)
m ∈ RQ×J is

then given by
[
G(1)
m

]
q,j

=
∂fq(αm)
∂βm,j

1√
wm,j

(j = 1, . . . , J) with

∂fq(αm)

∂βm,1
= −j|A(1)

m |
[
ωc + 2frac

(
tq − τ (1)

m

Ts

)
∆ω − ω(1)

dm

]

× e
j(tq−τ(1)

m )

[
ωc+frac

(
tq−τ

(1)
m

Ts

)
∆ω−ω(1)

dm

]
+jϕ(1)

m

;

∂fq(αm)

∂βm,2
= −j|A(1)

m |
(
tq − τ (1)

m

)
e
j(tq−τ(1)

m )

[
ωc+frac

(
tq−τ

(1)
m

Ts

)
∆ω−ω(1)

dm

]
+jϕ(1)

m

.

We define the performance of a single radar that characterizes the estimation

accuracy of the time delay and Doppler frequency of the signal, reflected from

the target represented by the mth grid point from the parameter space, as

P (1)
m = tr

{
G(1)
m G

(1)†
m

}
= P (1)

m (τ) + P (1)
m (ωd) + 2P (1)

m (τ, ωd), (18)

12



where

P (1)
m (τ) =

1

wm,1

Q∑
q=1

∂fq(αm)

∂τ
(1)
m

∂f∗q (αm)

∂τ
(1)
m

=
4

3

1

wm,1
∆ω2|A(1)

m |2Q;

P (1)
m (ωd) =

1

wm,2

Q∑
q=1

∂fq(αm)

∂ω
(1)
dm

∂f∗q (αm)

∂ω
(1)
dm

=
1

3

1

wm,2
T 2
sD

2|A(1)
m |2Q; (19)

P (1)
m (τ, ωd) =

1
√
wm,1wm,2

Q∑
q=1

∂fq(αm)

∂τ
(1)
m

∂f∗q (αm)

∂ω
(1)
dm

=
1

√
wm,1wm,2

∆ωDTs|A(1)
m |2Q;

with wm,1 and wm,2 being the weighting coefficients.

4.3. The FP and the LD cost functions for an FMCW radar network

The measurement model for the radar network is given by (1). The param-

eter vector is the target state vector that contains two different modalities: tar-

get position and velocity. Thus, we define α̃m =
[√
w1,mαm,1,

√
w2,mαm,2

]T
,

where αm,1 = [xm, ym, zm]T and αm,2 = [υxm , υym , υzm ]T with K1 = 3

and K2 = 3 components, respectively. The weighted linear system matrix

G̃
(N )

m ∈ RNQ×(K1+K2) consists of two submatrices G
(N )
m,1 and G

(N )
m,2 , which are

defined as

[
G

(N )
m,1

]
(n−1)Q+q,d

=
∂f(n−1)Q+q(α̃m)

∂βm,1

∂βm,1
∂[αm,1]d

1
√
wm,1

+
∂f(n−1)Q+q(α̃m)

∂βm,2

∂βm,2
∂[αm,1]d

1
√
wm,2

;

[
G

(N )
m,2

]
(n−1)Q+q,b

=
∂f(n−1)Q+q(α̃m)

∂βm,2

∂βm,2
∂[αm,2]b

1
√
wm,2

;

with d = 1, . . . ,K1 and b = 1, . . . ,K2.180

The LD and the FP for the FMCW radar network can then be evaluated as

LD(L) =

M∑
m=1

pm

(
log det

(∑
i∈L

T (i)
m + εIK

)−1
+K log ε

)
, (20)

FP(L) =

M∑
m=1

pm
∑
i,j∈L

S(i,j)
m , (21)

where T (i)
m = G̃

(i)†
m G̃

(i)

m , S(i,j)
m =

∑K
n=1,l=1

[
T (i)
m

]
n,l

[T (j)
m

]
n,l

. The closed-form

expressions for the entries of the matrix T (i)
m are provided in Appendix A.
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5. Numerical results

In this section, we apply the developed framework for the selection of the L

most favorable positions of short-range FMCW monostatic radars in terms of185

the minimum MSE of the target parameter vector estimates. The estimation of

the target position has to be performed over the area of the TU-Delft campus

(dimension is approx. 400000 m2), which is represented by a uniform grid with

a cell size of 50m2 (M = 171). The potential radar positions are represented by

N = 117 non-uniformly distributed nodes (Fig. 2). These positions are selected190

such that radars can be located on the roofs of the buildings in a 3D spatial

model. The parameters of a single radar node are presented in Table 1. The

target maximal radar cross-section (RCS) is 1 m2. A free-space propagation

model is considered in this simulation. This model is based on the assumption

that the first and strongest signal component in time corresponds to the line-195

of-sight propagation.

Table 1: Single radar simulation parameters.

Parameter Value

ERP [PtGa] 10 dBm

Carrier frequency [fc] 25 GHz

Sweep time Ts = 0.5 · 10−3 s

Number of integrated pulses D = 512

Signal bandwidth [∆f ] 250 MHz

Receiver bandwidth[B] 300 kHz

Noise figure [Fn] 8 dB

System losses [Lsyst] 15 dB

Two measurement models are considered: 1) range estimation for target

localization and 2) simultaneous range and radial velocity estimation for target

position and velocity vector estimation. In each of the scenarios considered in

14



this section, we put equal weights on the grid points from the parameter space,200

i.e., pm = 1/M .

First, we consider the scenario, where the spatial positions of the radar

nodes need to be optimized in order to provide an accurate estimation of the

2D target position. The potential positions of the radar nodes are modeled in a

2D plane as well. In this simulation, we compare three performance metrics: the205

frame potential, the log-determinant, and the maximum eigenvalue of the error

covariance matrix (λmax). While the first two costs are optimized using a greedy

approach, the third one, λmax, is exploited in the convex optimization algorithm

that can be found in [11]. The dependence of the average RMSE on the number

of selected radars L for the three costs is shown in Fig. 3. The LD cost function210

leads to more favorable radar network geometries in terms of average RMSE,

compared to the FP. Moreover, it allows for a better or equivalent estimation

accuracy, compared to the λmax-driven optimization. Additionally, the linear

complexity of the greedy algorithms in terms of N signifies the advantage of the

LD over other cost functions. The overlap of the curves for a large L is caused215

by the high density of the radar grid relative to the size of the target area. The

contour plot of the RMSE distribution for L = 20 optimally placed radars using

the log-determinant cost function demonstrates a high localization accuracy in

the area of interest (see Fig. 4).

Next, we consider a scenario, where a 2D position estimation of a ground220

target and a 3D position and velocity estimation of a low-level airspace target

has to be performed. Such a scenario might occur in multifunctional radar net-

work operations, where surveillance of ground-based targets is combined with

the tracking of low-altitude flying targets. The parameter space consists of two

subspaces. In the first subspace, the parameter vector has two components (2D225

target position); in the second subspace, the parameter vector has three com-

ponents (3D target position and velocity). The first subspace is represented

by the M1 = 171 grid points that have been used in the previous analysis for

the TU-Delft campus area representation. In the second subspace, the target

horizontal coordinates (xm, ym) are the same as in the first scenario, while the230

15



Figure 2: Candidate radar positions for the TU-Delft campus. The area dimension is approx.

400000 m2.
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Figure 3: Average RMSE of the target localization for different numbers of optimally placed

radars L from the N = 117 available ones for the K = 2 parameters under estimation and the

M = 171 grid points for the parameter space.

vertical coordinate zm can take values {100, 200, . . . , 1500} m. Additionally,

the target velocity can take any value from the velocity domain, represented by

the set of target velocity values υ = {2, 6, 10, 14, 18, 22} m/s and movement

directions in azimuth φ = {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4} and eleva-
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Figure 4: Contour plot of the RMSE (m) of the target localization with L = 20 optimally

sited short-range FMCW radars using the greedy algorithm based on a log-determinant cost

function.

tion ρ = {−π/2, −π/4, π, π/4, π/2}, respectively (see Fig. 5). Consequently,235

each position grid point is assigned with 6 × 8 × 5 = 240 possible velocities in

the second scenario which results in M2 = 240× 15× 171 = 615600 grid points.

As one can see, the use of the target velocity is cumbersome. An interesting

direction for further research can be the investigation of more practical algo-

rithms to handle such large amounts of target grid points. In this simulation,240

we assume that the altitudes of the radar nodes are equal to 20 m each, which

corresponds to the average height of the buildings on the TU-Delft campus.

The lower bounds on the variances of the time delay and Doppler frequency

estimation are given by [26]:

σ2
ττ ≈

3

2

1

∆ω2 SNR
, (22)

σ2
ωdωd

≈ 6

T 2
s D

2 SNR
, (23)

where the signal-to-noise ratio is evaluated from the radar equation

SNR =
PtG

2
aRCSTs

(4π)3fcR4LsystkBTsyst
Gproc, (24)
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with Pt the transmitted power, Ga the antenna gain, Lsyst the system loss,

Tsyst the system temperature, Gproc the processing gain, and kB the Boltz-

mann constant. For a single radar with parameters listed in Table 1, the ac-245

curacy of time delay estimation will be eight times worse than the accuracy of

Doppler frequency estimation. As a result, the weighting coefficients are chosen

as wm,1 = 1 and wm,2 = 64.

Figure 6 shows the dependence of the RMSEs of the position (Fig. 6a) and

the velocity (Fig. 6b) estimates as a function of L for both the FP and the250

LD cost functions. For this scenario, the LD cost function again outperforms

the FP. Compared to the previous scenario (Fig. 3), the RMSE curves for the

FP and the LD cost functions do not coincide with increasing the number of

selected radars L. This is due to the large parameter space with most of the

grid points lying above the radar grid. The latter leads to a lower SNR and255

worse estimation performance. This scenario is aimed to show the capability

to perform topology optimization of multifunctional radar systems. Moreover,

scenarios with different sensor types can be considered as a further extension of

this work.

y
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xy
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0
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Figure 5: Gridding of the velocity domain (red circles are the grid points that represent the

target area).
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Figure 6: Average RMSE of the target position and velocity for different numbers of optimally

placed radars L for a 2D position estimation and a 3D position+velocity estimation.

5.1. The influence of the weighting coefficients260

Finally, we compare the topology selection results in terms of RMSE of

the target position estimation for two measurement models of a single radar:

1) only target range measurement; 2) target range and radial velocity measure-

ment. The first measurement model implies only target localization, while the

second one implies both target localization and velocity estimation in the radar265

network. In the second measurement model, it is assumed that both range and

radial velocity are used for target localization. In order to investigate the effect

of the target movement on the localization accuracy, three scenarios of target

movement are considered (Fig. 7): a) along the y-axis (Scenario 1); b) along

the x-axis (Scenario 2); c) at an angle of 45 degrees from the x- and the y-axes270

(Scenario 3). The target velocity is υ = 10 m/sec. Figure 8 presents the ra-

tios of the positioning RMSEs (RMSEp) for two measurement models, L = 10

selected radar positions and different values of the weighting coefficients. The

superscript index in the RMSE specifies the measurement model, i.e., either the

first or the second one. As apparent from the results, the effect of the weights275

and the measurement model itself for the three scenarios is dissimilar. First

of all, localization-driven topology optimization, in general, can outperform the

location- and velocity-driven topology optimization (the first and the third sce-
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nario of the target movement) in terms of the RMSE of target localization. This

is not the case for the second movement scenario, where the selected topologies280

based on the second measurement model result in a lower RMSE for all con-

sidered values of the weighting coefficients wm,1 and wm,2. Second, using the

best weighting coefficients, we can achieve up to 3 dB improvement in terms of

the localization RMSE. At last, when no weights are introduced (wm,1 = 1 and

wm,2 = 1), the location- and velocity-driven topology optimization allows for285

a better or equivalent performance compared to only localization-driven topol-

ogy optimization. Figure 9 shows two network topologies for two measurement

models and three different scenarios. As one can see, the difference between

the optimal topologies for the two measurement models can be up to six radar

node positions, which results in a different estimation accuracy. In each of the290

considered scenarios, the optimal topologies correspond to those that enclose

the target areas.
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Figure 7: Scenarios of the target movement. Line directions on the target grid points corre-

spond to the target velocity vectors (not in scale).

5.2. Computational complexity

Both the FP and the LD cost functions explore the greedy algorithm 1. The

complexity of the greedy algorithm 1 for the weighted log-det cost function is295

linear with respect to the number of potential radar node positions N , O(N),
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Figure 8: Ratios of the RMSEs of the target localization for optimal radar network topologies

for two measurement models at L = 10: 1) the range estimation for target localization; 2)

the range and radial velocity estimation for target location and velocity vectors estimation.

since N matrices are evaluated in algorithm 1. For the weighted frame potential

the complexity of the same algorithm is cubic with respect to N , O(N3). This

is related to the fact that for each of the N −L steps, there are (N −S)2 terms

(S = 3, . . . , (N−L)). The complexity of the algorithm can be further reduced to300

O(N2) by exploiting the recursive property of the FP function. Based on this,

for large-scale problems with L� N and K � N , the LD cost function allows

for a lower computational complexity, compared to the FP cost function. At

the same time, algorithm 1 for the LD cost is cubic in the number of parameters

under estimation K, O(K3), while for the FP it is linear in K, O(K). Therefore,305

exploiting the LD cost for problems where K is in the order of N would entail

a higher complexity, compared to the FP.
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(a) Scenario 1: wm,1 = 1, wm,2 = 103.
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(b) Scenario 2: wm,1 = 1, wm,2 = 10.
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(c) Scenario 3: wm,1 = 102, wm,2 = 1.

Figure 9: Selected topologies of the radar networks for target localization only and for target

location + velocity estimation.

6. Conclusions

In this paper, we have proposed a generic framework of radar network topol-

ogy optimization, based on the greedy algorithm. The theory is developed for310
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non-linear measurement models with an extension to the case of multi-modal

parameter vector estimation. This approach can be applied for scenarios of

temporal (measurements are done with one radar) as well as spatio-temporal

(measurements are done with a radar network, where the data fusion on the

level of signal samples takes place) data selection.315

The developed framework has been applied to the optimal topology selec-

tion of radar nodes for the simultaneous position and velocity estimation of a

target. The scenarios where different points from the parameter space can be

represented with different modalities, are feasible as well. Three cost functions

were compared: the frame potential, the log-determinant and the maximum320

eigenvalue costs, with the last two being scalar functions of the error covari-

ance matrix. The results show that the log-determinant and the maximum

eigenvalue show an equivalent performance in terms of average RMSE, while

the greedy optimization of the log-determinant is much more computationally

efficient than the convex optimization of the maximum eigenvalue. Moreover,325

the performance of the location-driven versus the position- and velocity-driven

optimization was compared, showing a further improvement in terms of average

RMSE of the target parameter vector estimation, when the target movement is

taken into account.
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Appendix A The evaluation of the FP and LD in (21) and (20)

In this appendix, we provide the closed-form expressions for the evaluation

of the matrix T (i)
m = G̃

(i)†
m G̃

(i)

m with G̃
(i)

m =
[

1√
wm,1

G
(i)
m,1,

1√
wm,2

G
(i)
m,2

]
being

the weighted linear system matrix in the scenario of (multi-modal) target state335

vector estimation. The matrices G
(i)
m,1 ∈ RQ×K1 and G

(i)
m,2 ∈ RQ×K2 are defined

as
[
G

(i)
m,1

]
q,d

=
∂fq(α̃m)
∂βm,1

∂βm,1
∂[αm,1]d

1√
wm,1

+
∂fq(α̃m)
∂βm,2

∂βm,2
∂[αm,1]d

1√
wm,2

and
[
G

(i)
m,2

]
q,b

=

∂fq(α̃m)
∂βm,2

∂βm,2
∂[αm,2]b

1√
wm,2

with d = 1, . . . ,K1 and b = 1, . . . ,K2. The parameter
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vector is α̃m =
[√
wm,1αm,1,

√
wm,2αm,2

]T
with αm,1 = [xm, ym, zm]T and

αm,2 = [υxm , υym , υzm ]T .340

The matrix T (i)
m can be then evaluated as

[
T (i)
m

]
11

= P (i)
m (τ)

(
∂τ

(i)
m

∂xm

)2

+ P (i)
m (ωd)

(
∂ω

(i)
dm

∂xm

)2

+ 2P (i)
m (τ, ωd)

∂τ
(i)
m

∂xm

∂ω
(i)
dm

∂xm
;

[
T (i)
m

]
12

=
[
T (i)
m

]
21

= P (i)
m (τ)

∂τ
(i)
m

∂xm

∂τ
(i)
m

∂ym
+ P (i)

m (τ, ωd)
∂τ

(i)
m

∂xm

∂ω
(i)
dm

∂ym

+P (i)
m (τ, ωd)

∂τ
(i)
m

∂ym

∂ω
(i)
dm

∂xm
+ P (i)

m (ωd)
∂ω

(i)
dm

∂xm

∂ω
(i)
dm

∂ym
;

[
T (i)
m

]
13

=
[
T (i)
m

]
31

= P (i)
m (τ)

∂τ
(i)
m

∂xm

∂τ
(i)
m

∂zm
+ P (i)

m (τ, ωd)
∂τ

(i)
m

∂xm

∂ω
(i)
dm

∂zm

+P (i)
m (τ, ωd)

∂τ
(i)
m

∂zm

∂ω
(i)
dm

∂xm
+ P (i)

m (ωd)
∂ω

(i)
dm

∂xm

∂ω
(i)
dm

∂zm
;

[
T (i)
m

]
14

=
[
T (i)
m

]
41

= P (i)
m (τ, ωd)

∂τ
(i)
m

∂xm

∂ω
(i)
dm

∂υxm
+ P (i)

m (ωd)
∂ω

(i)
dm

∂xm

∂ω
(i)
dm

∂υxm
;

[
T (i)
m

]
15

=
[
T (i)
m

]
51

= P (i)
m (τ, ωd)

∂τ
(i)
m

∂xm

∂ω
(i)
dm

∂υym
+ P (i)

m (ωd)
∂ω

(i)
dm

∂xm

∂ω
(i)
dm

∂υym
;

[
T (i)
m

]
16

=
[
T (i)
m

]
61

= P (i)
m (τ, ωd)

∂τ
(i)
m

∂xm

∂ω
(i)
dm

∂υzm
+ P (i)

m (ωd)
∂ω

(i)
dm

∂xm

∂ω
(i)
dm

∂υzm
;

[
T (i)
m

]
22

= P (i)
m (τ)

(
∂τ

(i)
m

∂ym

)2

+ 2P (i)
m (τ, ωd)

∂τ
(i)
m

∂ym

∂ω
(i)
dm

∂ym
+ P (i)

m (ωd)

(
∂ω

(i)
dm

∂ym

)2

;

[
T (i)
m

]
23

=
[
T (i)
m

]
32

= P (i)
m (τ)

∂τ
(i)
m

∂ym

∂τ
(i)
m

∂zm
+ P (i)

m (τ, ωd)
∂τ

(i)
m

∂ym

∂ω
(i)
dm

∂zm

+P (i)
m (τ, ωd)

∂τ
(i)
m

∂zm

∂ω
(i)
dm

∂ym
+ P (i)

m (ωd)
∂ω

(i)
dm

∂ym

∂ω
(i)
dm
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;

[
T (i)
m

]
24

=
[
T (i)
m

]
42

= P (i)
m (τ, ωd)

∂τ
(i)
m

∂ym

∂ω
(i)
dm

∂υxm
+ P (i)

m (ωd)
∂ω

(i)
dm

∂ym

∂ω
(i)
dm

∂υxm
;
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[
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m
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25
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[
T (i)
m
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dm

∂υzm

)2

.
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The derivatives of the time delay and the Doppler frequency with respect to

target coordinates and velocities are:

∂τ
(i)
m

∂xm
=

2

c

(xm − x(i))

R
(i)
m

;

∂τ
(i)
m

∂ym
=

2

c

(ym − y(i))

R
(i)
m

;

∂τ
(i)
m

∂zm
=

2

c

(xm − x(i))

R
(i)
m

;

(25)

∂ω
(i)
dm

∂xm
=

2ωc
c

(R
(i)
m )2υxm − b

(i)
m (xm − x(i))

(R
(i)
m )3

;

∂ω
(i)
dm

∂ym
=

2ωc
c

(R
(i)
m )2υym − b

(i)
m (ym − y(i))

(R
(i)
m )3

;

∂ω
(i)
dm

∂zm
=

2ωc
c

(R
(i)
m )2υzm − b

(i)
m (zm − z(i))

(R
(i)
m )3

;

∂ω
(i)
dm

∂υxm
=

2ω0

c

(xm − x(i))

R
(i)
m

;

∂ω
(i)
dm

∂υym
=

2ω0

c

(ym − y(i))

R
(i)
m

;

∂ω
(i)
dm

∂υzm
=

2ω0

c

(zm − z(i))

R
(i)
m

;

(26)

where b
(i)
m = υxm(xm − x(i)) + υym(ym − y(i)) + υzm(zm − z(i)).

The matrix T (i)
m can be easily truncated for the scenarios, where only target

position or velocity is estimated. For example, for 3D target localization based

on trilateration technique, the parameter vector is αm = [xm, ym, zm]T . The

entries of the measurement matrixG
(i)
m,1 ∈ RQ×K1 are then given by

[
G

(i)
m,1

]
q,d

=345

∂fq(αm)
∂βm,1

∂βm,1
∂[αm]d

. The matrix T (i)
m ∈ RK1×K1 can be evaluated at wm,2 = 0.
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