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Abstract: A nonlinear method based on anisotropic diffusion notion is proposed in this paper to 

remove noise from noisy signals modulated with multiple carrier signals by preserving carrier signals 

as well as discontinuities present in the original noiseless signals. Gaussian and correlated noise 

contaminating signals with up to four carriers are considered here. Our algorithm proposed here is 

implemented with both explicit and semi-implicit discretization schemes. Experiments presented here 

demonstrate promising results indicating a better performance for our nonlinear noise removal method 

in comparison with the state-of- art in the literature. 
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I. INTRODUCTION 

The significance of the orthogonal frequency-division multiplexing (OFDM) over single-carrier 

modulation techniques is that OFDM can cope with severe channel conditions such as high frequency 

attenuation in a long wire, narrowband interference and frequency selective fading because of 

multipath. In the current state-of-the art, the effect of additive noise such as white Gaussian noise 

(AWGN) and correlated noise is considered to evaluate some characteristics of the system such as its 

bit error rate (BER) performance (see e.g. [1] and [2]). No concrete work in the literature exists for 

noise removal from noisy signals with multiple carriers by preserving some key features of the 

original noiseless signals such as carrier signals and discontinuities separating the consecutive bits. In 

this paper, we present a nonlinear filter based on the notion of anisotropic diffusion to remove noise 

from noisy signals and preserve key features of the original noiseless signals such as carrier signals 

and discontinuities. The notion of anisotropic diffusion as a nonlinear filter to remove the noise and 

preserve discontinuities in images is introduced by Perona and Malik in [3]. Such a nonlinear filter is 
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generalized for 3D volumetric MRI images in [4] and 2D colour images in [5]. A robust algorithm to 

estimate a piecewise smooth image from the noisy image is developed by Black et al. in [6]. 

Tschumperie [7] proposes a fast anisotropic smoothing algorithm based on curvature-preserving 

partial differential equations (PDE) for the noise removal of multi-valued images. A nonlinear band 

pass filtering algorithm based on anisotropic diffusion for Binary Phase-Shift Keying (BPSK) signals 

is proposed by Mahmoodi [8]. This algorithm however can be applied to only complex signals and 

therefore requires calculating the imaginary part of a real valued signal before the filtering process 

starts. A nonlinear band pass filtering algorithm based on anisotropic diffusion for real valued signals 

is therefore proposed in [9] to avoid the requirement for the construction of the imaginary part of a 

real valued signal. Our contributions in this paper are as follows: 

i) The anisotropic diffusion based filtering method for band pass signals is extended for carriers 

with multiple frequencies. This extension enables us to perform the noise removal for OFDM 

signals by preserving discontinuities and all carrier signals. 

ii) The algorithm proposed here is also implemented by employing a semi-implicit discretization 

scheme in contrast with the previous works in which only explicit discretization technique is 

used. 

iii) Correlated and white Gaussian noise is considered to demonstrate the efficiency of our proposed 

filtering method. 

There are four major differences between the work presented in this paper and the previous works in 

[8] and [9]: 

a) The noise removal methods in [8] and [9] are for signals with a single carrier frequency; 

however the nonlinear filter presented here is extended for signals with multiple carrier 

frequencies. As demonstrated in this paper, such an extension is not trivial. A numerical 

experiment is also presented in section IV to demonstrate that the noise removal technique for 

single frequency signals [8] fails for signals with multiple carrier frequencies.  



b) The nonlinear filters in [8] and [9] are numerically implemented by using an explicit 

discretization scheme; however our system in this paper is implemented by employing a semi-

implicit discretization technique to increase the numerical stability of our algorithm here in 

comparison with the algorithm presented in [8] and [9]. 

c) The noise removal method discussed in [9] is for real valued signals (with a single carrier 

frequency) and is a special case of the noise removal algorithm for signals with the double 

carrier frequencies discussed here. Thus the PDE associated with the noise removal presented 

in [9] possesses real valued coefficients. However PDEs presented in this paper is more 

general and have complex valued coefficients. 

d) The theoretical foundation for double frequency noise removal methods for signals free from 

discontinuities (linear case) is also established in this paper. As a result, the propagator for a 

PDE related to a noise removal system for signals with double carrier frequencies is 

analytically derived here. 

The structure of the rest of the paper is as follows. The theory is outlined in section II. Section III 

deals with implementation issues. The results are presented in section IV and finally conclusions are 

drawn in section V. 

II. THEORY 

The anisotropic diffusion equation, used as a nonlinear noise removal method for low pass signals by 

Perona and Malik [3] is written as.  
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with initial and boundary conditions: 
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where   RRLu  0: ,   RLy 0:  (L is the length of signal) and 0K  are the 

smoothed low pass signal at the iteration (virtual time) t, the original noisy signal and a function of x 

respectively. The aforementioned partial differential equation is extended by Mahmoodi [8] for the 

noise removal of band pass signals with a single carrier with a constant frequency 1  as follows: 
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with initial and boundary conditions: 
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where   RRLu  0: ,   RLy 0:  and 01 K are the smoothed signal, the noisy signal, 

and a function of x respectively and also 1j . Boundary conditions (4-b) and (4-c) are 

reasonable, because we have no information about the signal at locations 0x  or Lx  . Therefore 

the values of the smoothed signal at 0x  and Lx  should remain unchanged. The best guess for 

the fixed values in these locations is the values of the noisy signal at 0x  and Lx  . Anisotropic 

diffusion equation (3) with initial and boundary conditions (4) provides a method to smooth band pass 

signals with a single carrier with frequency 1 . 

II-A) NOISE REMOVAL FOR SIGNALS WITH TWO CARRIER FREQUENCIES 

In this subsection, we propose a higher order anisotropic diffusion equation for the noise removal of 

noisy signals with two carrier frequencies. Let us assume that the anisotropic diffusion associated with 



noisy signals with carrier frequency 1  is given by equations (3) and (4) and the anisotropic diffusion 

equation associated with band bass signals whose carrier frequency is 2 , can be written as: 
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with initial and boundary conditions: 
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)0(),0( ytu                     (6-b) 
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To smooth a band pass signal with two carrier frequencies 1  and 2  such as an OFDM signal, 

equations (3) and (5) should be combined. It is noted that any linear combination (i.e. weighted 

summation/subtraction) of these equations would not be able to smooth a band pass signal with two 

carrier frequencies. In this paper, we therefore propose the following equation to smooth a band pass 

signal with carrier frequencies 1  and 2 : 
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with initial conditions: 
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and boundary conditions: 
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The rationale behind the idea proposed here as equation (7) for signals with double carrier frequencies 

is explained in appendix A.  

PDE (7) can also be written as: 

uj
x

Kj
x

j
x

Kj
xtt

u






































































2221112

2

  

uj
x

Kj
x

j
x

Kj
x





















































 222111                (10) 

Theorem 1: The propagator of PDE (10) is given by equation (11) for a constant 21 KKK  : 
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The proof is presented in Appendix B. 

It is important to note that PDE (10) is used to remove noise from complex valued band pass signals. 

For PDE (10), if there is a discontinuity in the carrier signal with frequency 1 , then there will be a 
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1  at the point of discontinuity. Therefore 1K should be a function of x and needs 

to approach zero at such a discontinuity [8]. In such a case, u at this discontinuity point remains 

unchanged with respect to t. Hence the discontinuity in the carrier signal with frequency 1  is 

preserved. Similarly, if there is a discontinuity at a point in the carrier signal with frequency 2 , then 

2K being a function of x, should approach zero to preserve such a discontinuity at that point. This 

aforementioned notion is employed in this paper to numerically implement anisotropic diffusion 

algorithm to smooth noisy signals with two carrier frequencies. The numerical implementation is 

described in more details in section III. If 01    and 02   , then PDE(10) can be exploited for 

the noise removal of real valued band pass signals with carrier frequency of 0  [9]. In a linear case 

where 21 KKK   is a constant, PDE (10) is simplified to the following equation: 
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PDE (12) is a differential equation with real valued coefficients and therefore its solution is also a real 

valued signal u. According to theorem 1, the propagator of PDE (12) can then be calculated as: 
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II-B) NOISE REMOVAL FOR SIGNALS WITH MULTIPLE CARRIER FREQUENCIES 

PDEs (7) and (10) can be generalized to smooth noisy signals with three carrier frequencies as 

follows: 
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where 1 , 2  and 3 are the carrier frequencies of the noisy signal )0,(xu . PDE (14) can also be re-

written as: 
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where i s (i= 1, 2 and 3) are the frequencies of the carrier signals and 
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Similar to PDE(10), in PDE (17), iK s,  (i= 1, 2 and 3) being functions of x, need to approach zero at 

the points of discontinuities. A numerical method in section III is described to ensure that iK s,  

approach zero at discontinuities in carrier signals with frequencies i s (i= 1, 2 and 3). 

The extension of PDE (17) to signals with four carrier frequencies is straightforward as follows: 
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PDE (18) can then be re-written as: 
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where i s (i= 1, 2,3 and 4) are the frequencies of the carrier signals and 
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Similar to the method described for PDEs (10) and (18), iK s, (i= 1, 2, 3 and 4) being functions of x, 

should approach zero at the points of discontinuities. Extension for the signals with the higher number 

of carrier frequencies than four is also straightforward. The general form of an anisotropic diffusion 



equation for noisy signals containing n carrier signals to remove the noise and to preserve 

discontinuities as well as carrier signals is as follows: 
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III. DISCRETIZATION AND IMPLEMENTATION 

Perona and Malik in their seminal work [3] employ an explicit discretization scheme to implement 

their anisotropic diffusion equation for image noise removal. Explicit discretization methods are also 

used to implement anisotropic diffusion equation for band pass signals with a single carrier frequency 

[8][9]. The main advantage of explicit discretization methods is that it is easy to implement. However 

since anisotropic diffusion equations are stiff, the algorithm is unstable, unless the step size t  is 

taken very small. However the smaller, the step size, the slower the algorithm approaches to the 

desired solution. The discretization scheme used in this paper is semi implicit method which is stable 

for higher values of step sizes. As a result, the algorithm implemented by the semi-implicit 

discretization scheme converges to the desired solution faster when it is implemented by the explicit 

discretization scheme. The discretization method for signals with two carrier frequencies based on 

PDE (10) is presented in subsection (III-A). In subsection (III-B), the semi implicit discretization for 

PDEs containing multiple carrier frequencies are also discussed. The Euclidean distance between the 

smoothed signals in two consecutive iterations is used as a stopping condition. When such a distance 

is less than a user defined threshold ( sT ), the algorithm stops. Obviously the lower the threshold sT is 

chosen, the smoother the signal and the longer the running time of our algorithm will be. Parameter 

x is set to unity in the all experiments in this paper. Parameter t  plays an important role in the 

stability and the speed of convergence of algorithm. Lower values for t  cause the algorithm to 



approach to the desired solution more slowly. Higher values for t , on the other hand, increases the 

running speed of the algorithm if there is no instability. But the algorithm may also become unstable 

with such high values of t . Parameter q is chosen based on the amount of transitions in 

discontinuities of the original noiseless signal and the level of noise in the noisy signal. For signals 

contaminated with severe noise, larger value of q, would be more convenient. To avoid smoothing 

discontinuities in less noisy signals, it is best to choose lower values for q. Our assumption here is that 

the original noiseless signal has at least one full cycle of the carrier signals between two consecutive 

discontinuities to avoid difficulties associated with the uncertainty principle [10]. 

III-A) DISCRETIZATION FOR SIGNALS WITH TWO CARRIER FREQUENCIES 

PDE (10) can be discretized explicitly and implicitly. However an implicit method is employed in this 

paper to discretize PDE (10). Since PDE (10) is generally a nonlinear equation, we can therefore 

exploit a semi implicit scheme for discretization. Equation (10) can be discretized as follows: 
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where N is the length of the original noisy signal and 

)),(()()),(()()),(()(),(
2

2

2

2

2

2

2 txuDuKjtxuDuKtxuDuKtxw R

R

R

R

L

L 









  , 

       (21) 



And also 

),(
),(),(

)),(( 11
txwj

x

txwtxxw
txwDL  




 , 

),(
),(),(

)),(( 11
txwj

x

txwtxxw
txwDR  




 , 

 )),((
1

)(
1

1 ttxwDg
x

wK L

L 


 


 and  )),((

1
)(

1

1 ttxwDg
x

wK R

R

R 


 

 , 

),(
),(),(

)),((
1

txuj
x

txutxxu
txuD i

L  



 ,      for i=1,2 

),(
),(),(

)),((
1

txuj
x

txutxxu
txuD i

R  



 ,     for i=1,2 

 )),((
1

)( ttxuDg
x

uK L

L i

i 


 


 and  )),((

1
)( ttxuDg

x
uK R

RR i

i 


 


,              for i=1,2 

Function )(yg is set to one of the following functions: 
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where q is a parameter set by the user. 

In equations (20), there are terms such as )(1 uKL


 and )(1 uKR


 that are nonlinearly related to the 

values of ),( txu . These terms are considered as implicit terms and to avoid a set of nonlinear 

equations, these terms are estimated at iteration tt   and therefore are treated as coefficients. On 



the other hand, the terms that are linearly related to ),( txu  are regarded as explicit and therefore are 

considered as unknowns. In such a scheme, equations (20) therefore becomes a linear system in which 

the unknowns are ),( txu  for various values of x. It is more convenient to write equations (20) in 

matrix form. To this end, let us write equations (20) with respect to ),( txxu  , ),( txu  and 

),( txxu  , i.e.: 

DtxxCutxButxxAu  ),(),(),(               (24) 

where the coefficients A, B, C, and D are evaluated in the previous iteration i.e., at tt   and 

therefore they are considered as known coefficients in the current iteration. These coefficients are 

calculated as follows: 
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Linear system (24) is therefore written in a matrix form as follows: 
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It is noted that boundary conditions (9-a) and (9-b) are employed in (29). These boundary conditions 

are reasonable because there is no information about the signal for 1x  and nx   . If the square 

nn  matrix in (29) is full rank, the inverse of this square matrix multiplied by the column vector in 

the left hand side of (29) is the solution (the smoothed signal at iteration t ). However if this square 

matrix is a low rank matrix, the pseudo-inverse of this matrix is multiplied by the vector column in the 

left hand side of (29) to find the solution. The solution of linear system (29) is the smoothed signal 

),( txu  in a vector form at iteration t. We also notice that linear system (29) is solved for 1t . For 

t=0, the signal u is the initial condition u(x,0). 

III-B) DISCRETIZATION FOR SIGNALS WITH MULTIPLE CARRIER FREQUENCIES 

Both explicit and semi-implicit discretization schemes can be used to discretize PDE (17) for signals 

with three carrier frequencies. In a semi-implicit discretization framework, PDE (17) is discretized as 

follows: 
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where x=1,2,3,…,N and N is again the length of original noisy signal and 
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Function g(y) is given in equation (22) or (23). Similar to subsection (III-A), nonlinear terms with 

respect to ),( txu  in (30) are considered as implicit terms and therefore are evaluated at previous 

iteration and used as coefficients in the current iteration. The terms related to ),( txu  linearly are 

regarded as explicit terms and are therefore treated as unknowns. As a result, equation (30) can be 

written as the following linear system, i.e.: 

DtxxCutxButxxAu  ),(),(),(                 (31) 

where A, B, C, and D are coefficients containing terms evaluated at the previous iteration, i.e.: 
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Therefore linear system (31) can be written in the matrix form of equation (29) with the same 

boundary conditions corresponding to boundary conditions (16-a) and (16-b). 

Semi-implicit discretization for signals with four carrier frequencies is also similar to those for signals 

with two and three carrier frequencies presented in the previous and the current subsections and 

therefore are skipped here. 

IV. RESULTS 

The first example presented here deals with a signal with no discontinuity. Figure (1-a) shows a signal 

with two carrier signals with frequencies 1.01  , 2.02   rad/s. White zero mean Gaussian noise 

is added to this signal to produce the noisy signal with SNRdB = -0.82, as depicted in figure (1-b). 

Since there is no discontinuity in the original noiseless signal, then the noise reduction can be 

achieved by convolving the noisy signal with propagator (11). Since the operation is linear 

(convolution), therefore it is not iterative, and no time step setup is required for this experiment. The 

smoothed signal is presented in figure (1-c). 

In the next example, white Gaussian noise is added to a typical OFDM signal (shown in figure (2-a)) 

containing three discontinuities and modulated with two carrier signals with frequencies 0.25 and 0.45 

rad/s to produce a noisy signal with SNRdB = -0.19, as shown in figure (2-b). The double frequency 

anisotropic diffusion discussed in subsection (II-A) with q=10 and 01.0t  is applied to the noisy 

signal of figure (2-b) to produce the smoothed signal shown in figure (2-c). As shown from this 

figure, the noise is removed and the discontinuities and carrier signals are preserved. The single 

carrier anisotropic diffusion algorithm [8] with frequency 0.25 rad/s is also applied to the noisy signal 

of figure (2-b) to produce the smoothed signal shown in figure (2-d) for comparison purposes. As can 



be seen from figure (2-d), only one carrier signal is preserved in the smoothed signal and all 

discontinuities are smoothed. As can be seen from this figure, the discontinuities located at 100, 200 

and 300 in the horizontal axis are preserved in the smoothed (filtered) signal shown in figure (2-c). 

However by increasing the noise level (or lowering the SNR) in the noisy signal, the discontinuities in 

the smoothed (filtered) signal may be smoothed or some discontinuities associated with the noise and 

not the original noiseless signal, may be preserved in the smoothed signal as reported in [11]. 

The next experiment compares the explicit and implicit methods for the discretization of PDE (10). 

An explicit method similar to one discussed in [8] for the discretization of PDE (10) with parameters

0005.0t , q=10 is applied to the noisy signal of figure (2-b) to produce the signal smoothed after 

1000 and 4000 iterations, as shown in figures (3-a) and (3-b) respectively. As can be seen from figure 

(3), the signal smoothed after 1000 iterations is still noisy. The signal obtained after 4000 iterations 

and shown in figure (3-b) is more smoothed but it is not as smoothed as the signal smoothed by the 

semi implicit method (see figure (2-c)) taking only 600 iterations. Semi-implicit discretization 

techniques are well known to bring more numerical stability to the numerical solutions of the 

nonlinear differential equations. However this more numerical stability may come with more 

numerical costs for CPU times. The time costs for both algorithms to reach a certain numerical 

accuracy for solutions may vary, and primarily depend on the value of t . The possible highest value 

set for t  also depends on the amount of noise present in the signal, as noise is one of the parameters 

which can cause instability in the algorithm. Figure (4-a) shows a typical OFDM noiseless signal 

modulated with two carrier signals with frequencies 2.01  , 5.02   rad/s.  

This signal is contaminated with a correlated Gaussian noise (white Gaussian noise filtered with the 

transfer function
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nz

zH ) to produce a noisy signal with 44.5dBSNR , as depicted in 

figure (4-b). The nonlinear noise removal algorithm proposed in section II-A for band pass signals 

modulated with two carrier signals is applied to this noisy signal to produce the smoothed signal 

shown in figure (4-c). As observed from this figure, the signal is smoothed. But the original 



discontinuities of the noiseless signals as well as both carrier signals are preserved in the smoothed 

signal. Figure (5) shows that in the next experiment our algorithm smooths a noisy signal modulated 

with carrier signals with three different frequencies 0625.01  , 125.02   and 25.03   rad/s. 

White Gaussian noise is added to the noiseless signal with three aforementioned carrier frequencies 

shown in figure (5-a) to produce the noisy signal shown in figure (5-b) with 04.12dBSNR .  

Our anisotropic diffusion technique for three carrier signals explained in section II-B is applied to this 

noisy signal to produce the smoothed signal shown in figure (5-c). As shown from this figure, signal 

discontinuities as well as carrier signals are preserved. 

Figure (6-a) also shows a typical OFDM signal modulated with four carrier signals ( 0313.01  ,

0625.02  , 125.03   and 25.04   rad/s). This noiseless signal is contaminated with white 

Gaussian noise to produce the noisy signal of figure (6-b) with 92.8dBSNR . Our anisotropic 

diffusion algorithm for band pass OFDM signals with four carrier frequencies is applied to the noisy 

signal of figure (6-b) to produce the smoothed signal shown in figure (6-c). As observed from this 

figure, original signal discontinuities as well as carrier signals are persevered in the smoothed signal. 

Let us now see how the performance of the algorithm implemented with the semi-implicit scheme 

changes under the variations of the algorithm’s parameters as well as under the presence of noise. Our 

anisotropic diffusion implemented with the semi-implicit scheme with double carrier frequencies with 

10q , and 01.0t  is applied to a noisy OFDM signal with two carrier frequencies 125.01  , 

5.02   rad/s which contains discontinuities and is contaminated with Gaussian noise with 

38.4dBSNR . In this experiment, we measure an error term (equation (36)) as a difference between 

the original noiseless signal and the smoothed signal filtered by the algorithm applied to the noisy 

signal as follows: 
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where )(nu and )(nu f  are noiseless and filtered discrete signals respectively with total number of N 

samples. This error term represents the performance of the algorithm. Less the value of the error term, 

the better the performance of the algorithm is. The error term measured in this experiment is plotted in 

figure (7) against the convergence time of the algorithm implemented with the semi-implicit method 

discussed in section III-A. As can be seen in this figure, lower values for error results in more 

computation time. After a point where the computation (convergence) time is around 10 seconds, the 

error decreases very slowly. A slow decrease in error term after this point causes the computation 

(convergence) time to increase significantly. Figure (8) shows how the error term (the algorithm 

performance) measured in (36) and convergence time for the anisotropic diffusion algorithm 

implemented with semi-implicit scheme with double carrier frequencies, changes by varying 

parameter q and keeping the other parameters of the experiment constant ( 01.0t , 125.01  , 

5.02  , 38.4dBSNR ). As can be seen from this figure, the convergence (computation) time to 

process the signal remains almost unchanged with various values for parameter q as shown in figure 

(8-b). However the error term (measured in equation (36)) is minimal for a certain value of q as 

shown in figure (8-a). In this experiment, the value of q for which the error is minimal is around 10. 

By increasing the value of parameter q, the error slightly increases. This is due to the fact that higher 

values for q cause slightly over-smoothing in the signal. Values of q lower than 10 also increase the 

error term significantly, because more noise remains in the filtered signal for lower values of q. Figure 

(9) shows how the error and convergence time change with respect to t  for q=10 and 

38.4dBSNR . As can be seen from figure (9-a), the error representing the performance of the 

algorithm remains unchanged by varying t . On the other hand, the convergence time decreases as 

t  increases as shown in figure (9-b). However for the values of t  greater than 0.02, the algorithm 

becomes unstable and it therefore diverges. The error and convergence time of the anisotropic 

algorithm with double carrier frequencies ( 125.01  , 5.02  ) for 01.0t  and q=10 with 

respect to SNR of the noisy signal are depicted in figures (10-a) and (10-b) respectively. As shown in 

figure (10-a), if noise level increases in the signal (i.e. SNR decreases), the error (measured by using 



equation (36)) also increases. This is expected, because more level of noise increases the error in the 

filtered signal. On the other hand, the convergence time also increases as the noise level increases. 

This is also predictable, because the algorithm needs more iterations and therefore more time to 

smooth the noisy signal, if the noise level becomes higher. In the final experiment, zero mean 

Gaussian noise is added to the signal shown in figure (2-a) to produce a noisy signal with 

SNR=0.77dB. Our anisotropic diffusion algorithm for double frequencies (with frequencies 0.25 and 

0.45) implemented with the semi-implicit discretization method for q=10 and 01.0t , is applied 

to this noisy signal for noise removal. The algorithm converges after 300 iterations. Figure (11) shows 

the evolution of SNR (i.e. the SNR of the smoothed signal in each iteration) with respect to the 

iteration number. As can be seen from this figure, the SNR of the smoothed signal increases as our 

algorithm approaches the convergence. As observed from this figure, the SNR of the original noisy 

signal is 0.77dB and the SNR of the smoothed signal in the final iteration increases to 15.13dB. It is 

noted that all experiments performed in this paper are implemented in Matlab version R2015b run on 

a PC with dual core processors each with 2.60 GHz frequency.  

V.  CONCLUSION 

A nonlinear noise removal method based on anisotropic diffusion for OFDM signals modulated with 

multiple carrier signals is proposed in this paper. Such a nonlinear filtering technique reduces the 

noise from noisy OFDM signals and preserves discontinuities as well as the carrier signals. A semi 

implicit discretization technique is employed here to improve the smoothing property and stability of 

our nonlinear noise removal algorithm. Our algorithm implemented by semi-implicit and explicit 

discretization schemes are compared in this paper. Various levels of white and correlated Gaussian 

noise are considered here to demonstrate the ability of our algorithm for noise removal. The 

performance of our nonlinear noise reduction algorithm is evaluated here at the presence of various 

noise levels and also with various values for the algorithm’s parameters. The results presented in this 

paper indicate that our nonlinear noise reduction algorithm is robust in severe noisy environments. 

 



VI. APPENDICES 

Appendix A: 

Justification for Anisotropic Equation with Multiple Carrier Frequencies: 

In this appendix, we would like to explain the inspiration for the nonlinear noise removal method we 

propose in this paper for signals with multiple carrier signals. Let us start with signals with double 

frequency carriers. The generalization to more than two frequencies is then straightforward. As 

discussed in [8], the spatial temporal impulse response (propagator) in Fourier and Laplace domain 

for PDE (3) with carrier frequency 1 is as follows: 
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where s and   are temporal complex frequency (s-plane in Laplace domain) and spatial frequency 

(Fourier domain) respectively. Similarly, the spatial temporal impulse response (propagator) in 

Fourier and Laplace domain for PDE (5) with carrier frequency 2 can be written as: 
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Let us now assume that the desirable PDE can be written as: 

  0),( 21 uD           (A-3) 

where ),( 21 D  is a linear differential operator consisting of spatial and temporal derivatives and a 

function of two carrier frequencies 1 and 2 . Let us further assume that the spatial temporal impulse 

response (propagator) for PDE (A-3) is a linear combination of propagators (A-1) and (A-2). The 

spatial temporal impulse response (propagator) for PDE (A-3) in space-time domain can therefore be 

written as: 

);,();,(),( 2211  txBptxAptxu         (A-4) 



where 1p  and 2p are the spatial temporal impulse responses of PDEs (3) and (5) in space-time 

domain and A and B are constant. As a result, impulse response (A-4) can be written in Fourier-

Laplace domain as: 
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where A and B can be determined by using boundary conditions. From (A-6), it is straightforward to 

verify that equation (A-6) in Fourier-Laplace domain has the general form of PDE(7) in space-time 

domain. 

Appendix B 

Proof for theorem 1: 

In order to find the propagator of a linear case of equation (10), we need to consider the isotropic case 

for PDE (10) where 21 KKK   is constant, i.e.: 
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To find the propagator of PDE (B-1), let us consider the following initial conditions for this equation: 
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where )(x  is a Dirac delta function. By taking the Laplace transform from the both sides of equation 

(A-1), this equation is written as: 
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where ),( sxU  is the Laplace transform of ),( txu . By using equations (B-2) and (B-3) in equation 

(B-4) and taking the Fourier transform from the both sides of equation (B-4), one can obtain: 
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where ),( sU   is the Fourier transform of ),( sxU . From equation (B-5), ),( sU   is calculated as: 
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By taking the inverse Laplace transform from the both sides of equation (B-6), one can conclude: 
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Finally by taking the inverse Fourier transform of the both sides of equation (B-8), ),( txu is 

calculated as equation (11). 
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a                                                          b                                                  c 

Figure (1): Noise reduction in a signal with two carrier signals and no discontinuity a) noiseless 

signal with two carrier signals with frequencies 1.01  , 2.02   rad/s and with no discontinuity 

b) Noisy signal with white zero mean Gaussian noise with SNRdB = -0.82 c) the smoothed signal with 

K=1, t=53 and filter size =150 

    

a                                             b 

 

c                                               d 

Figure 2: Gaussian noise removal of a signal modulated with two carrier signals with frequencies 

0.25 and 0.45 rad/s a) original noiseless signal containing three discontinuities at locations 100, 200 

and 300 b) the signal of figure (2-a) contaminated with Gaussian noise (SNRdB = -0.19) c) the signal 

smoothed by the double carrier anisotropic diffusion with q=10 and 01.0t after 600 iterations d) 

the signal smoothed by the single frequency anisotropic diffusion [8] with a frequency of 0.25 and 

similar parameters 

  



 

a                                      b 

Figure (3): The noisy signal of figure (2-b) smoothed by using the explicit method for the double 

carrier anisotropic diffusion after a) 1000 iterations and b) 4000 iterations 

 

a                                           b                                      c 

Figure (4): Smoothing a signal contaminated with correlated Gaussian noise a) Original noiseless 

signal with discontinuities at locations 100, 200, and 300 b) Noisy signal with 44.5dBSNR

contaminated with correlated signal c) Smoothed signal by using our proposed algorithm with 

01.0t  and q=10, after 600 iterations 

 

a                                    b                                     c 

Figure 5: signal smoothing for OFDM signals with three carrier frequencies a) Noiseless signal with 

three carrier signals( 0625.01  , 125.02   and 25.03   rad/s) with discontinuities at 

locations 100, 200, and 300 b) White Gaussian noise is added to the signal of figure (5-a) to produce a 

noisy signal with 04.12dBSNR c) Smoothed signal by using our algorithm with 01.0t  and 

q=10 after 400 iterations 



 

a                                       b                                      c 

Figure 6: signal smoothing for OFDM signals with four carrier frequencies a) Noiseless signal with 

four carrier signals ( 0313.01  , 0625.02  , 125.03   and 25.04   rad/s) with 

discontinuities at locations 200, 400, and 600 b) white Gaussian noise is added to the signal of figure 

(6-a) to produce a noisy signal with 92.8dBSNR c) Smoothed signal by using our algorithm with 

01.0t  and q=10 after 600 iterations 

 

Figure (7): The plot describing the relationship between the error term (the difference between 

noiseless and filtered signals) and the convergence time  

 

a                                 b 

Figure (8): a) The error term and b) the convergence time of the anisotropic diffusion algorithm with 

double carrier frequencies ( 125.01  , 5.02  ) with respect to q for 01.0t  and  

38.4dBSNR  

 

 



 

a                                                  b 

Figure (9): a) The error term and b) the convergence time of the anisotropic diffusion algorithm with 

double carrier frequencies ( 125.01  , 5.02  ) with respect to t  for q=10 and  38.4dBSNR  

 

a                                                     b 

Figure (10): a) The error term and b) the convergence time of the anisotropic diffusion algorithm 

with double carrier frequencies ( 125.01  , 5.02  ) with respect to dBSNR  of the noisy signal 

for 01.0t  and q=10.  

 
 

 

Figure (11): The evolution of SNR (SNR of the smoothed signal in each iteration) with 

respect to the iteration numbers for the anisotropic diffusion with double carrier frequencies 

contaminated with the Gaussian noise for q=10 and 01.0t  

Iteration Number 

SNR of the 

Smoothed 

Signal (dB) 


