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Abstract— A compressive sensing (CS) reconstruction method 

for polynomial phase signals is proposed in this paper. It relies on 

the Polynomial Fourier transform, which is used to establish a 

relationship between the observation and sparsity domain. 

Polynomial phase signals are not sparse in commonly used 

domains such as Fourier or wavelet domain. Therefore, for 

polynomial phase signals standard CS algorithms applied in 

these transformation domains cannot provide satisfactory results. 

In that sense, the Polynomial Fourier transform is used to ensure 

sparsity. The proposed approach is generalized using time-

frequency representations obtained by the Local Polynomial 

Fourier transform (LPFT). In particular, the first-order LPFT 

can produce linear time-frequency representation for chirps. It 

provides revealing signal local behavior, which leads to sparse 

representation. The theory is illustrated on examples. 

  

Index Terms— Compressive sensing, Signal reconstruction, 

Sparsity, Polynomial Fourier transform, Local polynomial 

Fourier domain, Fractional Fourier transform 

 

I. INTRODUCTION 

ompressive sensing (CS) algorithms are developed to deal 

with an incomplete set of randomly selected/acquired 

signal samples [1]-[4]. The number of available samples is 

usually far below that required by the Nyquist sampling 

theorem. The corresponding hardware prototypes performing 

the sub-Nyquist sampling of analog inputs have recently been 

designed [5],[6]. In order to successfully reconstruct a full-

length signal (i.e., original signal samples) from its small set 

of observations (CS samples), the signal should have a dense 

representation in the sensing domain and a sparse 

representation in a certain transform domain (i.e., sparsity 

domain). For instance, the Fourier transform domain can be 

considered as a sparsity domain for the case of signals that 

consist of K sinusoids, where K M�  (M represents the signal 

length). In this case, some of the common CS algorithms such 

as greedy, basis pursuit or recently proposed L-estimate CS 

algorithms can be employed to produce an exact 

reconstruction of original signal [7]-[21]. A significant 
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contribution to the CS theory, especially in terms of reducing 

the number of necessary measurements, has been provided by 

the model-based CS approaches [15],[16]. These approaches 

explore the inter-dependency structure of large coefficients 

called the structured sparsity model. An example is tree-

sparsity of wavelet coefficients in natural images [17]-[19], 

having largest coefficients clustered along the tree structure. 

In real applications we usually deal with signals whose 

phase can be modeled by a certain nonlinear function over a 

limited time window. Such signals are not sparse in the 

Fourier, Wavelet or Fractional Fourier domain, but rather 

time-frequency or the Fractional Fourier domain [22]-[29]. 

However, if the time-frequency domain is used, then an 

appropriate distribution should be employed to provide sparse 

signal representation. For instance, if the short-time Fourier 

transform is used, then the chirp signal does not have a sparse 

representation and cannot be exactly reconstructed from 

random observations [30]-[34]. Furthermore, if the Wigner 

distribution is considered, only the monocomponent signal can 

be treated (to avoid the influence of cross-terms). Also, it is 

necessary to calculate the autocorrelation function [35], [36], 

which means that the number of available observations must 

be greater than in the case of sinusoidal signal reconstruction. 

The Fractional Fourier transform can be efficiently used for 

chirps, but not for the signals with nonlinear frequency laws 

(e.g., a cubic phase function that appears in radars). 

 In this paper, we will first consider the Polynomial Fourier 

transform (PFT) [37], which produces a sparse representation 

for any polynomial phase signals. The proposed theory is 

further extended to nonstationary signals using the Local 

polynomial Fourier transform (LPFT) in signal reconstruction 

[38]. It is shown that by adopting and applying CS algorithms 

in the PFT or LPFT domain, signals with polynomial phases 

can be accurately reconstructed. The presented theory is 

demonstrated on various numerical examples. Finally, we 

provide the analysis of the reconstruction accuracy in noisy 

environment in terms of the number of available observations. 

 The paper is organized as follows. The theoretical 

background regarding the PFT is presented in Section II. A 

description of the proposed compressive sensing approach is 

given in Section III. The experimental verification of the 

proposed approach is given through numerical examples in 

Section IV. 
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II. COMPRESSIVE SENSING IN THE POLYNOMIAL FOURIER 

DOMAIN 

 

Compressive sensing algorithms are used for signals with 

sparse representations in a certain domain. The Fourier 

analysis reveals sinusoidal behavior, so it can be used for the 

reconstruction of signals with linear phase. However, when 

dealing with nonlinear polynomial phase signals, a sparse 

signal representation can be achieved by using the PFT. 

Namely, the PFT can be used to demodulate components of 

interest, reducing them to the sparse sinusoidal components.  

For instance, consider a polynomial phase signal 
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For all points in the n-dimensional frequency space that 

correspond to the positions of signal components characterized 

by: 11 , ,i n nia aω ω= … = , i=1,…,K we obtain:  

 1 1 1 11
( , , ) 2 ( , ..., )

K

n i i n ni
X r a aω ω π δ ω ω

=
… = − −∑  (2) 

 

In other words, 1( , , )nX ω ω… →∞ at the positions of signal 

components: 11 , ,i n nia aω ω= … = . Thus, ideally, X can be 

considered as a sparse K-component representation. 

Otherwise, for 11 , ,i n nia aω ω ≠…≠ , i=1,…,K, (1) has finite 

value, negligible when compared to (2). 

 

A.  Signal sparsity in the discrete PFT domain 

 

Let us observe the signal vector x, with elements ( )x m , 

consisting of a sum of K polynomial phase signals:  
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where the polynomial coefficients are assumed to be bounded 

integers. In order to provide a sparse signal representation, we 

will use the discrete form of the PFT, which can be defined as: 
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When the set of PFT parameters (k2, k3, …, kn) is chosen to 

match the polynomial phase coefficients (a2i, a3i, …, ani):  

 

 2 3 2 3( , , , ) ( , , , )  n i i nik k k a a a… = … ,  (5) 

the i-th signal component is demodulated and the sinusoid: 

( )12 / ij M ma
ir e

π
 becomes dominant in the PFT spectrum. In 

this case, the spectrum is highly concentrated at 1ik a= . 

Otherwise, when 2 3 2 3( , , , ) ( , , , )  n i i nik k k a a a… ≠ …  for all 

i∈(1,…,K), the spectrum is dispersed. Here, we need to make 

the assumption: min
1

K

i
i

M r r
=

>∑ , where rmin is the minimum 

amplitude of the components. Consequently, we search for K 

sets of parameters ( ){ }2 3, , , 1,...,i i nik k k i K… = such that 

2 3 2 3( , , , ) ( , , , )i i ni i i nik k k a a a… = …  holds, and 1( , , )i niX k k…  is 

highly concentrated. In other words, these parameters are 

chosen to provide the best concentrated vector 

1 2( , ,..., )nX k k k  for all i=1,…,K. The maximum component 

will be located at the frequency 1ik a= . Finally, in real 

applications, the polynomial phase signals could be considered 

as compressible rather than strictly sparse in the PFT domain.   

 

III. RECONSTRUCTION OF CS SIGNALS IN THE PFT DOMAIN 

 

In the previous analysis it was shown that a polynomial 

phase signal exhibits certain sparsity for a properly chosen set 

of the PFT parameters. This makes it convenient for the 

application of CS reconstruction methods. However, it is 

necessary to define a specific reconstruction procedure which 

will include also the parameters search and the signal 

demodulation approach.     

In order to be compliant with the CS notations, let us 

rewrite the PFT in the matrix form using the notations: 

 

 Ms =X sF , (6) 

 

where ( ) ( ) ( )0 , 1 , , 1
T

s X X X M= … −  X  is the vector of Fourier 

transform coefficients of the signal ( ) ( ) ( )0 , 1 , , 1
T

s s s M= … −  s , 

which contains samples x(m) multiplied by exponential terms 

from the vector ( ) ( ) ( )0 , 1 , , 1
T

Mϕ ϕ ϕ= … −  φ  (the component-

wise multiplication is denoted by ( ���� )): 

 ,s=x φ����      (7) 

where the components of ϕϕϕϕ reads as follows, 

 

2
2( ) exp( 2 / ( /2 / !), (0,.., 1)n

nm j M k m k m n m Mϕ π= − +…+ ∈ −  

 

The discrete Fourier transform matrix of size M×M is denoted 

by MF , with elements: 

 

2 /( , ) ,

0,..., 1, 0,..., 1

j km Mm k e

m M k M

π−=

= − = −

F

  (8) 

For a chosen set of parameters 2 3( , , , ) nk k k…  in ϕϕϕϕ that is 

equal to the set 2 3( , , , ) i i nia a a…  in x, Xs=Xsi is 

characterized by one dominant sinusoidal component at the 

frequency a1i. Now, assume that x is compressively sampled 

and represented by only N random measurements. Thus, 
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instead of x we are dealing with a measurement vector y 

obtained using the incoherent measurement matrix ΦΦΦΦ of size 

N×M:  

 

 ( )y=Φs=Φ x φ���� . (9) 

Now, using (6) the previous equation can be written as: 

 1

M cs s
−= =sy Φ X A XF , (10) 

where 1

Mcs
−=A ΦF . Note that MF  is the standard Fourier 

transform matrix, while ΦΦΦΦ is a random matrix such that csA  

results in a random sets of rows from a discrete Fourier 

transform matrix, as in [39]. It has been known that such 

random partial Fourier matrix lead to fast recovery algorithms, 

and it satisfies a near optimal RIP with high probability [40]- 

[42].  

When 2 3 2 3( , , , ) ( , , , )  n i i nik k k a a a… = …  then Xs can be 

observed as a demodulated version of the i-th signal 

component Xs=Xsi that can be recovered by solving the l1 -

norm minimization problem in the form: 

 

 
1
   si cs simin subject to =X y A X . (11) 

 

However, in the case of multicomponent signals the inter-

components products appear and act as spectral noise that may 

complicate the reconstruction of the i-th signal component. In 

that case, a sparse solution of (11) can be provided using the 

threshold based single iteration algorithm [45]. The threshold 

is derived to detect sparse signal components in the non-sparse 

noisy spectrum caused by missing samples. The same 

approach can be applied here as well. Namely, the algorithm 

will easily detect and reconstruct the dominant i-th component 

Xs=Xsi with the amplitude ri, while leaving other insignificant 

components below the threshold. Also, when 

2 2( , , ) ( , , )n i nik k a a… ≠ …  and N M�  there is no a dominant 

sinusoidal component and the algorithm returns zero value. 

Consequently, we can obtain the i-the component of a signal s 

as the inverse Fourier transform of Xsi, while the original i-th 

component of x results from re-modulation: -1x =φ s , where 

-1
φ  is a componentwise inverse ofφ .  The procedure can be 

summarized by the flowchart given in Fig. 1. 

As we change the values of parameters k2,…,kn between kmin 

and kmax, one by one component will be detected through 

iterations. Hence, the number of components does not have to 

be known in advance.  

The reconstructed components amplitudes at frequencies 

1ik , for i= 1,…,K, could be close to the exact values r1, r2, …, 

rK, but still the amplitude correction needs to be performed. 

Let us denote the set of measurements positions (selected by 

ΦΦΦΦ) as (m1, m2,…, mN), while the detected signal phase 

parameters are: ki=(k1i ,k2i, …, kni)= (a1i, a2i, …, ani). In order 

to calculate the exact amplitudes of signal components, we 

observe the set of equations in the form: 
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Fig. 1 Parameters estimation procedure for CS reconstruction used in 

this paper  

 

 

or in other words: y=AX. The vector of measurements is 

y=[x(m1), …, x(mN)]
T
 and the vector X=[r1,…,rK]

T
 contains the 

desired K signal amplitudes. The matrix A represents a new 

CS matrix of size N×K which is based on the PFT:  
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A  (13) 

 

The rows of A correspond to measurements (m1,m2,…,mN), 

and columns correspond to frequencies ki=(k1i, k2i,…, kni)=(a1i, 

a2i, …, ani), for i=1,…,K. The solution of the observed 
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problem can be obtained as: 

 

X=(AHA)-1 AH y 

 

The resulting reconstructed signal is obtained as: 

( )
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A. Analyzing the accuracy in the noisy signal case  

 

Now, let us consider a case when the available samples are 

corrupted by additive noise ε(n). When the recovery is 

achieved, the accuracy is related to the input additive noise 

and the number of available samples. The measurement vector 

in the case of noisy observation can be written as: 

 

 =y Xε A+ . (14) 

Then the solution can be obtained as follows: 

 ( )H H
-1

X= A A A (y+ε) , (15) 

where the operator (
H
) denotes the conjugate transpose. 

Having in mind that the Fourier transform vector X consists of 

the signal and noise parts: s nX=X +X , we can write: 

 ( ) ( )
-1 -1

,X = A A A y X = A A A ε
H H H H

s n . (16) 

After recovering Xn, the full set of noise samples can be 

obtained as the inverse Fourier transform of Xn. The 

reconstructed transform vector of the observed noise is 

obtained using only N samples (observations), and thus should 

be scaled by M/N in order to correspond to the full set of M 

samples. Consequently, the signal to noise ratio (SNR) is: 
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where 
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= ==∑ ∑ holds, while the 

energy of ( )nε  is additionally scaled by K/M since only K (K 

is the number of frequency components) out of M coefficients 

are used in the reconstruction. Finally, the resulting SNR can 

be obtained as: 
21
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The resulting SNR is a function of the sparsity level and the 

number of available samples. 

 

B. CS using the Local polynomial Fourier transform 

 

 In the case of signals with non-stationary phase functions, 

the proposed approach can be adapted and extended using the 

LPFT, which represents the windowed PFT. Namely, at a time 

instant m, the LPFT is calculated as the Fourier transform of 

windowed signal: { } ( ) ( ){ }( ) ( )M wZ m FT x m FT x m w m n= = − , 

resulting in a vector of frequency coefficients. For the 

simplicity, we consider the non-overlapping windows. After 

calculating LPFT vectors for all time instants, we can write a 

single matrix equation as follows: 

 

 
,M N w=Z sF  (19) 

  

such that the LPFT vector Z is composed of vectors: ZM(0), 

ZM(M), …, ZM(N-M). The matrix 
,M N

F of size N×N is 

obtained as a Kronecker product: 

, /IM N N M M= ⊗F F , 

where IN/M denotes the identity matrix of size (N/M)×(N/M), 

and N is a multiple of M. 

Instead of the full windowed demodulated signal s w , we 

deal with an incomplete set of samples or observations in the 

form: w=y Φs . Then, s w  can be written using Z: 

 
,

1

M N

−=y ZΦF  (20) 

where the CS matrix is given by: 
,

1=
M Ncs

−A ΦF .  

In order to detect set 2 3( , , , ) nk k k…  leading to the best 

concentrated LPFT spectrum, the CS minimization problem 

can be observed as follows: 

 
1
   csmin subject to =Z y A Z . (21) 

For a properly chosen set 2 3( , , , ) nk k k…  corresponding to 

one of the signal components, the algorithm [45] is used to 

detect dominant component in ( )M pZ  and its frequency k=k1.  

After detecting all signal components, the reconstructed 

version of Z is obtained as: 

 ���� ���� ����1( )
H H−=Ζ AA A y , (22) 

where ����A  is a new CS matrix obtained from: ( )/I AN M ⊗ , by 

taking the rows corresponding to available measurements, and 

columns corresponding to the frequencies ki=(k1i, k2i, …, kni), 

for i=1,…,K. The matrix A is of size M×M obtained as in (13).   

IV. NUMERICAL EXAMPLES 

 

Example 1: Let us consider a third order polynomial phase 

signal in the form: 
3( ) exp( 2 16 8 )x t j Tt j Ttπ π= − +

 
where t=[-1/2,1/2) with step ∆t=1/1024, while T=32. Thus, the 

total signal length is M=1024 samples. Its discrete-time 

version is:  

32 1
( ) exp( ( 128 )

1024 2048
x m j m m

π
= − +  

with -512≤m<512.  

The signal is represented by N=32 randomly chosen 

measurements (3% of the total signal length). The incomplete 

set of samples is first multiplied by the corresponding 
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exponential term 
3exp( 2 )j Ttπα , in order to perform 

demodulation. Namely, different values of parameters α are 

used (between αmin=-20T=-640 to αmax=20T=640). After 

multiplication, the available samples are used for signal 

reconstruction (single iteration procedure [45], [46] is 

applied). It is important to emphasize that the resulting signal 

(multiplied by exponential terms of third order) will be spread 

in the PFT domain, as long as α is not matched by the signal 

parameter. Consequently, the single iteration reconstruction 

procedure will not return any relevant component (Fig.2 a and 

b).  

 

 
a) 

 

 
   b)       

 

 
c) 

 

Fig 2. The PFT (full data set) and reconstructed PFT for different values 

of αααα: a) αααα=-3T, b) αααα=12T, c) the result for αααα=16T (αααα is matched with 

signal parameter value) 
 

The signal becomes highly concentrated and sparse when α is 

equal to the chirp rate, allowing successful reconstruction 

(Fig.2.c). The reconstructed PFTs are calculated for each α in 

the range αmin to αmax. The third order phase parameter is 

obtained by changing value of parameter α and calculating 

reconstructed PFT. The position of maximum determines the 

exact parameter value. In this example the position of 

maximum is 37 (Fig. 3) which corresponds to α=16T, while 

for other α between -20T and 20T, the reconstruction results 

are zero-values.   

 

 

 
Fig 3.  The maximal values of PFT obtained for 41 different value of αααα 

(ααααmin=-20T to ααααmax=20T) 

 

Example 2: In this example we observe a multicomponent 

signal that consists of two chirps: 
2 2( ) exp( 2 8 8 ) exp( 2 16 )x t j Tt j Tt j Ttπ π π= − + + − . 

The signal parameters t, ∆t and T, as well as the number of 

available samples are the same as in the previous example. In 

order to perform demodulation, the incomplete set of samples 

is firstly multiplied by the corresponding exponential term 
2

exp( 2 )j Ttπα . Observe that in this case we deal with two 

different chirp rates 8T and 16T (T=32), which cannot be 

detected at once. Hence, we need to change values of α 

(αmin=-20T to αmax=20T, with the step T), aiming to detect 

each chirp rate. Note that in practical applications the domain 
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of chirp-rates can be determined according to a priori 

knowledge of the application set up (for example in radars). 

Let us first observe the spectral representations obtained using 

the PFT for different values of α (Fig. 4). For the purpose of 

analysis, the illustrations are made for the full set of signal 

samples. We might see from Fig. 3, that for α equal to one of 

the components chirp rate, we obtain very concentrated 

representation (almost a sinusoid). Now, we need to provide 

an efficient procedure for detection of chirp rates. 

 

 
Fig. 4. The spectral representations obtained for different values of αααα. 

The cases: c) αααα=8T and e) αααα=16T, illustrate the results when the chirp 

rates are matched (concentrated representations)  

 

In each iteration the single iteration reconstruction procedure 

is applied, [45], [46]. When the PFT spectrum is spread (α 

does not match the chirp rate), the result of reconstruction is 

zero, or it is much smaller than in the case of concentrated 

spectrum (α matches the chirp rate). The two highest 

components obtained for the range α∈[αmin, αmax] correspond 

to the cases when desired chirp rates are matched. After 

detecting the chirps rates, the original amplitudes of 

demodulated components are firstly recovered and then the 

chirp components are obtained using the re-modulation 

process. The two recovered signal components are shown in 

Fig. 5, as well as the error between the original and 

reconstructed component, which is completely negligible. 

 
Example 3: Consider a multicomponent signal: 

2

2

1
( 2 8 8 ), [ ,0]

2( )
1

( 2 14 ), (0, ]
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exp j T t j Tt t
x t

exp j T t t

π π

π
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==== 
 − ⋅ ∈− ⋅ ∈− ⋅ ∈− ⋅ ∈


 

where the total number of samples is M=1024 (t=[-1/2,1/2], 

with the step ∆t=1/1024). Due to the compressive sampling, 

the signal is represented by a small set of samples. The LPFT 

is calculated using non-overlapping windows of size 32 

samples, and for different α values. Thus, for each window, 

the available signal samples are multiplied with the 

corresponding exponential, and the signal is reconstruction is 

performed, resulting in the LPFT. The procedure is repeated 

for each windowed signal part. The LPFT obtained for 

different α are shown in Fig. 6. Note that for the cases α=8T 

and α=14T we obtain two pure sinusoids in the LPFT domain, 

meaning that α is matched with the chirp rate.  

   

 

 
a) 

   
b) 

 

Fig. 5. a) First chirp component: real parts of original, reconstructed 

component and reconstruction error, b) Second chirp component: real 

parts of original, reconstructed component and reconstruction error  
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Fig 6. LPFT for different αααα, where cases d) and e) correspond to αααα=8T 

and αααα=14T. Number of available samples is 25% of the window length 

 

  
Fig 7.  Maximal components obtained from reconstruction algorithm for 

different values of αααα (ααααmin=-20T to ααααmax=20T) 
 

For each value of α we firstly calculate the projection of LPFT 

onto the frequency axes and then collect the maximal 

component of the projection vector. The two highest peaks in 

different iteration will correspond to the matched chirp rates 

cases, as shown in Fig. 7 (position 29 corresponds to α=8T, 

while position 35 corresponds to α=14T). 

 
a) 

 
b) 

Fig. 8. a) Original (full data set) and reconstructed signals in time 

domain- real part, b) The Fourier transform of the original and 

reconstructed signals – absolute values 

 

 
Fig. 9. a) STFT of the original full signal, b) STFT of the CS signal (25% 

of samples are available), c) STFT of the demodulated signal, d) STFT of 

the reconstructed signal 

 

0 200 400 600 800 1000
-1

0

1

time

Original full signal

0 200 400 600 800 1000
-1

0

1

time

Reconstructed signal

0 200 400 600 800 1000
0

20

40

60

frequency

Fourier transform of the original signal

0 200 400 600 800 1000
0

20

40

60

frequency

Fourier transform of reconstructed signal



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8

The original (full data) and reconstructed signals along with 

the corresponding Fourier transforms are shown in Fig. 8. The 

STFTs of the original full signal, the CS signal, the 

demodulated signal, and the reconstructed signal are shown in 

Fig. 9.   

  

Example 4: In this example we will observe the noisy signal 

case, in order to measure the output SNR (SNRout). Hence, we 

observe the signal with K=3 components in the form: 
2 2

2

( ) exp( 2 8 8 ) exp( 2 8 16 )

exp( 2 8 8 ) ( )

x t j Tt j Tt j Tt j Tt

j Tt j Tt t

π π π π

π π ε

= − + + − + +

+ − − +
 

where ( )tε   is Gaussian noise. The same signal parameters are 

used in this example as well. The statistical evaluation on the 

achieved SNRout is done within 1000 repetitions of the 

reconstruction procedure (for a predefined SNRin≈5dB and 

SNRin≈10 dB). The theoretical and statistical (experimental) 

results are given in Table 1 (columns III and IV, respectively). 

It can be observed that for each pair (K,N), the SNRout is 

reduced for 10log(K/N) compared to SNRin. 

 
TABLE 1. THE EXPERIMENTAL RESULTS FOR THE SNROUT 

 
No. measur. SNRin SNRout=SNRin-

10log(K/N) 

SNRout 

statistically 

N=256 
SNRin= 5 dB 

24 dB 24.3 dB 

N=80 19.3 dB 19.62 dB 

N =256 
SNRin= 10 dB 

29.3 dB 29.64 dB 

N =80 24.25 dB 24.04dB 

 

 
Example 5: The performance of the proposed approach is 

finally examined via statistical test method to illustrate the 

convergence of the algorithm. The statistical test included 

several realizations with: a) a random selection of phase 

parameters, b) a different number of signal components K (up 

to 64), and c) a different number of available samples (N). 

Some interesting results are shown in Fig.10 and Fig.11 (for 

n=2; M=128 and M=512, respectively). Based on these 

statistical tests, we may conclude that the algorithm in this 

case converges to the exact solution for approximately N≥6K 

with a high probability. 

  
Fig. 10 The percentage of the full reconstruction (with error bellow 10-10) 

in terms of the number of measurements and the number of signal 

components (full signal length M=128) 

 
Fig. 11 The percentage of the full reconstruction (with error bellow 10-10) 

in terms of the number of measurements and the number of signal 

components (full signal length M=512) 

V. CONCLUSION 

 

The method for compressive sensing reconstruction of 

nonstationary signals with polynomial phase function is 

proposed. The PFT and the LPFT are used to achieve the 

sparse representations of considered signals. It was shown that 

the polynomial phase signals could be stationarized and sparse 

in these domains, which further allows reconstruction from 

random measurements. Moreover, the new PFT based CS 

matrix was derived, as well as the signal reconstruction 

algorithm that includes phase parameters detection, 

demodulation and components reconstruction. Note that the 

exact signal reconstruction (reconstructed signal is identical to 

the original one) can be achieved in the non-noisy signal case. 

In noisy environment, the SNR at the output is decreased for 

10logK/N comparing to the input SNR. The experimental 

results showed that the proposed method can be efficiently 

applied in different scenarios: highly undersampled data (3% 

of the original signal length), a noisy signal, and a signal that 

changes phase parameters over its duration. The future work 

may include signals characterized by other phase laws, which 

may further lead to the proposed concept generalization.  
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