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Abstract

Compressed sensing is a signal processing technique in which data is acquired directly in a

compressed form. There are two modeling approaches that canbe considered: the worst-case (Hamming)

approach and a statistical mechanism, in which the signals are modeled as random processes rather than

as individual sequences. In this paper, the second approachis studied. In particular, we consider a model

of the form Y = HX + W , where each comportment ofX is given byXi = SiUi, where{Ui}
are i.i.d. Gaussian random variables, and{Si} are binary random variables independent of{Ui}, and

not necessarily independent and identically distributed (i.i.d.), H ∈ Rk×n is a random matrix with

i.i.d. entries, andW is white Gaussian noise. Using a direct relationship between optimum estimation

and certain partition functions, and by invoking methods from statistical mechanics and from random

matrix theory (RMT), we derive an asymptotic formula for theminimum mean-square error (MMSE) of

estimating the input vectorX givenY andH, ask, n→ ∞, keeping the measurement rate,R = k/n,

fixed. In contrast to previous derivations, which are based on the replica method, the analysis carried out

in this paper is rigorous.

Index Terms

Compressed Sensing (CS), minimum mean-square error (MMSE), partition function, statistical-

mechanics, replica method, conditional mean estimation, phase transitions, threshold effect, random

matrix.
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I. INTRODUCTION

Compressed sensing [1, 2] is a signal processing technique that compresses analog vectors by means

of a linear transformation. Using some prior knowledge on the signalsparsity, and by designing efficient

“encoders” and “decoders”, the goal is to achieve effectivecompression in the sense of taking a number

of measurements much smaller than the dimension of the original signal.

A general setup of compressed sensing is shown in Fig. 1. The mechanism is as follows: A real

vectorX ∈ Rn is mapped intoV ∈ Rk by an encoder (or compressor)f : Rn → Rk. The decoder

(decompressor)g : Rk → Rn receivesY , which is a noisy version ofV , and outputsX̂ as the estimation

of X. The measurement rate, or compression ratio,R, satisfiesk = ⌊Rn⌋. Generally, there are two

approaches to the choice of the encoder. The first approach isto constrain the encoder to be alinear

mapping, denoted by a matrixH ∈ Rk×n, usually called thesensing matrixor measurement matrix.

Under this encoding linearity constraint, it is reasonableto consider optimal deterministic and random

sensing matrices. The other approach is to considernon-linear encoders. In this paper, we will focus

on random linear encoders;H is assumed to be a random matrix with i.i.d. entries of zero mean and

variance1/n. At the decoder side, most of the compressed sensing literature focuses on low-complexity

decoding algorithms, which are robust with respect to observation noise, for example, decoders based on

convex optimization, greedy algorithms, etc. (see, for example [3-6]). In this paper, on the other hand, the

decoder is assumed optimal, namely, it is given by the minimum mean-square error (MMSE) estimator.

The input vectorX is assumed random, distributed according to some measure that is modeling the

sparsity. Note that this Bayesian formulation differs fromthe “usual” compressive sensing models, in

which the underlying signal is assumed deterministic and the performance is measured on a worst-case

basis with respect toX (Hamming theory). This statistical approach has been previously adopted in the

literature (see, for example, [5-13]). Finally, the noise is assumed additive, white, and Gaussian.

The main goal of this paper is to analyze rigorously the asymptotic behavior of the MMSE, namely,

to find the MMSE fork, n → ∞ with a fixed ratioR. Using the asymptotic MMSE, one can investigate

the fundamental tradeoff between optimal reconstruction errors and measurement rates, as a function of

the signal and noise statistics. For example, it will be seenthat there exists a phase transition threshold

of the measurement rate (which depends only on the input statistics). Above the threshold, the noise

sensitivity (defined as the ratio between that MMSE and the noise variance) is bounded for all noise

variances. Below the threshold, the noise sensitivity goesto infinity as the noise variance tends to zero.

There are several previously reported results that are related to this work. Some of these results were
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Fig. 1. Noisy compressed sensing setup.

derived rigorously and some of them were not, since they werebased on the powerful, but non-rigorous,

replica method. In the following, we briefly state some of these results. In [12], using the replica method,

a decoupling principle of the posterior distribution was claimed, namely, the outcome of inferring about

any fixed collection of signal elements becomes independentconditioned on the measurements. Also, it

was shown that each signal-element-posterior becomes asymptotically identical to the posterior resulting

from inferring the same element in scalar Gaussian noise. Accordingly, this principle allows to calculate

the MMSE of estimating the signal input given the observations. In [11], among other results, it was

shown rigorously that for i.i.d. input processes, distributed according to any discrete-continuous mixture

measure (where the discrete part has finite Shannon entropy), the phase transition threshold for optimal

encoding is given by the input information dimension. This result serves as a rigorous verification of

the replica calculations in [12]. In [9, 14, 15], the authorsdesigned structured sensing matrices (not

necessarily i.i.d.), and a corresponding reconstruction procedure, that allows compressed sensing to be

performed at acquisition rates approaching to the theoretically optimal limits. A wide variety of previous

works are concerned with low-complexity decoders, which are robust with respect to the noise, e.g.,

decoders based on convex optimizations (such asℓ1-minimization andℓ1-penalized least-squares) [3, 4],

graph-based iterative decoders such as linear MMSE estimation and approximate message passing (AMP)

[5], etc. For example, in [6, 16, 17], the linear MMSE and LASSO estimators were studied for the case of

i.i.d. sensing matrices as special cases of the AMP algorithm, the performance of which was rigorously

characterized for Gaussian sensing matrices [18], and generalized for a broad class of sensing matrices

in [9, 19, 20]. Another, somewhat related, subject, is the recovery of the sparsity pattern with vanishing

and non-vanishing error probability, was studied in a number of recent works, e.g., [6, 10, 16, 21-26].

For example, in [10], using the replica method and the decoupling principle, the authors extend the scope

of conventional noisy compressive sampling where the sensing matrix is assumed to have i.i.d. entries to

allow it to satisfy a certain freeness condition (encompassing Haar matrices and other unitary invariant

matrices).
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In this paper, under the previously mentioned model assumptions, we rigorously derive the asymptotic

MMSE in a single-letter form. The key idea in our analysis is the fact that by using some direct relationship

between optimum estimation and certain partition functions [27], the MMSE can be represented in

some mathematically convenient form which (due to the previously mentioned input and noise Gaussian

statistics assumptions) consists of functions of theStieltjesand Shannontransforms. This observation

allows us to use some powerful results from random matrix theory (RMT), concerning the asymptotic

behavior (a.k.a. deterministic equivalents) of the Stieltjes and Shannon transforms (see e.g., [28, 29] and

many references therein). Our asymptotic MMSE formula seems to appear different than the one that

is obtained from the replica method [12]. Nevertheless, numerical calculations indicate matching results

with high accuracy and therefore suggest that the results are equivalent. Thus, similarly to other known

cases in statistical mechanics, for which the replica predictions were proved to be correct, our results

support the replica method predictions. Notwithstanding the apparent equivalence, we believe that our

formula is more insightful compared to the replica method results. Also, in contrast to previous works, in

which only memoryless sources were considered (an indispensable assumption in the analysis), we allow

a certain structured dependency among the various components of the source. Finally, we mention that

in a previous related paper [30], the authors have used similar methodologies to obtain the asymptotic

mismatched MSE of a codeword (from a randomly selected code), corrupted by a Gaussian vector channel.

The remaining part of this paper is organized as follows. In Section II, the model is presented and the

problem is formulated. In Section III, the main results are stated and discussed along with a numerical

example that demonstrates the theoretical result. In Section IV, the main result is proved, and finally, in

Section V our conclusions are drawn and summarized.

II. N OTATION CONVENTIONS AND PROBLEM FORMULATION

A. Notation Conventions

Throughout this paper, scalar random variables (RV’s) willbe denoted by capital letters, their sample

values will be denoted by the respective lower case letters and their alphabets will be denoted by the

respective calligraphic letters. A similar convention will apply to random vectors and matrices and their

sample values, which will be denoted with same symbols in thebold face font. We letPS and pX,Y

be the probability mass function and the joint density function of the discrete random vectorS and

the continuous random vectorsX andY , respectively. Accordingly,pX will denote the marginal ofX,

pY |X will denote the conditional density ofY givenX , and so on. Probability measures will be denoted

generically by the letterP.
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The expectation operator of a measurable functionf (X,Y ) with respect to (w.r.t.)pX,Y will be

denoted byE {f (X,Y )}. The conditional expectation of the same function given a realizationy of Y ,

will be denoted byE {f (X,Y ) |Y = y}. When using vectors and matrices in a linear-algebraic format,

n-dimensional vectors, likex, will be understood as column vectors, the operators(·)T and (·)H will

denote vector or matrix transposition and vector or matrix conjugate transposition, respectively, and so,

XT would be a row vector. For two positive sequences{an} and {bn}, the notationan
·
= bn means

equivalence in the exponential order, i.e.,limn→∞
1
n log (an/bn) = 0, where in this paper, logarithms are

defined w.r.t. the natural basis, that is,log(·) = ln(·). For two sequences of random variables{an} and

{bn}, we denote byan ≍ bn andan ∼ bn the equivalence relationsan − bn
a.s.→ 0 andan/bn

a.s.→ 1 almost

surely (a.s.) forn → ∞, respectively. Finally, the indicator function of an eventA will be denoted by

1A.

B. Model and Problem Formulation

As was mentioned earlier, we consider sparse signals, supported on a subspace with dimension smaller

thann. In the literature, it is often assumed that the input processX has i.i.d. components. In this work,

however, we generalize this assumption by considering the following stochastic model: Each component,

Xi, 1 ≤ i ≤ n, of X , is given byXi = SiUi where{Ui} are i.i.d. Gaussian random variables with zero

mean and varianceσ2, and{Si} are binary random variables taking values in{0, 1}, independently of

{Ui}. Now, instead of assuming that thepatternsequenceS = (S1, . . . , Sn) is i.i.d., we will assume a

more general distribution. In particular, defining the “magnetization”1

ms ,
1

n

n
∑

i=1

si, (1)

we assume a distribution of the form

PS (s) = Cn · exp {nf (ms)} , (2)

wheref (·) is a certain function, independent ofn, andCn is a normalization constant. Note that for the

popular i.i.d. assumption,f is a linear function. Let us assume thatf twice differentiable with a finite

first derivative on[0, 1]. Then, by using the method of types [31], we obtain

Cn =





∑

s∈{0,1}n

exp {nf (ms)}





−1

1The term “magnetization” is borrowed from the field of statistical mechanics of spin array systems, in whichSi is taking

values in{−1, 1}. Nevertheless, for the sake of convince, we will use this term also in our problem.
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=





∑

m∈{0,1/n,...,1}

Ω (m) exp {nf (m)}





−1

·
= exp

{

−n sup
m

{h2 (m) + f (m)}
}

= exp {−n [h2 (ma) + f (ma)]} (3)

whereΩ (m) designates the number of binaryn-vectors with magnetizationm, h2 (·) designates the

binary entropy function, andma is the maximizer ofh2 (m) + f (m) over [0, 1]. In other words,ma is

the a-priori magnetization, namely, the magnetization thatdominatesPS(·). Note that the maximum of

h2 (m) + f (m) is achieved by an internal point in[0, 1]. This is becauseh2(·) is concave with infinite

derivatives at the boundaries, whereas the derivative off is finite. In case of multiple maximizers,

the global supremum (assumed to be unique) is identified by comparing the corresponding values of

h2 (m) + f (m).

To conclude, we summarize the structure of our sparsity model. The inputX is generated as follows:

first, the support size ofX is drawn according to the distribution in (2). Then, the support set is drawn

uniformly at random from all subsets of that cardinality. Finally, the non-zero elements are filled with

i.i.d. standard Gaussian random variables.

Remark 1The structure ofPS(·) in (2) can be relaxed by allowingf = fn, fn converge to some limit

f uniformly on [0, 1]. This relaxation allows our model to include, for example, the basic case of exact

sparsity in whichPS(s) = 1/
( n
nms

)

. Due to fact that our analysis is not affected by this relaxation

(attributed to the assumption that{fn} andf depend only onms), and accordingly, the main result of

this paper remains the same, we will assume thatf is fixed, as described in (2).

Remark 2In the i.i.d. case, eachXi is distributed according to following mixture distribution (a.k.a.

Bernoulli-Gaussian measure)

pX(x) = (1− p) · δ (x) + p · pG (x) (4)

where δ (x) is the Dirac function,pG (x) is a Gaussian density function corresponding to a Gaussian

random variable with zero mean and varianceσ2, and 0 ≤ p ≤ 1. Consider a random vectorX in

which each component isindependentlydrawn from pX . Then, by the law of large numbers (LLN),

1
n ‖X‖0

P→ p, where‖X‖0 designates the number of non-zero elements of the vectorX. In other words,

in this case,ma = p. Thus, it is clear that the weightp parametrizes the signal sparsity andpG is the prior

distribution of the non-zero entries. Note that the fact that, 1
n ‖X‖0

P→ ma, is true regardless the i.i.d.

April 30, 2021 DRAFT



7

assumption. Indeed, this follows from Chebyshev’s inequality, and the fact that (using the saddle-point

method [32, Section 4.2])

lim
n→∞

E

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

Si −ma

∣

∣

∣

∣

∣

]

= lim
n→∞

∑

s∈{0,1}n

|ms −ma|PS(s) (5)

= lim
n→∞

∑

s∈{0,1}n |ms −ma| exp [nf(ms)]
∑

s∈{0,1}n exp [nf(ms)]
= 0. (6)

Finally, we consider the following model

Y = HX +W , (7)

whereH is ak×n random matrix, a.k.a. thesensing matrix, with i.i.d. entries of zero mean and variance

1/n. We assume that the entries ofH , denoted by{Hi,j}i,j, have bounded normalized moments, i.e.,

E(
√
nHi,j)

l ≤ υl <∞, for l ∈ {1, 2, . . . , 8}. The components of the noiseW are i.i.d. Gaussian random

variables with zero mean and variance1/β. The MMSE ofX givenY andH is defined as follows

mmse(X|Y ,H) , E ‖X − E {X|Y ,H}‖2 (8)

whereE {X|Y ,H} is the conditional expectation w.r.t.pX|Y ,H . As was mentioned earlier, we are

interested in the asymptotic regime, wherek, n → ∞ with a fixed ratioR, which we shall refer to as

the measurement rate. Accordingly, we define theasymptotic MMSEas

D (R, β) , lim sup
n→∞

1

n
mmse(X|Y ,H) . (9)

Our main goal is to rigorously derive a computable, single-letter expression forD (R, β).

III. M AIN RESULT

In this section, our main result is first presented and discussed. Then, we provide a numerical example

in order to illustrate the theoretical results. The proof ofthe main theorem is provided in Section IV.

Before we state our main result, we define some auxiliary functions of a generic variablex ∈ [0, 1]:

b (x) ,
−
(

1 + βσ2 (R− x)
)

+

√

[1 + βσ2 (R− x)]2 + 4βσ2x

2βσ2x
, (10)

g (x) , 1 + βσ2xb (x) , (11)

Ī (x) ,
R

x
log g (x)− log b (x)− βσ2Rb (x)

g (x)
, (12)

V (x) ,
β3σ4b2 (x) x2

2g2 (x)
, (13)
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L (x) ,
β2σ2b (x)

2g2 (x)
, (14)

ν1 (x) ,
βR

g (x)
+

1

σ2
, (15)

and

t (x) , f (x)− x

2
Ī (x) + V (x)

(

maRσ
2 +

R

β

)

. (16)

Next, for x, y ∈ [0, 1] define the functions

ν2 (x, y) ,
βR

g (x)
− β2Rσ2b (x) y

g2 (x)
+

1

σ2
, (17)

and

α (x, y) ,
1

ν1 (x) ν2 (x, y)
. (18)

The asymptotic MMSE is given in the following theorem.

Theorem 1 (Asymptotic MMSE)Let Q be a random variable distributed according to

pQ (q) =
1−ma
√

2πPy

exp

(

− q2

2Py

)

+
ma

√

2π (Py +R2σ2)
exp

(

− q2

2 (Py +R2σ2)

)

(19)

wherema is defined as in (3) andPy , maσ
2R+R/β. Let us define

K (Q,α1, α2) ,
1

2

[

1 + tanh

(

L (α1)Q
2 − α2

2

)]

(20)

whereα1 ∈ [0, 1] andα2 ∈ R. Let m◦ andγ◦ be solutions of the system of equations

γ◦ , −E
{

K (Q,m◦, γ◦)Q2L′(m◦)
}

− t′(m◦), (21a)

m◦ , E {K (Q,m◦, γ◦)} (21b)

whereL′(·) and t′(·) are the derivatives ofL(·) and t(·), respectively, and in case of more than one

solution,(m◦, γ◦) is the pair with the largest value of

t (m◦) +

(

m◦ − 1

2

)

γ◦ + E

{

1

2
L (m◦)Q2 + log

[

2 cosh

(

L (m◦)Q2 − γ◦

2

)]}

. (22)

Finally, define

ρ◦1 , E
{

K (Q,m◦, γ◦)Q2
}

, (23)

ρ◦2 , E
{

K2 (Q,m◦, γ◦)
}

, (24)

ρ◦3 , E
{

K2 (Q,m◦, γ◦)Q2
}

. (25)

April 30, 2021 DRAFT
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Then, the limit supremum in (9) is, in fact, an ordinary limit, and the asymptotic MMSE is given by

D (R, β) = σ2ma − β2
α (m◦, ρ◦2)

g2 (m◦)
ρ◦3 + 2

α (m◦, ρ◦2) b (m
◦)

g3 (m◦)
β3σ2ρ◦2 [ρ

◦
1 −m◦Py] . (26)

In the following, we explain the above result qualitatively, and in particular, the various quantities that

have been defined in Theorem 1. The first important quantity ism◦, which is obtained as the solution

of the system of equations in (21), and which we will refer to as theposterior magnetization. We use

the term “posterior” in order to distinguish it from the a-priori magnetizationma; while ma is the

magnetization that dominates the probability distribution function of the source, before observingY , the

posterior magnetization is the one that dominates the posterior distribution, namely, after observing the

measurements. The solution of the equation

t (m◦) +

(

m◦ − 1

2

)

γ◦ + E

{

1

2
L (m◦)Q2 + log

[

2 cosh

(

L (m◦)Q2 − γ◦

2

)]}

= 0, (27)

is known as acritical point, beyond which the solution to (21) ceases to be the dominant posterior

magnetization, and accordingly, it must jump elsewhere. Furthermore, as we vary one of the other

parameters of our model (including the source model), it might happen that the dominant magnetization

jumps from one value to another.

It is interesting to note that there are essentially two origins for possible phase transitions in our model:

The first one is the channelH that induces “long-range interactions”2. The second is the source, which

may have possible dependency (or interaction) between its various components (see (2)). Accordingly,

in [33, Example E] the problem of estimation of sparse signals, assuming thatH = I, was considered.

It was shown that, despite the fact that there are no long-range interactions induced by the channel, still

there are phase transitions if the source is not i.i.d. Indeed, in the i.i.d. case, the problem is analogous to

a system of non-interacting particles, where of course, no phase transitions can exist. Specifically, assume

that H = I, and consider the special case wheref (m) is quadratic3, i.e., f (m) = am + bm2/2. We

demonstrate that the dominant posterior magnetization might jump from one value to another. Note that

this example was also considered in [33, Example E]. For simplicity of the demonstration, we assume

2In the settings considered, the posterior is proportional to exp
{

−β ‖y −HX‖2 /2
}

, and after expansion of the norm, the

exponent includes an “external-field term”, proportional to yTHx, and a “pairwise spin-spin interaction term”, proportional to

‖HX‖2. These terms contain a linear subset of components (or “particles”) of X, which are known as long-range interactions.

3As was noted in [33], quadratic model (similar to therandom-field Curie-Weiss modelof spin systems (see e.g., [34, Sect.

4.2])) can be thought of as consisting of the first two terms ofthe Taylor series expansion of a smooth function.
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that σ2 andβ are small, and then it can be shown thatm◦ behaves as [33, Example E]:

m◦ ≈ 1

2

[

1 + tanh

(

1

2
t′(m◦)

)]

(28)

≈ 1

2

[

1 + tanh

(

bm◦ + a

2

)]

, (29)

which can be regarded as the same equation of thespin-magnetization (namely, after transformingSi’s

into spins,µi ∈ {−1, 1}, using the transformationµi = 1 − 2Si) as in the Curie-Weiss model of spin

arrays (see e.g., [34, Sect. 4.2]). For example, fora = 0 and b > 1, this equation has two symmetric

non-zero solutions±m0, which both dominate the partition function. If0 < a≪ 1, it is evident that the

symmetry is broken, and there is only one dominant solution which is about|m0|. Further discussion on

the behavior of the above saddle point equation and various interesting approximations of the dominant

magnetization can be found in [33-35].

It is now tempting to compare Theorem 1 with the prediction ofthe replica method [12]. Unfortunately,

we were unable to show analytically that the two results are in agreement, despite the fact that there

are some similarities. Nevertheless, numerical calculations suggest that this is the case. Fig. 2 shows the

asymptotic MMSE obtained using Theorem 1 and using the replica method, as a function ofβ, assuming

an i.i.d. source with sparsity ratep = 0.1, and measurement rateR = 0.3. Table I shows the relative

error, defined as|mmseour − mmsereplica| /mmseour, as a function ofβ. It can be seen that both results give

approximately the same MMSE. The very small differences between the two results are just numerical,

finite precision errors. More enlightening numerical examples can be found in [10, 14, 15, 36].

TABLE I

COMPARISONBETWEENTHEOREM 1 AND THE REPLICA METHOD

10 log β Relative Error

0 5.11 · 10−3

10 8.09 · 10−3

15 6.12 · 10−3

20 6.51 · 10−3

25 6.03 · 10−3

30 4.65 · 10−3

35 4.49 · 10−3

40 4.59 · 10−3

April 30, 2021 DRAFT



11

0 5 10 15 20 25 30 35 40

10
−4

10
−3

10
−2

10
−1

10⋅ log β [dB]

A
sy

m
p

to
tic

 M
M

S
E

 

 
Replica result
Our result

Fig. 2. Comparison of the asymptotic MMSE using Theorem 1 andthe replica method as a function ofβ, for sparsity rate

p = 0.1, and measurement rateR = 0.3.

IV. PROOF OFTHEOREM 1

A. Proof Outline

In this subsection, before delving into the proof of Theorem1, we discuss the techniques and the main

steps used in the proof. The analysis is essentially composed of three main steps. The first step is finding

a generic expression of the MMSE. This is done by using a direct relationship between the MMSE

and some partition function, which can be found in Lemma 1. This expression contains terms that can

be asymptotically assessed using the well-known Stieltjesand Shannon transforms. In the second step

(appearing in Appendix B), we derive the asymptotic behavior of these functions (which are extremely

complex to analyze for finiten). In other words, we show that these functions can be replaced with some

other random functions that are much easier to work with, andthe loss/gap due to this replacemnt is

April 30, 2021 DRAFT
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bounded by a vanishing term. This is done by invoking recent powerful methods from RMT, such as the

Bai-Silverstein method [37]. The resulting functions are,in general, random, due to the fact that they

depend on the observationsy and the sensing matrixH . Accordingly, we show that for the calculation

of the asymptotic MMSE, it is sufficient to take into account only combinations of typical vectors{y}
and matrices{H}, where typicality is defined in accordance to the above-mentioned asymptotic results.

Therefore, at the end of the second step, we obtain an approximation (which is exact asn → ∞) for

the MMSE. Finally, in the last step, using this approximation and large deviations theory, we obtain the

result stated in Theorem 1 (this step can be found in AppendixC).

B. Definitions

An important function, which will be pivotal to our derivation, is thepartition function, which is

defined as follows.

Definition 1 (Partition Function)Let X andY be random vectors with joint density functionpX,Y . Let

λ = (λ1, . . . , λn)
T be a deterministic column vector ofn real-valued parameters. The partition function

w.r.t. pX,Y , denoted byZ (y;λ), is defined as

Z (y;λ) ,

∫

Xn

dx pX,Y (x,y) exp
{

λTx
}

. (30)

The motivation of the above definition is the following simple result [27].

Lemma 1 (MMSE-partition function relation)Consider the model presented in Subsection II-B. Then,

the following relation betweenZ (Y ;λ) and the MMSE ofX givenY , holds true

mmse(X |Y ) ,

n
∑

i=1

E

{

(Xi − E {Xi|Y })2
}

=

n
∑

i=1

[

E
{

X2
i

}

− E

{

[

∂ logZ (Y ;λ)

∂λi

]2
∣

∣

∣

∣

∣

λ=0

}]

. (31)

Proof: The main observation here is that

E {Xi|Y = y} =
∂ logZ (y;λ)

∂λi

∣

∣

∣

∣

λ=0

. (32)

Indeed, we note that

∂ logZ (y;λ)

∂λi

∣

∣

∣

∣

λ=0

=
1

∫

Xn dx pX,Y (x,y)

∂

∂λi

∫

Xn

dx pX,Y (x,y) exp
{

λTx
}

∣

∣

∣

∣

λ=0

(33)

=

∫

Xn dx xipX,Y (x,y)
∫

Xn dx pX,Y (x,y)
= E {Xi|Y = y} (34)
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where the second equality follows from the following lemma [38, Lemma 2].

Lemma 2Consider a functionf(x, θ) and a nonnegative functiong(x). The relation

∂

∂θ

∫

g(x)f(x; θ)dx =

∫

g(x)
∂

∂θ
f(x; θ)dx (35)

holds if for eachθ0 there exists a neighborhood ofθ0, Nθ0 , and a functionM(x; θ0), such that

sup
θ∈Nθ0

∣

∣

∣

∣

∂

∂θ
f(x; θ)

∣

∣

∣

∣

≤M(x; θ0), a.e. (36)

with
∫

g(x)M(x; θ0)dx <∞.

In our case, we have (substitutingλ = (0, 0, . . . , λi, 0, . . . , 0))
∣

∣

∣

∣

∂

∂λi
exp {λixi}

∣

∣

∣

∣

= |xi| exp (λixi) , (37)

To apply Lemma 2, we need to check that for eachλi,0 there exists a neighborhood aroundλi,0 such

that (36) holds. Accordingly, to make the right-hand side (r.h.s.) of (37) valid for a neighborhood around

each suchλi,0, we takeM(xi;λi,0) = |xi| exp [(λi,0 + ǫ) |xi|] for someǫ > 0. Finally, under the model

presented in Subsection II-B, the expectation ofM(xi;λi) is clearly finite since the underlying joint

probability distribution ofX andY decays faster than the increase ofM(xi;λi), and thus Lemma 2 can

be invoked.

Our analysis will rely heavily on methods and results from RMT. Two efficient tools commonly used

in RMT are theStieltjesandShannontransforms, which are defined as follows.

Definition 2 (Stieltjes Transform)Let µ be a finite nonnegative measure with support supp(µ) ⊂ R, i.e.,

µ (R) <∞. The Stieltjes transformSµ (z) of µ is defined forz ∈ C− supp(µ) as

Sµ (z) =

∫

R

dµ (λ)

λ− z
.

Let FA (·) be the empirical spectral distribution (ESD) of the eigenvalues of a non-negative definite

matrix A ∈ RN×N , namely,

FA (x) ,
1

N
{# of eigenvalues ofA ≤ x} . (38)

The Stieltjes transform ofFA (x) is defined as

SA (z) ,

∫

R+

dFA (x)

x− z
=

1

N
tr (A− zI)−1 (39)

for z ∈ C \ R+.
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The last equality readily follows by using the spectral decomposition ofA, and the fact that the trace

of a matrix equals to the sum of its eigenvalues. For brevity,we will refer to SA (z) as the Stieltjes

transform ofA, rather than the Stieltjes transform ofFA (x).

Definition 3 (Shannon Transform)The Shannon of transform of a non-negative definite matrixA ∈
CN×N is defined as

νA (z) ,
1

N
log det

(

1

z
A+ I

)

, (40)

for z > 0.

The relation between our partition function and the Stieltjes and Shannon transforms will become clear

in the sequel. Finally, we define the notion of deterministicequivalence.

Definition 4 (Deterministic Equivalence)Let (Ω,F , P ) be a probability space and let{fn} be a series

of measurable complex-valued functions,fn : Ω × C → C. Let {gn} be a series of complex-valued

functions,gn : C → C. Then,{gn} is said to be a deterministic equivalent of{fn} on D ⊂ C, if there

exists a setA ⊂ Ω with P (A) = 1, such that

fn (ω, z)− gn (z) → 0 (41)

asn→ ∞ for all ω ∈ A and for allz ∈ D.

Loosely speaking,{gn} is a deterministic equivalent of a sequence of random variables{fn} if gn (z)

approximatesfn (ω, z) arbitrarily closely asn grows, for everyz ∈ D and everyω ∈ A.

C. Auxiliary Results

In our derivations, the following asymptotic results will be used.

Lemma 3Consider a sequence of random variables{Xi,n}ni=1. Assume that

max
1≤i≤n

{E |Xi,n|p} ≤ C

n1+ν
(42)

whereC, ν > 0, andp ≥ 1 are some constants. Then, for anyδ > 0,

P

{

1

n

n
∑

i=1

|Xi,n| > δ

}

≤ C

δpn1+ν
, (43)

andn−1
∑n

i=1 |Xi,n| converges to zero in the a.s. sense.
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Proof: Using Chebyshev’s inequality and then Jensen’s inequality, for a givenδ > 0, we have

P

{

1

n

n
∑

i=1

|Xi,n| > δ

}

≤ 1

δp
E

{(

1

n

n
∑

i=1

|Xi,n|
)p}

(44)

≤ 1

nδp

n
∑

i=1

E |Xi,n|p (45)

≤ 1

δp
max
1≤i≤n

{E |Xi,n|p} (46)

≤ C

δpn1+ν
(47)

where the last inequality follows by (42). With (47), the a.s. convergence follows from the Borel-Cantelli

lemma. Indeed, as the r.h.s. of (47) is summable, by the Borel-Cantelli lemma, we have

P

({

ω ∈ Ω :
1

n

n
∑

i=1

|Xi,n (ω)| ≥ δ infinitely often

})

= 0. (48)

But sinceδ > 0 is arbitrary, the above holds for all rationalδ > 0. Since any countable union of sets of

zero probability is still a set of zero probability, we conclude that

P





⋃

q∈N

{

ω ∈ Ω :
1

n

n
∑

i=1

|Xi,n (ω)| ≥
1

q
infinitely often

}



 = 0. (49)

The following lemmas deal with the asymptotic behavior of scalar functions of random matrices, in

the form of Stieltjes and Shannon transforms, defined earlier. The proofs of the following results are

based on a powerful approach by Bai and Silverstein [37], a.k.a. the Stieltjes transform method in the

spectral analysis of large-dimensional random matrices.

Lemma 4 ([39]) Let Xm ∈ Cm×l be a sequence of random matrices with i.i.d. entries,

E |Xi,j − EXi,j|2 = 1/l, and letGl = diag (g1, . . . , gl) ∈ Rl×l be a sequence of deterministic matrices,

satisfyinggj ≥ 0 for all 1 ≤ j ≤ l andsupj gj <∞. DenoteBm = XmGlX
H
m, and letl,m→ ∞ with

fixed 0 < c , m/l <∞. Then, for everyγ > 0

1

m
log det

(

1

γ
Bm + Im

)

− η (γ) → 0, a.s. (50)

where

η (γ) ,
1

m

l
∑

j=1

log
[

1 + cgj S̄ (−γ)
]

− log
[

γS̄ (−γ)
]

− 1

l

l
∑

j=1

gj S̄ (−γ)
1 + cgj S̄ (−γ) (51)
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and S̄ (z) is defined by the unique positive solution of the equation

S̄ (z) =





1

l

l
∑

j=1

gj
1 + cgj S̄ (z)

− z





−1

. (52)

The next lemma deals with the asymptotic behavior of the Stieltjes transform.

Lemma 5 ([40]) Let Xm, Gl, andBm be defined as in Lemma 4. LetΘm ∈ Cm×m be a deterministic

sequence of matrices having uniformly bounded spectral norms (with respect tom)4. Then, we a.s. have

that

1

m
tr
(

Θm (Bm − zIm)−1
)

− 1

m
tr (Θm) S̄ (z) → 0, for all z ∈ C \ R+, (53)

asm, l → ∞.

Remark 3In [41], the authors propose a somewhat more restrictive (but useful) version of Lemma 5.

Assuming thatΘm has a uniformly bounded Frobenius norm (for allm), they show similarly that
∣

∣

∣
tr
(

Θm (Bm − zIm)−1
)

− tr (Θm) S̄ (z)
∣

∣

∣
→ 0, for z ∈ C \ R+. (54)

a.s. asm, l → ∞.

In order to apply the above results in our analysis, a somewhat more general version will be needed.

First, the matrixΘm in the Lemma 5 is assumed to be deterministic and bounded (in the spectral or

Frobenius senses). In our case, however, we will need to dealwith a random matrixΘm which is

independent of the other random variables. The following proposition accounts for this problem. The

proof readily follows by first conditioning onΘm (which is now random and a.s. bounded) and then

applying Lemma 5.

Proposition 1 The assertion of Lemma 5 holds true also for a randomΘm ∈ Cm×m, which is independent

of Xm, and has a uniformly bounded spectral norm (with respect tom) in the a.s. sense.

Remark 4In Proposition 1, it is assumed thatΘm has uniformly bounded spectral norm (uniformly in

m) in the a.s. sense, namely,

lim sup
m→∞

‖Θm‖ <∞ (55)

4Actually we only need to demand the distributionFΘm to be tight, namely, for allǫ > 0 there existsM > 0 such that

FΘm (M) > 1− ǫ for all m.
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with probability one. In other words, for everyǫ > 0, there exists some positiveM0 such that for all

m > M0 we have that‖Θm‖ < D + ǫ for some finite constantD.

The second issue is regarding the assumption that the ratioc = m/l, in the previous lemmas, tends

to a strictly positive limit. In our case, however, this limit may be zero. Fortunately, it turns out that the

previous results still hold true also in this case, namely, acontinuity property w.r.t.c. Technically speaking,

this fact can be verified by repeating the original proofs [39, 40] of the above results and noticing that

the positivity assumption is superfluous5. To give some sense, consider the following two special cases.

First, in case thatm is fixed while l goes to infinity (and thenc vanishes), using the strong law of large

numbers (SLLN), it is easy to see that the previous lemmas indeed hold true. Also, ifm ≪
√
l, then

a simple approach is to show that the diagonal elements of thematrix XmXT
m concentrate around a

fixed value, and that the row sum of off-diagonal terms converges to zero. Then using Gershgorin’s circle

theorem [42] one obtains the deterministic equivalent. Obviously, these two special cases do not cover

the whole range ofm = o(l), which, as said, can be shown by repeating the original proofs in [39, 40].

In the following subsection, we prove Theorem 1. The proof contains several tedious calculations and

lemmas, which will relegated to appendices for the sake of convenience.

D. Main Steps in the Proof of Theorem 1

Let s andr be two binary sequences of lengthn, and letS , supp(s) andR , supp(r) designate

their respective supports, defined as supp(s) , {i ∈ {1, 2, . . . , n} : Si 6= 0}, and similarly forr. Also,

define

Qs∩r ,
∑

j∈S∩R

ems
j
ẽTmr

j
, (56)

whereems
j

and ẽmr
j

denote unit vectors of size6 |S| × 1 and |R| × 1, having “1” at the indexesms
j ,

∑j
l=1 sl andmr

j ,
∑j

l=1 rl, respectively. Note thatQs∩r can be written asQs∩r = QsQ
T
r , where

Qs is an |S| × |S ∩ R| matrix with column vectors
{

ems
j

}

, andQr is an |R| × |S ∩ R| matrix with

column vectors
{

ẽmr
j

}

. Also, it is easy to check thatQsQ
T
s andQrQ

T
r are binary diagonal matrices,

with unit values at positions correspond to the supports ofs andr, respectively. It is then obvious that

QsQ
T
s � Is andQrQ

T
r � Ir, whereIs andIr are |S|× |S| and |R|× |R| unit matrices, respectively.

5Specifically, one just need to replace every instance ofm by c · l in the original proofs and things go along without any

issue.

6For a setA, we use|A| to designate its cardinality.
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Example 1Let n = 6, and considers = (1, 1, 0, 0, 1, 1) andr = (0, 1, 1, 0, 0, 1). Then,S = {1, 2, 5, 6},

R = {2, 3, 6}, and thusS ∩ R = {2, 6}. Whencems
2 = 2, mr

2 = 1, ms
6 = 4, andmr

6 = 3. Accordingly,

the matrixQs∩r is given by

QT
s∩r =

(

e2ẽ
T
1 + e4ẽ

T
3

)T
=













0 1 0 0

0 0 0 0

0 0 0 1













.

For a vectorv and a matrixV , with real-valued entries, we definevs , v|S ∈ R|S|×1 andV s ,

V |S ∈ Rk×|S|, which is the restriction of the entries ofv and the columns ofV on the supportS,

respectively. For brevity, we define the following quantities:

Hs ,

(

βHT
sHs +

1

σ2
Is

)−1

, (57)

Hs
i ,

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

, (58)

Hs
i,j ,

(

β
[

HT
sHs

]

i,j
+

1

σ2
Is

)−1

, (59)

where
[

HT
sHs

]

i
, HT

sHs − ziz
T
i , and

[

HT
sHs

]

i,j
,
[

HT
sHs

]

i
− zjz

T
j , in which zi is the ith row

of Hs. Finally, we define:

ξ (y,Hs) , exp

{

β2

2
yTHsH

sHT
sy − 1

2
log det

(

βσ2HT
sHs + Is

)

}

, (60)

J (y,Hs,Hr) ,
β2

n
yTHsH

sQs∩rH
rHT

ry. (61)

Under the model described in Section II,

pY |X,H(y|H ,x) =
1

(2π/β)k/2
exp

(

−β
2
‖y −Hx‖2

)

, (62)

and

pX(x) =
∑

s∈{0,1}n

PS(s)
∏

i: si=0

δ (xi)
∏

i: si=1

1√
2πσ2

e−
1

2σ2 x
2
i . (63)

Therefore, the partition function in (30) is given by

Z (y,H ;λ) =
∑

s∈{0,1}n

PS(s)

∫

Rn

eλ
TxpY |X,H(y|H ,x)

∏

i: si=0

δ (xi)
∏

i: si=1

1√
2πσ2

e−
1

2σ2 x
2
idx. (64)

In the following, using Lemma 1, we provide a generic expression for the MMSE. The proof appears in

Appendix A.
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Lemma 6The normalized MMSE is given by:

mmse(X |Y ,H)

n
=
σ2

n

n
∑

i=1

E {Si} − E
{

Eµs×r
[J (Y ,Hs,Hr)]

}

(65)

whereEµs×r
denotes the expectation w.r.t. the discrete probability distribution

µ (s|Y ,H)× µ (r|Y ,H) ,
PS(s)PS(r)ξ (Y ,Hs) ξ (Y ,Hr)
[

∑

u∈{0,1}n PS (u) ξ (Y ,Hu)
]2 . (66)

At this stage, the relation to the Stieltjes and Shannon transforms is clear: The structure of the various

terms in ξ (y,Hs) and J (y,Hs,Hr) suggest an application of an extended version of the Stieltjes

and Shannon transforms of the matrixHT
sHs. The following proposition is essentially the core of our

analysis; it provides approximations (which are asymptotically exact in the a.s. sense) ofξ (y,Hs) and

J (y,Hs,Hr). Recall the auxiliary variables defined in (10)-(18). The following result is proved in

Appendix B.

Proposition 2 (Asymptotic approximations)For everyǫ, p > 0

max
s∈{0,1}n

P

{∣

∣

∣

∣

1

n
trHs − σ2msb (ms)

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2), (67)

max
s∈{0,1}n

P

{∣

∣

∣

∣

1

n
Y THsH

sHT
sY − fn

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2), (68)

max
s,r∈{0,1}n

P

{∣

∣

∣

∣

1

n
Y THsH

sQs∩rH
rHT

rY − qn

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2), (69)

max
s∈{0,1}n

P

{∣

∣

∣

∣

1

n
log det

(

βσ2HT
sHs + Is

)

−msĪ (ms)

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2), (70)

where

fn , β
σ4b2 (ms)m

2
s

g2 (ms)

‖Y ‖2
n

+
σ2b (ms)

g2 (ms)

∥

∥HT
sY
∥

∥

2

n
, (71)

and

qn ,
α̃ (ms,mr,ms,r)

g (ms) g (mr)

Y THsQs∩rH
T
rY

n

− α̃ (ms,mr,ms,r)

g (ms) g (mr)
βσ2ms,r

(

b (mr)

g (mr)

∥

∥HT
rY
∥

∥

2

n
+
b (ms)

g (ms)

∥

∥HT
sY
∥

∥

2

n

)

+
α̃ (ms,mr,ms,r)

g (ms) g (mr)
βσ2ms,r

(

b (mr)

g (mr)
mr +

b (ms)

g (ms)
ms

) ‖Y ‖2
n

(72)

where

α̃ (ms,mr,ms,r) ,
1

(η0(mr) + σ−2) (ψ0 (ms,mr,ms,r) + σ−2)
, (73)
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in which

η0(mr) ,
βR

1 + βσ2mrb (mr)
, (74)

and

ψ0 (ms,mr,ms,r) , η0(mr)−
β2σ2Rb (ms)ms,r

(1 + βσ2msb (ms)) (1 + βσ2mrb (mr))
. (75)

The next step is to apply Proposition 2 to the obtained MMSE. Let ǫ > 0, and define

T s,r
ǫ ,

{

y ∈ R
k×1,H ∈ R

k×n :

∣

∣

∣

∣

1

n
trHs − σ2msb (ms)

∣

∣

∣

∣

< ǫ,

∣

∣

∣

∣

1

n
yTHsH

sHT
sy − fn

∣

∣

∣

∣

< ǫ,

∣

∣

∣

∣

1

n
yTHsH

sQs∩rH
rHT

ry − qn

∣

∣

∣

∣

< ǫ,

∣

∣

∣

∣

1

n
log det

(

βσ2HT
sHs + Is

)

−msĪ (ms)

∣

∣

∣

∣

< ǫ

}

.

(76)

By Proposition 2, this set has probability tending to one ask, n → ∞, and so, we shall call it a “typical”

set containing{y,H}-pairs of typical observation vectors and sensing matrices. This is summarized in

the forthcoming corollary.

Corollary 1

lim
n→∞

max
s,r∈{0,1}n

P {(T s,r
ǫ )c} = 0. (77)

Proof: The result follows directly by using the union bound and Proposition 2.

The following main observation is that for the asymptotic evaluation of (65), only typical events (i.e.,

those defined in (76)) are the dominant. Specifically, the MMSE can be decomposed as follows

mmse(X|Y ,H)

n
= σ2

1

n

n
∑

i=1

E {Si} − E
{

Eµs×r
[J (Y ,Hs,Hr)]

}

(78)

= σ2
1

n

n
∑

i=1

E {Si} − E {J (Y ,H
S̃
,H

R̃
)} (79)

= σ2
1

n

n
∑

i=1

E {Si} − E
{

J (Y ,H
S̃
,H

R̃
)1T s̃,r̃

ǫ

}

− E

{

J (Y ,H
S̃
,H

R̃
)1(T s̃,r̃

ǫ )
c

}

, (80)

where1T s,r
ǫ

is as a shorthand notation for1{(Y ,H)∈T s,r
ǫ }, and the expectations in (80) are taken w.r.t.

the joint distribution of(S̃, R̃,Y ,H), whereP
S̃,R̃|Y ,H

= µ(S̃|Y ,H) × µ(R̃|Y ,H). We claim that

the last term at the r.h.s. of (80) is asymptotically negligible. First, by Cauchy-Schwartz inequality, we

have
∣

∣

∣
E

{

J (Y ,H
S̃
,H

R̃
)1(T s̃,r̃

ǫ )
c

}∣

∣

∣

2
≤ E |J (Y ,H

S̃
,H

R̃
)|2 Pr

{

(T S,R
ǫ )

c}
. (81)
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Due to Corollary 1, we have

lim
n→∞

P
{

(T S,R
ǫ )c

}

≤ lim
n→∞

max
s,r∈{0,1}n

P {(T s,r
ǫ )c} = 0. (82)

Therefore, according to (81), in order to show that the last term at the r.h.s. of (80) is asymptotically

negligible, we will show that the expectation at the r.h.s. of (81) is finite and independent ofn, that is,

E |J (Y ,H
S̃
,H

R̃
)|2 ≤M <∞. (83)

To this end, recall that (see, (56), and the discussion that follows) the matrixQs∩r can be represented

asQs∩r = QsQ
T
r . We get

|J (y,Hs,Hr)|2 =
β4

n2
∣

∣yTHsH
sQs∩rH

rHT
ry
∣

∣

2
(84)

=
β4

n2

∣

∣yTHsH
sQsQ

T
rH

rHT
ry
∣

∣

2
(85)

≤ β4

n2

∥

∥yTHsH
sQs

∥

∥

2

2

∥

∥yTHrH
rQr

∥

∥

2

2
(86)

≤ β4

n2
∥

∥yTHsH
s
∥

∥

2

2

∥

∥yTHrH
r
∥

∥

2

2
(87)

≤ β4

2n2

[

∥

∥yTHsH
s
∥

∥

4

2
+
∥

∥yTHrH
r
∥

∥

4

2

]

(88)

where the first inequality is due to Cauchy-Schwartz inequality, the second inequality is due to the fact

thatQsQ
T
s � Is for all s, and the last inequality follows from the simple inequality2ab ≤ a2 + b2, for

a, b ∈ R. Whence,

E |J (Y ,H
S̃
,H

R̃
)|2 ≤ β4

2n2
E

{

∥

∥

∥
Y TH

S̃
HS̃

∥

∥

∥

4

2
+
∥

∥

∥
Y TH

R̃
HR̃

∥

∥

∥

4

2

}

(89)

=
β4

n2
E

∥

∥

∥
Y TH

S̃
HS̃

∥

∥

∥

4

2
(90)

≤ σ8β2

n2
E
∥

∥Y TH
S̃

∥

∥

4

2
(91)

≤ 8σ8β2

n2
E

{

∥

∥XTHTH
S̃

∥

∥

4

2
+
∥

∥NTH
S̃

∥

∥

4

2

}

(92)

where in the second inequality we have used the fact thatHs � σ2Is, and the last inequality follows

from the fact thatY = HX +N , and the inequality‖a+ b‖42 ≤ 8 · (‖a‖42 + ‖b‖42), for anya, b ∈ Rn.

We claim that the last two terms at the r.h.s. of (92) are finite. Indeed, for example,

8σ8β2

n2
E
∥

∥NTH
S̃

∥

∥

4

2
=

8σ8β2

n2
E

(

∑

i∈S̃

(

NThi

)2

)2

(93)

≤ 8σ8β2

n2
E

(

n
∑

i=1

(

NThi

)2

)2

(94)
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≤ 8σ8β2

n

n
∑

i=1

E
{

NThi

}4
(95)

= 8σ8β2E
{

NTh1

}4
, (96)

wherehi is theith column ofH , the first inequality follows from the fact that
∑n

i=1 S̃i ≤ n w.p. 1, and

the second inequality is due to the fact that(
∑n

i=1 ai)
r ≤ nr−1

∑n
i=1 a

r
i , for any r ∈ N. Givenh1, the

random variableNTh1 is Gaussian, with zero mean, and varianceβ−1 ‖h1‖22. Thus,E
[

(

NTh1

)4 |h1

]

=

3β−2 ‖h1‖42. Therefore,

8σ8β2E
{

NTh1

}4
= 24σ8E ‖h1‖42 (97)

= 24σ8E

(

k
∑

i=1

H2
1,i

)2

(98)

≤ 24kσ8E

(

k
∑

i=1

H4
1,i

)

(99)

= 24k2σ8E(H4
1,1) = 24σ8E(

√
kH1,1)

4 <∞ (100)

where the first inequality follows from(
∑n

i=1 ai)
r ≤ nr−1

∑n
i=1 a

r
i , and the last inequality is due to the

assumptionE(
√
nH1,1)

4 <∞. In the same way, it can be shown that

8σ8β2

n2
E
∥

∥XTHTH
S̃

∥

∥

4
<∞, (101)

and thus the term at the r.h.s. of (92) is finite, that is,

E |J (Y ,H
S̃
,H

R̃
)|2 <∞. (102)

To conclude, using (81), (82), and (102), we get

E

{

J (Y ,H
S̃
,H

R̃
)1(T s̃,r̃

ǫ )
c

}

→ 0, (103)

ask, n → ∞. Accordingly, for the asymptotic calculation of the MMSE, only the first two terms at the

r.h.s. of (80) prevail, and the calculation of the asymptotic MMSE boils down to the calculation of:

lim sup
n→∞

mmse(X|Y ,H)

n
= lim sup

n→∞

[

σ2
1

n

n
∑

i=1

E {Si} − E
{

J
(

Y ,H
S̃
,H

R̃

)

1T s̃,r̃
ǫ

}

]

(104)

= lim sup
n→∞

[

σ2
1

n

n
∑

i=1

E {Si} − E
{

Eµs×r
[J (Y ,Hs,Hr)1T s,r

ǫ
]
}

]

(105)

= σ2ma − lim sup
n→∞

E
{

Eµs×r
[J (Y ,Hs,Hr)1T s,r

ǫ
]
}

(106)

where the last equality is due to (6). Using Proposition 2, and large deviations theory, the asymptotic

MMSE, given in Theorem 1, is derived in Appendix C.

April 30, 2021 DRAFT



23

V. CONCLUSION

In this paper, we considered the calculation of the asymptotic MMSE under sparse representation

modeling. As opposed to the popular worst-case approach, weadopt a statistical framework for

compressed sensing by modeling the input signal as a random process rather than as an individual

sequence. In contrast to previous derivations, which were based on the (non-rigorous) replica method,

the analysis carried out in this paper is rigorous. The derivation builds upon a simple relation between the

MMSE and a certain function, which can be viewed as a partition function, and hence can be analyzed

using methods of statistical mechanics. It was shown that the MMSE can be represented in a special form

that contains functions of the Stieltjes and Shannon transforms. This observation allowed us to invoke

some powerful results from RMT concerning the asymptotic behavior of these transforms. Although our

asymptotic MMSE formula seems to be different from the one that is obtained by the replica method,

numerical calculations suggest that they are actually the same. This supports the results of the replica

method.

Finally, we believe that the tools developed in this paper, for handling the MMSE, can be used in

order to obtain the MMSE estimator itself. An example for such calculation can be found in a recent

paper [30], where the MMSE (or, more generally, the mismatched MSE), along with the estimator itself,

were derived for a model of a codeword (from a randomly selected code), corrupted by a Gaussian

vector channel. Also, we believe that our results, can be generalized to the case of mismatch, namely,

mismatched compressed sensing. An example for an interesting mismatch model could be a channel

mismatch, namely, the receiver has a wrong assumption on thechannelH , which can be modeled as

Ĥ = τH +
√
1− τ2Q, whereQ is some random matrix, independent ofH, and0 ≤ τ ≤ 1 quantifies

the proximity betweenĤ andH . Another mismatch configuration could be noise-variance mismatch,

namely, the receiver has wrong knowledge about the noise variance. It is then interesting to investigate

the resulted MSE in these cases, and in particular, to check whether there are new phase transitions

caused by the mismatch.

APPENDIX A

Proof of Lemma 6:Under our model, the partition function in (30) is given by

Z (y,H ;λ) =
∑

s∈{0,1}n

PS(s)

∫

Rn

dx
exp

(

−β ‖y −Hx‖2 /2 + λTx
)

(2π/β)k/2

×
∏

i: si=0

δ (xi)
∏

i: si=1

1√
2πσ2

e−
1

2σ2 x
2
i . (A.1)
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First, note that

‖y −Hx‖2
∏

si=0

δ (xi) =



‖y‖2 − 2
∑

i∈S

hT
i yxi +

∑

i,j∈S

xixjh
T
i hj





∏

si=0

δ (xi) (A.2)

=
[

‖y‖2 − 2xT
sH

T
sy + xT

sH
T
sHsxs

]

∏

si=0

δ (xi) (A.3)

wherehi denotes theith column ofH, and similarly,

λTx
∏

si=0

δ (xi) =

(

∑

i∈S

xiλi

)

∏

si=0

δ (xi) (A.4)

= λT
sxs

∏

si=0

δ (xi) . (A.5)

Using the fact thatδ (·) is a measure onR, one may conclude that

Z (y,H ;λ) =
∑

s∈{0,1}n

PS(s)
1

(2π/β)k/2
1

(√
2πσ2

)|S|
exp

(

−β
2
‖y‖2

)

×
∫

R|S|

exp

(

−xT
s

(

β

2
HT

sHs +
1

2σ2
Is

)

xs + xT
s

(

λs + βHT
sy
)

)

dxs (A.6)

=
∑

s∈{0,1}n

PS(s) exp
(

−β
2 ‖y‖

2
)

(2π/β)k/2
(√

2πσ2
)|S|

det1/2
[

1
2π

(

βHT
sHs +

1
σ2 Is

)]

× exp

{

1

2

(

βHT
sy + λs

)T
(

βHT
sHs +

1

σ2
Is

)−1
(

βHT
sy + λs

)

}

(A.7)

= C ·
∑

s∈{0,1}n

PS(s)
exp

{

1
2

(

βHT
sy + λs

)T
Hs

(

βHT
sy + λs

)

}

√

det
(

βσ2HT
sHs + Is

)

(A.8)

whereC is independent ofλ, but it depends onβ andy. We are now in a position to find a preliminary

expression of the MMSE, using Lemma 1. Let

ξ (y,Hs,λs) , exp

{

1

2

(

βHT
sy + λs

)T
Hs

(

βHT
sy + λs

)

− 1

2
log det

(

βσ2HT
sHs + Is

)

}

, (A.9)

and therefore

Z (y,H ;λ) = C ·
∑

s∈{0,1}n

PS(s)ξ (y,Hs,λs) . (A.10)

Now,

∂

∂λi

{

1

2

(

βHT
sy + λs

)T
Hs

(

βHT
sy + λs

)

}

= eTi H
s
(

βHT
sy + λs

)

1i∈S , (A.11)
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and thus

∂

∂λi
ξ (y,Hs,λs) = eTi H

s
(

βHT
sy + λs

)

1i∈Sξ (y,Hs,λs) . (A.12)

Recall that for a positive, twice differential functionf ,

d

dx
log f (x) =

1

f (x)

(

d

dx
f (x)

)

. (A.13)

Thus, using (A.10) and (A.12), we have that (for1 ≤ i ≤ n),

∂

∂λi
logZ (y,H ;λ) =

∑

s∈{0,1}n PS(s)e
T
i H

s
(

βHT
sy + λs

)

1i∈Sξ (y,Hs,λs)

Z (y,H ;λ)
. (A.14)

Let ξ (y,Hs) , ξ (y,Hs,0). We have:

∂

∂λi
logZ (y,H ;λ)

∣

∣

∣

∣

λ=0

=

∑

s∈{0,1}n PS(s)e
T
i H

sβHT
sy1i∈Sξ (y,Hs)

∑

s∈{0,1}n PS(s)ξ (y,Hs)
. (A.15)

By Lemma 1, the MMSE is given by

mmse(X|Y ,H)

n
=

1

n

n
∑

i=1

[

E
{

X2
i

}

− E

{

[

∂

∂λi
logZ (y,H ;λ)

]2
∣

∣

∣

∣

∣

λ=0

}]

(A.16)

=
σ2

n

n
∑

i=1

E {Si} −
1

n

n
∑

i=1

E

{

[

∂

∂λi
logZ (y,H ;λ)

]2
∣

∣

∣

∣

∣

λ=0

}

. (A.17)

Recall that for ann×n matrix A, the trace operator can be represented astr (A) =
∑n

i=1 ê
T
i Aêi where

êi is the ith column of then× n identity matrix. Thus, we have that




∑

s∈{0,1}n

PS(s)e
T
i H

sβHT
sy1i∈Sξ (y,Hs)





2

=
∑

s∈{0,1}n

∑

r∈{0,1}n

PS(s)PS(r)e
T
i H

sβ2HT
syy

THrH
rẽi1i∈S∩Rξ (y,Hs) ξ (y,Hr) . (A.18)

Note thats andr may not have the same support, and in particular, they may nothave even the same

support size. This explains the appearance ofẽi which is of size|R| × 1. Next, summing the terms that

depend oni in (A.18), over1 ≤ i ≤ n, we get

n
∑

i=1

eTi H
sβ2HT

syy
THrH

rẽi1i∈S∩R =

n
∑

i=1

tr
(

eTi H
sβ2HT

syy
THrH

rẽi1i∈S∩R

)

(A.19)

= tr

(

Hsβ2HT
syy

THrH
r

n
∑

i=1

ẽie
T
i 1i∈S∩R

)

(A.20)

= β2yTHsH
sQs∩rH

rHT
ry, (A.21)
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where we have used the fact that

QT
s∩r =

n
∑

i=1

ẽie
T
i 1i∈S∩R. (A.22)

Let J (y,Hs,Hr) be defined as in (61). Then, we obtain

1

n

n
∑

i=1

E

{

[

∂

∂λi
logZ (y,H ;λ)

]2
∣

∣

∣

∣

∣

λ=0

}

=
1

n

n
∑

i=1

[

∑

s∈{0,1}n PS(s)e
T
i H

sβHT
sy1i∈Sξ (y,Hs)

]2

[

∑

s∈{0,1}n PS(s)ξ (y,Hs)
]2

=

∑

s,r∈{0,1}n PS(s)PS(r)J (y,Hs,Hr) ξ (y,Hs) ξ (y,Hr)
(

∑

s∈{0,1}n PS(s)ξ (y,Hs)
)2 . (A.23)

Thus, the MMSE can be represented as

mmse(X |Y ,H)

n
=
σ2

n

n
∑

i=1

E {Si} − E
{

Eµs×r
[J (Y ,Hs,Hr)]

}

(A.24)

where Eµs×r
denotes the expectation taken w.r.t. the discrete probability distribution µ (s|Y ,H) ×

µ (r|Y ,H), defined in (66).

APPENDIX B

PROOF OFPROPOSITION2

A. A note on Stieltjes transform

Before delving into the proofs of (67)-(70), we make a short comment on the Stieltjes transform of

the matrix

Hs =

(

βHT
sHs +

1

σ2
Is

)−1

= σ2
(

βσ2HT
sHs + Is

)−1
, (B.1)

which appears in Proposition 2. Lemma 5 provides the asymptotic behavior of the Stieltjes transform

of (B.1). In order to use this lemma, one needs to calculateS̄ (z) given in (52). For our problem, we

substitute:X = HT
s , G = βσ2RIs, Θm = Im, c = |S| /k = ms/R, which yieldsB = XGXT =

βσ2HT
sHs. Then, using (52) forz = −1, we find thatS̄ (−1) is given by the solution of the equation

S̄ (−1) =





1

|S|

|S|
∑

l=1

gl
1 + cglS̄ (−1)

+ 1





−1

.

Substitutinggl = βσ2R (independently ofl) andc = ms/R, we obtain

S̄ (−1) =

(

βσ2R

1 + βσ2Rms
R S̄ (−1)

+ 1

)−1

(B.2)

=
1 + σ2βmsS̄ (−1)

1 + βσ2R+ βσ2msS̄ (−1)
, (B.3)
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whose solution is

S̄ (−1) =
−
[

1 + βσ2 (R−ms)
]

+

√

[1 + βσ2 (R−ms)]
2 + 4βσ2ms

2βσ2ms
. (B.4)

Note thatS̄ (−1) is recognized asb (ms) defined in (10), which will be used from now on. It follows,

by Lemma 5, that

1

n
trHs −msσ

2b(ms) → 0, (B.5)

a.s. asn→ ∞.

B. Proof of (67) and (68)

We start with (68). Eq. (67) will follow from (68), as will be shown in the sequel. Letzi denote the

ith row of the matrixHs, and hence

HT
sY =

k
∑

i=1

Yizi. (B.6)

Thus,

1

n
Y THsH

sHT
sY =

1

n

k
∑

i=1

Y 2
i z

T
i H

szi +
1

n

k
∑

i 6=j

YiYjz
T
i H

szj . (B.7)

We next analyze the two terms at the r.h.s. of (B.7) separately. First, recall that for any triplet of random

variables(X,Y,Z), andǫ > 0, the following holds

P {|X − Z| > ǫ} ≤ P

{

|X − Y | > ǫ

2

}

+ P

{

|Y − Z| > ǫ

2

}

. (B.8)

Define:

fn,1 ,
msσ

2b (ms)

1 + βσ2msb (ms)

‖Y ‖2
n

, (B.9)

fn,2 ,
σ2b (ms)

(1 + βσ2msb (ms))
2

[
∥

∥HT
sY
∥

∥

2

n
−ms

‖Y ‖2
n

]

. (B.10)

It is easy to verify thatfn = fn,1 + fn,2, wherefn is defined in (71). Thus, according to (B.8), to prove

(68), it is sufficient to show that

max
s∈{0,1}n

P

{∣

∣

∣

∣

∣

1

n

k
∑

i=1

Y 2
i z

T
i H

szi − fn,1

∣

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2) (B.11)

and

max
s∈{0,1}n

P







∣

∣

∣

∣

∣

∣

1

n

k
∑

i 6=j

YiYjz
T
i H

szj − fn,2

∣

∣

∣

∣

∣

∣

> ǫ







≤ 1

ǫp
O(n−p/2). (B.12)
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Since the same arguments that will be used to prove (B.11) canbe used to prove (B.12), for the sake of

brevity, in the following, we will prove only (B.11).

First, note that

HT
sHs =

k
∑

i=1

ziz
T
i . (B.13)

Using the matrix inversion lemma (Lemma 11), we get

1

n

k
∑

i=1

Y 2
i z

T
i H

szi =
1

n

k
∑

i=1

Y 2
i

zT
i H

s
i zi

1 + βzT
i H

s
i zi

. (B.14)

Clearly,Hs
i is statistically independent ofzi. Consider the following lemmas.

Lemma 7For anyp, ǫ > 0,

max
s∈{0,1}n

P

{∣

∣

∣

∣

∣

1

n

k
∑

i=1

Y 2
i

(

zT
i H

s
i zi

1 + βzT
i H

s
i zi

−
1
n trHs

1 + β 1
n trHs

)∣

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2). (B.15)

Lemma 8For anyp, ǫ > 0,

max
s∈{0,1}n

P

{∣

∣

∣

∣

∣

1
n trHs

1 + β 1
n trHs

‖Y ‖2
n

− fn,1

∣

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2). (B.16)

Using Lemmas 7 and 8, it is easy to see that (B.11) follows by using (B.8) once again. We end this

subsection by proving these lemmas.

Proof of Lemma 7: To obtain (B.15), by Lemma 3, it is sufficient to prove that

max
1≤i≤k

E

{

Y 2p
i

∣

∣

∣

∣

∣

zT
i H

s
i zi

1 + βzT
i H

s
i zi

−
1
n trHs

1 + β 1
n trHs

∣

∣

∣

∣

∣

p}

≤ O(n−(1+δ)), (B.17)

for someδ > 0. Using the Cauchy-Schwartz inequality and the fact thatEY 4p
i is bounded (similarly as

in (96)), it is enough to prove7

max
1≤i≤k

E

{∣

∣

∣

∣

∣

zT
i H

s
i zi

1 + βzT
i H

s
i zi

−
1
n trHs

1 + β 1
n trHs

∣

∣

∣

∣

∣

p}

≤ O(n−(1+δ)). (B.18)

Finally, instead of showing (B.18), we equivalently show8

max
1≤i≤k

E

{∣

∣

∣

∣

∣

zT
i H

s
i zi − 1

n trHs

1 + βzT
i H

s
i zi

∣

∣

∣

∣

∣

p}

≤ O(n−(1+δ)), (B.19)

7The exponentiation in (B.18) should bẽp = 2p, due to Cauchy-Schwartz inequality. However, sincep is arbitrary, we use

p instead ofp̃.

8The equivalence readily follows by adding and subtracting acommon term and then using the triangle inequality.
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(B.19)

(B.20)

(B.18) (B.15)(B.17)

Fig. 3. Consolidation steps.

and

max
1≤i≤k

E

{∣

∣

∣

∣

∣

1
n trHs

1 + βzT
i H

s
i zi

−
1
n trHs

1 + β 1
n trHs

∣

∣

∣

∣

∣

p}

≤ O(n−(1+δ)). (B.20)

Fig. 3 gives a schematic representation of the various consolidation steps used to prove (B.15).

Proof of (B.19):First, note that

|ei| ,
∣

∣

∣

∣

∣

zT
i H

s
i zi − 1

n trHs

1 + βzT
i H

s
i zi

∣

∣

∣

∣

∣

(B.21)

(a)

≤
∣

∣

∣

∣

zT
i H

s
i zi −

1

n
trHs

∣

∣

∣

∣

(B.22)

(b)

≤
∣

∣

∣

∣

zT
i H

s
i zi −

1

n
trHs

i

∣

∣

∣

∣

+

∣

∣

∣

∣

1

n
trHs

i −
1

n
trHs

∣

∣

∣

∣

(B.23)

where(a) follows from the fact thatzT
i H

s
i zi is non-negative, and(b) follows by adding and subtracting

the termn−1 trHs
i , and then using the triangle inequality. Applying Lemma 18 (Appendix D) to the

second term at the r.h.s. of (B.23), one readily obtains
∣

∣

∣

∣

1

n
trHs

i −
1

n
trHs

∣

∣

∣

∣

≤ σ2 ‖Is‖
n

=
σ2

n
, (B.24)

uniformly in s. Applying Lemma 14 (Appendix D) to the first term at the r.h.s.of (B.23),

E

{∣

∣

∣

∣

zT
i H

s
i zi −

1

n
trHs

i

∣

∣

∣

∣

p}

≤ C̃

np/2
, (B.25)

where according to Lemma 14,̃C is given by

C̃ = Cp · E
(

1

|S| tr(H
s
i )

−1

)p/2

(B.26)

≤ Cpσ
2p, (B.27)

and where in the last inequality, we have used the fact that
[

HT
sHs

]

i
is non-negative, and thus

Hs
i �

(

1

σ2
Is

)−1

= σ2Is (B.28)
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where for two matricesA ∈ RN×N andB ∈ RN×N the notationA � B means that the difference

B −A is non-negative definite. Thus, the bound in (B.25) is uniform in s. Therefore,

E {|ei|p} ≤ O(n−p/2). (B.29)

Consequently, taking anyp > 2, we obtain (B.19).

Proof of (B.20):As before,

|ẽi| ,
∣

∣

∣

∣

∣

1
n trHs

1 + βzT
i H

s
i zi

−
1
n trHs

1 + β 1
n trHs

∣

∣

∣

∣

∣

=
β
n trHs

∣

∣zT
i H

s
i zi − 1

n trHs
∣

∣

(

1 + βzT
i H

s
i zi

) (

1 + β 1
n trHs

)

≤ β

n
trHs

∣

∣

∣

∣

zT
i H

s
i zi −

1

n
trHs

∣

∣

∣

∣

≤ βσ2
∣

∣

∣

∣

zT
i H

s
i zi −

1

n
trHs

∣

∣

∣

∣

(B.30)

where the last inequality follows from

1

n
trHs ≤ 1

n
tr

(

1

σ2
Is

)−1

= σ2. (B.31)

Therefore, as before, by Lemma 14,E |ẽi|p ≤ O
(

n−p/2
)

as required.

Proof of Lemma 8: Let

ê ,
1
n trHs

1 + β 1
n trHs

− msσ
2b (ms)

1 + βσ2msb (ms)
. (B.32)

By Lemma 3, it is sufficient to show thatE |ê|p ≤ O
(

n−(1+δ)
)

. First, we see that

|ê| =
1
n trHs

1 + β 1
n trHs

− msσ
2b (ms)

1 + βσ2msb (ms)
(B.33)

=

∣

∣

1
n trHs −msσ

2b (ms)
∣

∣

(1 + βσ2msb (ms))
(

1 + β 1
n trHs

) (B.34)

≤
∣

∣

∣

∣

1

n
trHs −msσ

2b (ms)

∣

∣

∣

∣

, (B.35)

where the last inequality follows from the facts1 + βn−1 trHs ≥ 1 and1 + βσ2msb (ms) ≥ 1. Recall

that b (ms) is the solution of equation (B.3), i.e.,

b (ms) =

(

βσ2R

1 + βσ2msb (ms)
+ 1

)−1

. (B.36)

Let us define

w ,
1

n
trHs − σ2

n
tr





(

Rβσ2

1 + β 1
n trHs

+ 1

)−1

Is



 . (B.37)
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Then, note that

Hs − σ2

(

Rβσ2

1 + β 1
n trHs

+ 1

)−1

Is

(a)
= Hs

[

Rβσ2

1 + β 1
n trHs

Is + Is − βσ2HT
sHs − Is

](

Rβσ2

1 + β 1
nH

s
+ 1

)−1

Is (B.38)

= Hs

[

Rβσ2

1 + β 1
n trHs

Is − βσ2HT
sHs

](

Rβσ2

1 + β 1
n trHs

+ 1

)−1

Is (B.39)

= −ϑHsβσ2HT
sHs + ϑHs Rβσ2

1 + β 1
n trHs

(B.40)

where (a) is due to Lemma 13, and in the last equalities we canceled out and rearranged the various

terms, and defined

ϑ ,

(

Rβσ2

1 + β 1
n trHs

+ 1

)−1

(B.41)

(B.28)
≤
(

Rβσ2

1 + βσ2 1
n tr (Is)

−1 + 1

)−1

(B.42)

≤
(

Rβσ2

1 + βσ2
+ 1

)−1

(B.43)

=
1 + βσ2

1 + βσ2 +Rβσ2
, ϑ̃, (B.44)

namely,ϑ can be upper bounded bỹϑ, which is independent ons. Therefore, using (B.40),

w =
1

n
trHs − σ2

n
tr





(

Rβσ2

1 + β 1
n trHs

+ 1

)−1

Is





(B.40)
= −ϑβσ2 1

n
tr
(

HsHT
sHs

)

+ ϑ
Rσ2β 1

n trHs

1 + β 1
n trHs

(B.45)

= −ϑ 1
n

k
∑

i=1

βσ2zT
i H

szi + ϑ
1

n

k
∑

i=1

βσ2 1
n trHs

1 + β 1
n trHs

(B.46)

where in the last equality we have used the fact thatR = k/n, and that

tr
(

HsHT
sHs

)

= tr

(

Hs
k
∑

i=1

ziz
T
i

)

=

k
∑

i=1

zT
i H

szi. (B.47)

Therefore,

|w| =

∣

∣

∣

∣

∣

∣

1

n
trHs − σ2

n
tr





(

Rβσ2

1 + β 1
n trHs

+ 1

)−1

Is





∣

∣

∣

∣

∣

∣
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(B.46)
=

∣

∣

∣

∣

∣

ϑ
1

n

k
∑

i=1

[

βσ2zT
i H

szi −
βσ2 1

n trHs

1 + β 1
n trHs

]∣

∣

∣

∣

∣

(a)

≤ ϑ̃
1

n

∣

∣

∣

∣

∣

k
∑

i=1

[

βσ2zT
i H

s
i zi

1 + βzT
i H

s
i zi

− βσ2 1
n trHs

1 + β 1
n trHs

]∣

∣

∣

∣

∣

, (B.48)

where(a) follows by the matrix inversion lemma (Lemma 11) and (B.44).Comparing the upper bound

onw in (B.48) with (B.15), we readily conclude thatE |w|p ≤ O(n−p/2), and uniformly ins. Now, note

that
∣

∣

∣

∣

1

n
trHs −msσ

2b (ms)

∣

∣

∣

∣

(a)
=

∣

∣

∣

∣

∣

∣

1

n
trHs −msσ

2

(

Rβσ2

1 + β 1
n trHs

+ 1

)−1

+msσ
2

(

Rβσ2

1 + β 1
n trHs

+ 1

)−1

−msσ
2b (ms)

∣

∣

∣

∣

∣

∣

(b)

≤

∣

∣

∣

∣

∣

∣

1

n
trHs −msσ

2

(

Rβσ2

1 + β 1
n trHs

+ 1

)−1
∣

∣

∣

∣

∣

∣

+msσ
2

∣

∣

∣

∣

∣

∣

(

Rβσ2

1 + β 1
n trHs

+ 1

)−1

− b (ms)

∣

∣

∣

∣

∣

∣

(B.49)

(c)
= |w|+msσ

2

∣

∣

∣

∣

∣

∣

(

Rβσ2

1 + β 1
n trHs

+ 1

)−1

− b (ms)

∣

∣

∣

∣

∣

∣

(B.50)

where in(a) we added and subtracted a common term, in(b) we used the triangle inequality, and in(c)

we noticed that the first term isw given in (B.37). But using (B.36),
∣

∣

∣

∣

∣

∣

(

Rβσ2

1 + β 1
n trHs

+ 1

)−1

− b (ms)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(

Rβσ2

1 + β 1
n trHs

+ 1

)−1

−
(

βσ2R

1 + βσ2msb (ms)
+ 1

)−1
∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 + β 1
n trHs

1 + βσ2R+ β 1
n trHs

− 1 + βσ2msb (ms)

1 + βσ2R+ βσ2msb (ms)

∣

∣

∣

∣

∣

(B.51)

=
β2σ2R

∣

∣

1
nH

s −msσ
2b (ms)

∣

∣

(

1 + βσ2R+ β 1
n trHs

)

(1 + βσ2R+ βσ2msb (ms))
(B.52)

, κ

∣

∣

∣

∣

1

n
trHs −msσ

2b (ms)

∣

∣

∣

∣

(B.53)

where

κ ,
β2σ2R

(

1 + βσ2R+ β 1
n trHs

)

(1 + βσ2R+ βσ2msb (ms))
. (B.54)

Thus, using (B.50) and (B.53),
∣

∣

∣

∣

1

n
trHs −msσ

2b (ms)

∣

∣

∣

∣

≤ |w|+ κmsσ
2

∣

∣

∣

∣

1

n
trHs −msσ

2b (ms)

∣

∣

∣

∣

. (B.55)

In the following, we show that0 < κmsσ
2 < 1. First, forms ≤ R we see that

κmsσ
2 =

β2σ4Rms
(

1 + βσ2R+ β 1
n trHs

)

(1 + βσ2R+ βσ2msb (ms))
(B.56)
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(a)

≤ β2σ4R2

(1 + βσ2R)2
≤ 1. (B.57)

where(a) follows from the facts thattr
(

βσ2HT
sHs + Is

)−1 ≥ 0 and thatb (ms) ≥ 0. Forms > R,

we first note thatb (ms) ≥ (ms −R) /ms, which follows from the facts thatb (ms) is monotonically

decreasing inβ (by definition), and that

lim
β→∞

b (ms) =
ms −R

ms
. (B.58)

Whence,

κmsσ
2 =

β2σ4Rms
(

1 + βσ2R+ β 1
n trHs

)

(1 + βσ2R+ βσ2msb (ms))
(B.59)

≤ β2σ4Rms

(1 + βσ2R)
(

1 + βσ2R+ βσ2ms
ms−R
ms

) (B.60)

=
β2σ4Rms

(1 + βσ2R) (1 + βσ2ms)
(B.61)

≤ β2σ4R

(1 + βσ2R) (1 + βσ2)
≤ 1. (B.62)

Thus, using (B.55), we get
∣

∣

∣

∣

1

n
trHs −msσ

2b (ms)

∣

∣

∣

∣

≤ 1

1−msκσ2
|w| (B.63)

≤ κ̃ |w| (B.64)

whereκ̃ > 0 can be upper bounded by a term that depends solely onβ, σ2 andR. Accordingly, based

on (B.35), the fact thatE |w|p ≤ O(n−p/2), and (B.64), we can conclude that

E |ê|p ≤ κ̃pE |w|p (B.65)

≤ O(n−p/2), (B.66)

which proves (B.16). Finally, note that (B.64) and the fact thatE |w|p ≤ O(n−p/2), proves also (67).

Remark 5Note that it is easier to prove the a.s. convergence of the terms in (B.11) compared to the

above uniform convergence. Indeed, recall (B.14), and notethat the matrixHs
i is statistically independent

on zi. Then,

1

n

k
∑

i=1

Y 2
i z

T
i H

s
i zi

1 + βzT
i H

s
i zi

≍ 1

n

k
∑

i=1

Y 2
i

1
n trHs

i

1 + β 1
n trHs

i

(B.67)

≍ 1

n

k
∑

i=1

Y 2
i

1
n trHs

1 + β 1
n trHs

(B.68)
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≍ 1

n

k
∑

i=1

Y 2
i msσ

2b (ms)

1 + βσ2msb (ms)
(B.69)

=
msσ

2b (ms)

1 + βσ2msb (ms)

‖Y ‖2
n

(B.70)

where in the first passage, we applied the trace lemma (Lemma 15) and Lemma 16, in the second passage

we have used the rank-1 perturbation lemma (Lemma 17), and the third passage is due to Lemma 5 (see,

Appendix B-A). This proves the a.s. convergence of the first term at the r.h.s. of (B.7).

C. Proof of (69)

Let zi and z̃i denote theith rows of the matricesHs andHr, respectively. Then, using

Y THs =

k
∑

i=1

Yiz
T
i , (B.71)

and

HT
rY =

k
∑

i=1

Yiz̃i, (B.72)

we have that

1

n
Y THsH

sQs∩rH
rHT

rY =
1

n

k
∑

i=1

Y 2
i z

T
i H

sQs∩rH
rz̃i +

1

n

k
∑

i 6=j

YiYjz
T
i H

sQs∩rH
rz̃j. (B.73)

Define

qn,1 ,
α̃ms,r

(1 + βσ2msb (ms)) (1 + βσ2mrb (mr))

‖Y ‖2
n

, (B.74)

qn,2 ,
α̃
[

Y THsQs∩rH
T
rY −ms,r ‖Y ‖2

]

n (1 + βσ2msb (ms)) (1 + βσ2mrb (mr))

−
α̃ms,rβσ

2b (mr)
[

∥

∥Y THr

∥

∥

2 −mr ‖Y ‖2
]

n (1 + βσ2msb (ms)) (1 + βσ2mrb (mr))
2

−
α̃ms,rβσ

2b (ms)
[

∥

∥Y THs

∥

∥

2 −ms ‖Y ‖2
]

n (1 + βσ2msb (ms))
2 (1 + βσ2mrb (mr))

, (B.75)

and observe thatqn = qn,1 + qn,2. Thus, to prove (69), it is sufficient to show that

max
s,r∈{0,1}n

P

{∣

∣

∣

∣

∣

1

n

k
∑

i=1

Y 2
i z

T
i H

sQs∩rH
rz̃i − qn,1

∣

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2), (B.76)

and

max
s,r∈{0,1}n

P







∣

∣

∣

∣

∣

∣

1

n

k
∑

i 6=j

YiYjz
T
i H

sQs∩rH
rz̃j − qn,2

∣

∣

∣

∣

∣

∣

> ǫ







≤ 1

ǫp
O(n−p/2). (B.77)
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Since the same arguments that will be used to prove (B.76) canbe used to prove (B.77), for the sake of

brevity, in the following, we focus on (B.76).

Applying the matrix inversion lemma (Lemma 11) we obtain

1

n

k
∑

i=1

Y 2
i z

T
i H

sQs∩rH
rz̃i =

1

n

k
∑

i=1

Y 2
i z

T
i H

s
iQs∩rH

r
i z̃i

(

1 + βzT
i H

s
i zi

) (

1 + βz̃T
i H

r
i z̃i

) . (B.78)

Note that contrary to the previous case (68), where already at this stage, we were able to continue the

asymptotic analysis (see, (B.67)-(B.70)), in this case we cannot, because currently, we do not know how

the numerator behaves. Let

ηn ,
βR

1 + β 1
n trHr

, (B.79)

ψn ,
βR

1 + β 1
n trHr

− β2R 1
n tr

(

Qs∩rH
rQT

s∩r

)

(

1 + β 1
n trHs

) (

1 + β 1
n trHr

) , (B.80)

and α̃n , (ψn + σ−2)−1(ηn + σ−2)−1. The following lemma provides the asymptotic behavior of the

numerator in (B.78).

Lemma 9For anyǫ, p > 0,

max
s,r∈{0,1}n

P
{∣

∣zT
i H

s
iQs∩rH

r
i z̃i − α̃nms,r

∣

∣ > ǫ
}

≤ 1

ǫp
O(n−p/2), (B.81)

and

max
s,r∈{0,1}n

P {|α̃nms,r − α̃(ms,mr,ms,r)ms,r| > ǫ} ≤ 1

ǫp
O(n−p/2), (B.82)

whereα̃(ms,mr,ms,r) is defined in (73).

Given Lemma 9, by using exactly the same arguments as in (B.15) and (B.16), it can be shown that

for any p, ǫ > 0,

max
s,r∈{0,1}n

P







∣

∣

∣

∣

∣

∣

k
∑

i=1

Y 2
i

n





zT
i H

s
iQs∩rH

r
i z̃i

(

1 + βzT
i H

s
i zi

) (

1 + βz̃T
i H

r
i z̃i

) − α̃nms,r
(

1 + β
n trHs

)(

1 + β
n trHr

)





∣

∣

∣

∣

∣

∣

> ǫ







≤ 1

ǫp
O(n−p/2), (B.83)

and

max
s,r∈{0,1}n

P

{∣

∣

∣

∣

∣

α̃nms,r
(

1 + β 1
n trHs

) (

1 + β 1
n trHr

)

‖Y ‖2
n

− qn,1

∣

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2). (B.84)

Using (B.78), (B.83), and (B.84), we obtain (B.76), as required. We end this subsection by proving

Lemma 9.
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(B.90)

(B.91)

(B.86)

(B.85)

(B.81)

(B.82)
(B.76)

Fig. 4. Consolidation steps.

Proof of Lemma 9: We start with (B.81). Lethn , α̃nms,r. Similarly as in (B.25), using Lemma

14, it can be verified that

max
s,r∈{0,1}n

P

{∣

∣

∣

∣

zT
i H

s
iQs∩rH

r
i z̃i −

1

n
tr
[

Hs
iQs∩rH

r
iQ

T
s∩r

]

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2). (B.85)

Accordingly, it is sufficient to show that

max
s,r∈{0,1}n

P

{∣

∣

∣

∣

1

n
tr
[

Hs
iQs∩rH

r
iQ

T
s∩r

]

− hn

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2). (B.86)

Note thathn can be written as follows

hn ,
1

n
tr
(

D−1
s Qs∩rD

−1
r QT

s∩r

)

(B.87)

whereDs ,
(

ψn + 1
σ2

)

Is andDr ,
(

ηn + 1
σ2

)

Ir, and we have used the fact thattr
(

Qs∩rQ
T
s∩r

)

=
∑n

i=1 siri = nms,r. Accordingly,

Hs
iQs∩rH

r
iQ

T
s∩r −D−1

s Qs∩rD
−1
r QT

s∩r = Hs
iQs∩rH

r
iQ

T
s∩r −D−1

s Qs∩rH
r
iQ

T
s∩r

+D−1
s Qs∩rH

r
iQ

T
s∩r −D−1

s Qs∩rD
−1
r QT

s∩r (B.88)

=
[

Hs
i −D−1

s

]

Qs∩rH
r
iQ

T
s∩r

+D−1
s Qs∩r

[

Hr
i −D−1

r

]

QT
s∩r. (B.89)

Thus, to prove (B.86), it is sufficient to show that

max
s,r∈{0,1}n

P

{∣

∣

∣

∣

1

n
tr
([

Hs
i −D−1

s

]

Qs∩rH
r
iQ

T
s∩r

)

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2), (B.90)

and

max
s,r∈{0,1}n

P

{∣

∣

∣

∣

1

n
tr
(

D−1
s Qs∩r

[

Hr
i −D−1

r

]

QT
s∩r

)

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫp
O(n−p/2). (B.91)

Fig. 4 gives a schematic representation of the various consolidation steps used to prove (B.76).

Proof of (B.90):Let

ẑi ,
1

n
tr
([

Hs
i −D−1

s

]

Qs∩rH
r
iQ

T
s∩r

)

, (B.92)
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and we need to show thatmaxs,r P {|ẑi| > ǫ} ≤ O(n−p/2). By Lemma 13,

Hs
i −D−1

s = D−1
s

[

Ds − β
[

HT
sHs

]

i
− 1

σ2
Is

]

Hs
i (B.93)

= CIs
[

ψnIs − β
[

HT
sHs

]

i

]

Hs
i (B.94)

= CψnH
s
i − Cβ

[

HT
sHs

]

i
Hs

i (B.95)

where in the second equality we substituteDs =
(

ψn + 1
σ2

)

Is, and definedC , 1/
(

ψn + 1/σ2
)

.

Therefore,

ẑi =
Cψn

n
tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

− Cβ

n
tr
(

HT
sHsH

s
iQs∩rH

r
iQ

T
s∩r

)

. (B.96)

Using (B.96), to prove (B.90), we need to show that

max
s,r∈{0,1}n

P

{∣

∣

∣

∣

Cψn

n
tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

− Cβ

n
tr
(

HT
sHsH

s
iQs∩rH

r
iQ

T
s∩r

)

∣

∣

∣

∣

> ǫ

}

≤ O(n−p/2)

ǫp
.

(B.97)

Now,

Cβ

n
tr
(

HT
sHsH

s
iQs∩rH

r
iQ

T
s∩r

) (a)
=
Cβ

n
tr





k
∑

j=1

zjz
T
j H

s
iQs∩rH

r
iQ

T
s∩r





(b)
=
Cβ

n

k
∑

j=1

zT
j H

s
iQs∩rH

r
iQ

T
s∩rzj (B.98)

(c)
=
Cβ

n

k
∑

j=1

zT
j H

s
i,jQs∩rH

r
iQ

T
s∩rzj

1 + βzT
j H

s
i,jzj

(B.99)

where in(a) we have used the fact thatHT
sHs =

∑k
i=1 ziz

T
i , in (b) we have used the cyclic property

of the trace operator, and(c) is by the matrix inversion lemma. Applying Lemma 12 toHr
i in (B.99)

we obtain (removing thẽzjz̃
T
j element fromHr

i )

Cβ

n
tr
(

HT
sHsH

s
iQs∩rH

r
iQ

T
s∩r

)

=
Cβ

n

k
∑

j=1

zT
j H

s
i,jQs∩rH

r
i,jQ

T
s∩rzj

1 + βzT
j H

s
i,jzj

− Cβ

n

k
∑

j=1

zT
j H

s
i,jQs∩rH

r
i,jβz̃j z̃

T
j H

r
i,jQ

T
s∩rzj

(

1 + βzT
j H

s
i,jzj

)(

1 + βz̃T
j H

r
i,jz̃j

) . (B.100)

Thus, using the last equality,

ẑi =
Cψn

n
tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

− Cβ

n

k
∑

j=1

zT
j H

s
i,jQs∩rH

r
i,jQ

T
s∩rzj

1 + βzT
j H

s
i,jzj

+
Cβ

n

k
∑

j=1

zT
j H

s
i,jQs∩rH

r
i,jβz̃j z̃

T
j H

r
i,jQ

T
s∩rzj

(

1 + βzT
j H

s
i,jzj

)(

1 + βz̃T
j H

r
i,jz̃j

) . (B.101)
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Substitutingψn (see, (B.80)) in (B.101), we get

ẑi =
Cβ

n

k
∑

j=1

[

1
n tr

(

Hs
iQs∩rH

r
iQ

T
s∩r

)

1 + β 1
n trHr

−
zT
j H

s
i,jQs∩rH

r
i,jQ

T
s∩rzj

1 + βzT
j H

s
i,jzj

]

+
Cβ

n

k
∑

j=1





zT
j H

s
i,jQs∩rH

r
i,jβz̃jz̃

T
j H

r
i,jQ

T
s∩rzj

(

1 + βzT
j H

s
i,jzj

)(

1 + βz̃T
j H

r
i,jz̃j

)

−
1
n tr

(

Hs
iQs∩rH

r
iQ

T
s∩r

)

β 1
n tr

(

Qs∩rH
rQT

s∩r

)

(

1 + β 1
n trHs

) (

1 + β 1
n trHr

)

]

. (B.102)

Whence, to prove (B.97), it is sufficient to show that the two terms (summations) at r.h.s. of (B.102)

converge to zero uniformly ins, r. The convergence of the first term, can be shown exactly as was

already done for (B.15). The convergence of the second term is essentially very similar to the first term,

but with more terms involved (actually, the second term can be seen as an extension of the first term).

Indeed, by Lemma 3, it is enough to prove that

E







∣

∣

∣

∣

∣

∣

zT
j H

s
i,jQs∩rH

r
i,jβz̃j z̃

T
j H

r
i,jQ

T
s∩rzj

(

1 + βzT
j H

s
i,jzj

)(

1 + βz̃T
j H

r
i,jz̃j

) −
1
n tr

(

Hs
iQs∩rH

r
iQ

T
s∩r

)

β 1
n tr

(

Qs∩rH
rQT

s∩r

)

(

1 + β 1
n trHs

) (

1 + β 1
n trHr

)

∣

∣

∣

∣

∣

∣

p




≤ O(n−(1+δ)), (B.103)

or equivalently that (again, we add and subtract a common term and then we use the triangle inequality):

E







∣

∣

∣

∣

∣

∣

zT
j H

s
i,jQs∩rH

r
i,jβz̃j z̃

T
j H

r
i,jQ

T
s∩rzj − 1

n tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

β 1
n tr

(

Qs∩rH
rQT

s∩r

)

(

1 + βzT
j H

s
i,jzj

)(

1 + βz̃T
j H

r
i,jz̃j

)

∣

∣

∣

∣

∣

∣

p




≤ O(n−(1+δ)), (B.104)

and that

E







∣

∣

∣

∣

∣

∣

1
n tr

(

Hs
iQs∩rH

r
iQ

T
s∩r

)

β 1
n tr

(

Qs∩rH
rQT

s∩r

)

(

1 + βzT
j H

s
i,jzj

)(

1 + βz̃T
j H

r
i,jz̃j

)

−
1
n tr

(

Hs
iQs∩rH

r
iQ

T
s∩r

)

β 1
n tr

(

Qs∩rH
rQT

s∩r

)

(

1 + β 1
n trHs

) (

1 + β 1
n trHr

)

∣

∣

∣

∣

∣

p}

≤ O(n−(1+δ)). (B.105)

Fig. 5 gives a schematic representation of the various consolidation steps used to prove (B.90).

Let us show (B.104). First, note that

|di| ,

∣

∣

∣

∣

∣

∣

zT
j H

s
i,jQs∩rH

r
i,jβz̃jz̃

T
j H

r
i,jQ

T
s∩rzj − 1

n tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

β 1
n tr

(

Qs∩rH
rQT

s∩r

)

(

1 + βzT
j H

s
i,jzj

)(

1 + βz̃T
j H

r
i,jz̃j

)

∣

∣

∣

∣

∣

∣

(B.106)
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(B.104)

(B.105)

(B.103) (B.90)(B.97)(B.102)

Fig. 5. Consolidation steps.

≤
∣

∣

∣

∣

zT
j H

s
i,jQs∩rH

r
i,jβz̃j z̃

T
j H

r
i,jQ
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s∩rzj −

1

n
tr
(
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iQs∩rH

r
iQ

T
s∩r

)
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1

n
tr
(

Qs∩rH
rQT

s∩r

)

∣

∣

∣

∣

(B.107)

(a)
=

∣

∣

∣

∣

zT
j H

s
i,jQs∩rH

r
i,jβz̃jz̃

T
j H

r
i,jQ

T
s∩rzj −

1

n
tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

βz̃T
j H

r
i,jQ

T
s∩rzj

+
1
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tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

βz̃T
j H
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i,jQ
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s∩rzj −

1
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iQs∩rH
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s∩r

)
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1

n
tr
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Qs∩rH
rQT
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∣

∣

∣

(B.108)

(b)

≤
∣

∣

∣

∣

zT
j H

s
i,jQs∩rH

r
i,jz̃j −

1

n
tr
(
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iQs∩rH

r
iQ

T
s∩r

)

∣

∣

∣

∣

∣

∣

∣βz̃T
j H

r
i,jQ

T
s∩rzj

∣

∣

∣
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∣

∣

∣

∣

1

n
tr
(
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iQs∩rH

r
iQ

T
s∩r

)

∣

∣

∣

∣

∣

∣

∣

∣
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1

n
tr
(

Qs∩rH
rQT

s∩r
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∣

∣

∣

∣

(B.109)

where(a) follows by adding and subtracting the term

1

n
tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

βz̃T
j H

r
i,jQ

T
s∩rzj,

and (b) follows from the triangle inequality and pulling out the common factor. Using the Cauchy-

Schwartz inequality,

E

{∣

∣

∣

∣

zT
j H

s
i,jQs∩rH

r
i,jz̃j −

1

n
tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

∣

∣

∣

∣

p ∣
∣

∣βz̃T
j H

r
i,jQ

T
s∩rzj

∣

∣

∣

p
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≤
(

E

∣

∣

∣

∣

zT
j H

s
i,jQs∩rH

r
i,jz̃j −

1

n
tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

∣

∣

∣

∣

2p
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(

E

∣

∣

∣
βz̃T

j H
r
i,jQ

T
s∩rzj

∣

∣

∣

2p
)1/2

≤ O(n−p/2) (B.110)

where the last inequality follows from Lemma 14 and the fact that E
∣

∣

∣
βz̃T

j H
r
i,jQ

T
s∩rzj

∣

∣

∣

2p
is bounded

(Lemma 21). Letaj be thejth row of H , and letΠr andΠs ben× |R| andn× |S| binary projection

matrices such that̃zj = Π
T
r aj andzj = Π

T
s aj, respectively (note thatQs∩r = ΠsΠr), i.e., each of

the |R| columns ofΠr has a single unit entry corresponding to an index fromR (and the same forΠs).

Then, note that

z̃T
j H

r
i,jQ

T
s∩rzj = aT

j ΠrH
r
i,jQ

T
s∩rΠ

T
s aj (B.111)
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= (
√
naj)

T

[

1

n
ΠrH

r
i,jQ

T
s∩rΠ

T
s

]

(
√
naj). (B.112)

Also, recall that the matrixHr
i,j is defined as

Hr
i,j =

[

β
(

HT
sHs − z̃iz̃

T
i − z̃jz̃

T
j

)

+
1

σ2
Ir

]−1

, (B.113)

and thusΠrH
r
i,jQ

T
s∩rΠ

T
s is independent ofaj. Finally, note that w.p. 1,Hr

i,j � σ2Ir, and thus, with

the same probability,

tr

[

1

n

(

ΠrH
r
i,jQ

T
s∩rΠ

T
s

)T (

ΠrH
r
i,jQ

T
s∩rΠ

T
s

)

]

≤ tr

(

σ4

n
ΠsQs∩rΠ

T
r ΠrQ

T
s∩rΠ

T
s

)

(B.114)

≤ σ4, (B.115)

which establishes the boundness condition in Lemma 21. The second term in (B.109) is handled similarly.

Thus, taking anyp > 2, we obtain (B.104). Similar arguments can be applied to showthat (B.105) holds

true. This establishes the proof of (B.90).

Proof of (B.91):Using Lemma 13,

Hr
i −D−1

r = D−1
r

[

Dr − β
[

HT
rHr

]

i
− 1

σ2
Ir

]

Hr
i . (B.116)

SubstitutingDr, we obtain

D−1
s Qs∩r

[

Hr
i −D−1

r

]

= ηnD
−1
s Qs∩rD

−1
r Hr

i

−D−1
s Qs∩rD

−1
r β

[

HT
rHr

]

i
Hr

i . (B.117)

Let C̃ = 1/
(

ηn + 1/σ2
)

. Then,

1

n
tr
(

D−1
s Qs∩rD

−1
r β

[

HT
rHr

]

i
Hr

iQ
T
s∩r

)

=
C̃Cβ

n

k
∑

j=1

z̃T
j H

r
i,jQ

T
s∩rQs∩rz̃j

1 + βz̃T
j H

r
i,jz̃j

(B.118)

where, as before, we have usedHT
sHs =

∑k
i=1 ziz

T
i , the cyclic property of the trace operator, and the

matrix inversion lemma. Substituting (B.79) in (B.91) we get

1

n
tr
(

D−1
s Qs∩r

[

Hr
i −D−1

r

]

QT
s∩r

)

=
C̃Cβ

n

k
∑

j=1

[

z̃T
j H

r
i,jQ

T
s∩rQs∩rz̃j

1 + βz̃T
j H

r
i,jz̃j

−
1
n tr

(

Qs∩rHr
iQ

T
s∩r

)

1 + β 1
n trHr

]

.

(B.119)

Noting to the similarities between (B.119) and (B.15), using the same arguments used to prove (B.15),

it can be shown that (B.119) converges to zero uniformly ins andr, yielding (B.91).
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It remains to show (B.84). The main observation is thatα̃n involves the Stieltjes transforms1n trHr,

1
n trHs and 1

n trQs∩rH
rQT

s∩r. Thus, repeating the same steps as in (B.32)-(B.64), we can readily

prove (B.84). Note that similarly as in Remark 5, using Lemma5, it is easy to see that

ηn =
βR

1 + β 1
n trHr

≍ βR

1 + βσ2mrb(mr)
, η∞, (B.120)

and

ψn =
βR

1 + β 1
n trHr

− β2R 1
n tr

(

Qs∩rH
rQT

s∩r

)

(

1 + β 1
n trHs

) (

1 + β 1
n trHr

) , (B.121)

≍ βR

1 + βσ2mrb (mr)
− β2σ2Rb (ms)ms,r

(1 + βσ2msb (ms)) (1 + βσ2mrb (mr))
, ψ∞. (B.122)

Whence,

α̃n = (ψn + σ−2)−1(ηn + σ−2)−1 (B.123)

≍ (ψ∞ + σ−2)−1(η∞ + σ−2)−1 = α̃, (B.124)

which establishes the a.s. convergence ofα̃n to α̃.

D. Proof of (70)

Recall the definition ofS(−1) in (B.4), and note thatη (γ) in Lemma 4 boils down to

η (γ) ,
1

k

|S|
∑

l=1

log (1 + cglS (−γ))− log
(

γ2S (−γ)
)

− 1

|S|

|S|
∑

l=1

glS (−γ)
1 + cglS (−γ) . (B.125)

Thus, forγ = 1,

η (1) =
R

ms
log
[

1 + βσ2b (ms)ms

]

− log b (ms)−
βσ2Rb (ms)

1 + βσ2b (ms)ms
, (B.126)

which is Ī (ms) defined in (12). Thus, by Lemma 4,

1

n
log det

(

βσ2HT
sHs + Is

)

−msĪ (ms) → 0 (B.127)

a.s. asn→ ∞. From (B.127) one cannot deduce (70). Nonetheless, the uniformity w.r.t. s follows from

the original proof of Lemma 4 in [39] and [43, Appendix B]. In short, the uniformity is due to the

following facts: First, the Shannon transform of any non-negative definite matrix can be expressed as a

functional of the Stieltjes transform of the same matrix [29, Eq. (3.5)]. Second, in [39, Appendix B, eq.

(47)], it was shown that the same functional relation holds also between their respective deterministic

equivalents,̄Ss(z) andηs(z) (see the notation in Lemma 4). Finally, using the fact that the convergence

of the Stieltjes transform ofβHT
sHs to S̄s(z) is uniform w.r.t.s, it can be shown that this is the case

also for the Shannon transform ofβHT
sHs andηs(z).
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APPENDIX C

Derivation of (26): In this appendix, using the previous asymptotic results, wederive the asymptotic

MMSE. As was shown in Subsection IV-D, our objective is to evaluate (106) which is given by

lim sup
n→∞

mmse(X|Y ,H)

n
= σ2ma − lim sup

n→∞
E
{

Eµs×r
[J (Y ,Hs,Hr)1T s,r

ǫ
]
}

. (C.1)

Note that

yTHsQs∩rH
T
ry =

n
∑

i=1

∣

∣hT
i y
∣

∣

2
siri, (C.2)

∥

∥HT
sy
∥

∥

2
=

n
∑

i=1

∣

∣hT
i y
∣

∣

2
si, (C.3)

and

∥

∥HT
ry
∥

∥

2
=

n
∑

i=1

∣

∣hT
i y
∣

∣

2
ri. (C.4)

Over T s,r
ǫ , using the definitions ofξ (y,Hs) andJ (y,Hs,Hr) in (60) and (61), respectively,

∣

∣

∣

∣

1

n
log ξ (y,Hs)−

β2

2
fn − 1

2
msĪ (ms)

∣

∣

∣

∣

< ǫ, (C.5)

and

∣

∣J (y,Hs,Hr)− β2qn
∣

∣ < ǫ. (C.6)

For brevity, we let

J ǫ (y,Hs,Hr) , β2qn + ǫ, (C.7)

ξǫ (y,Hs) , exp

{

n

(

β2

2
fn +

1

2
msĪ (ms) + ǫ

)}

, (C.8)

µǫs×r (y,Hs,Hr) ,
PS(s)PS(r)ξ

ǫ (y,Hs) ξ
ǫ (y,Hr)

[

∑

u∈{0,1}n PS (u) ξǫ (y,Hu)
]2 . (C.9)

Thus,

Eµs×r
[J (Y ,Hs,Hr)1T s,r

ǫ
] ≤ Eµǫ

s×r
[J ǫ (Y ,Hs,Hr)1T s,r

ǫ
] (C.10)

= Eµǫ
s×r

[J ǫ (Y ,Hs,Hr)]− Eµǫ
s×r

[

J ǫ (Y ,Hs,Hr)1(T s,r
ǫ )c

]

, (C.11)

and on the other hand,

Eµs×r
[J (Y ,Hs,Hr)1T s,r

ǫ
] ≥ Eµ−ǫ

s×r

[

J−ǫ (Y ,Hs,Hr)1T s,r
ǫ

]

(C.12)

= Eµ−ǫ
s×r

[

J−ǫ (Y ,Hs,Hr)
]

− Eµ−ǫ
s×r

[

J−ǫ (Y ,Hs,Hr)1(T s,r
ǫ )c

]

.

(C.13)
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Now, similarly as in (103), the last terms of (C.11) and (C.13) tend to zero asn, k → ∞. Thus,

E

{

Eµ−ǫ
s×r

[

J−ǫ (Y ,Hs,Hr)
]

}

− o(1) ≤ E
{

Eµs×r
[J (Y ,Hs,Hr)1T s,r

ǫ
]
}

≤ E
{

Eµǫ
s×r

[J ǫ (Y ,Hs,Hr)]
}

+ o(1). (C.14)

Our next objective is to analyze the asymptotic behavior of the terms at the l.h.s. and the r.h.s. of (C.14).

Let

Z (y,H) ,
∑

s∈{0,1}n

∑

r∈{0,1}n

PS(s)PS(r)J (y,Hs,Hr) ξ (y,Hs) ξ (y,Hr) .

We denote

β2

2
fn =

β3σ4b2 (ms)m
2
s

2g2 (ms)

‖y‖2
n

+
β2σ2b (ms)

2g2 (ms)

∥

∥HT
sy
∥

∥

2

n

, V (ms)
‖y‖2
n

+ L (ms)

∑n
i=1

∣

∣yThi

∣

∣

2
si

n
, (C.15)

and qǫ(s, r) , β2qn + ǫ. Using (C.14), for largen and k, the functionZ (y,H) is lower and upper

bounded as follows

Z−ǫ (y,H) ≤ Z (y,H) ≤ Zǫ (y,H) (C.16)

where

Zǫ (y,H) ,
∑

s∈{0,1}n

∑

r∈{0,1}n

qǫ (s, r) exp

{

n

(

t̃ (ms) + t̃ (mr) + L (ms)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
si

+L (mr)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
ri + ǫ

)}

(C.17)

in which

t̃ (m) , f (m)− m

2
Ī (m) + V (m)

‖y‖2
n

. (C.18)

Based on (C.17), we need to handle a double summation (overs andr). We first assess the exponential

order of the sum overr. First, we rewriteZǫ (y,H) as follows

Zǫ (y,H) =
∑

s∈{0,1}n

exp

{

n

(

t̃ (ms) + L (ms)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)}

∑

r∈{0,1}n

qǫ (s, r) exp

{

n

(

t̃ (mr) + L (mr)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
ri + ǫ

)}

(C.19)

,
∑

s∈{0,1}n

exp

{

n

(

t̃ (ms) + L (ms)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)}

Z̃ǫ (y,H , s) (C.20)
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where

Z̃ǫ (y,H , s) ,
∑

r∈{0,1}n

qǫ (s, r) exp

{

n

(

t̃ (mr) + L (mr)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
ri + ǫ

)}

. (C.21)

Now, Z̃ǫ (y,H , s) can be equivalently rewritten as

Z̃ǫ (y,H , s) =
∑

mr

exp
{

n
(

t̃ (mr) + ǫ
)}

Ẑǫ (y,H , s,mr) (C.22)

where the summation is overmr ∈ {0/n, 1/n, . . . , n/n}, and

Ẑǫ (y,H , s,mr) ,
∑

r: mr=mr

qǫ (s, r) exp

(

L (mr)

n
∑

i=1

∣

∣yThi

∣

∣

2
ri

)

(C.23)

where with slight abuse of notation, the summation is performed over sequences{r} with magnetization,

mr = n−1
∑n

i=1 ri, fixed tomr. For conciseness we omit the dependency of the above terms onǫ.

We next assess the asymptotic behavior ofẐ (y,H , s,mr), and then the asymptotic behavior of

Z̃ (y,H , s). For Ẑ (y,H , s,mr), we need to count the number of binary sequences{r}, having a

given magnetizationmr, and are subject to some linear constraints (finite number ofthem). Accordingly,

consider the following set

Fδ

(

{ρl}Ll=1 ,m
)

,

{

v ∈ {0, 1}n :

∣

∣

∣

∣

∣

n
∑

i=1

vi − nm

∣

∣

∣

∣

∣

≤ δ,

∣

∣

∣

∣

∣

n
∑

i=1

viui,l − nρl

∣

∣

∣

∣

∣

≤ δ, l = 1, . . . , L

}

(C.24)

whereL ∈ N is fixed, and{ui,l}ni=1 for l = 1, . . . , L, are given sequences of real numbers. We will

upper and lower bound the cardinality ofFδ

(

{ρl}Ll=1 ,m
)

for a givenδ > 0, m, and{ρl}Ll=1. Then, we

will use the result in order to approximatêZ (y,H , s,mr).

Lemma 10The cardinality ofFδ

(

{ρl}Ll=1 ,m
)

satisfies, for anyτ > 0,

(1− τ)R−δ ≤
∣

∣

∣
Fδ

(

{ρl}Ll=1 ,m
)∣

∣

∣
≤ Rδ (C.25)

where

Rδ , exp

{

1

2

(

L
∑

l=1

α◦
l

n
∑

i=1

ui,l − nγ◦

)

−
(

L
∑

l=1

α◦
l (nρl − δ)− γ◦ (nm− δ)

)

+

n
∑

i=1

log

[

2 cosh

(

∑L
l=1 α

◦
l ui,l − γ◦

2

)]}

, (C.26)

and
{

{α◦
l }Ll=1 , γ

◦
}

are given by the solution of the following set of equations

ρl =
δ

n
+

1

2n

n
∑

i=1

ui,l +
1

2n

n
∑

i=1

tanh

(

∑L
l=1 α

◦
l ui,l − γ◦

2

)

ui,l, l = 1, . . . , L, (C.27)

April 30, 2021 DRAFT



45

and

m =
δ

n
+

1

2
+

1

2n

n
∑

i=1

tanh

(

∑L
l=1 αlui,l − γ◦

2

)

. (C.28)

Proof: Define

P
(

vi; {αl}Ll=1 , γ| {ui,l}Ll=1

)

,
exp

{

∑L
l=1 αlviui,l − γvi

}

2 exp
{

1
2

(

∑L
l=1 αlui,l − γ

)}

cosh
(∑

L
l=1

αlui,l−γ
2

) (C.29)

where{αl}Ll=1 andγ are auxiliary parameters. Now, forv = (v1, . . . , vn), let

P
(

v; {αl}Ll=1 , γ| {ul}Ll=1

)

,
exp

{

∑L
l=1 αl

∑n
i=1 viui,l − γ

∑n
i=1 vi

}

2n exp
{

1
2

(

∑L
l=1 αl

∑n
i=1 ui,l − nγ

)}

∏n
i=1 cosh

(∑
L

l=1
αlui,l−γ
2

) .

(C.30)

Then, we have that

1 ≥ P

(

v ∈ Fδ (ρ,m) ; {αl}Ll=1 , γ| {ul}Ll=1

)

(C.31)

=
∑

v∈Fδ

exp
{

∑L
l=1 αl

∑n
i=1 viui,l − γ

∑n
i=1 vi

}

2n exp
{

1
2

(

∑L
l=1 αl

∑n
i=1 ui,l − nγ

)}

∏n
i=1 cosh

(∑
L
l=1

αlui,l−γ
2

) (C.32)

≥
∑

v∈Fδ

exp
{

∑L
l=1 αl (nρl − δ)− γ (nm− δ)

}

2n exp
{

1
2

(

∑L
l=1 αl

∑n
i=1 ui,l − nγ

)}

∏n
i=1 cosh

(∑
L
l=1

αlui,l−γ
2

) (C.33)

=
∣

∣

∣Fδ

{

(ρl)
L
l=1 ,m

}∣

∣

∣

exp
{

∑L
l=1 αl (nρl − δ) − γ (nm− δ)

}

2n exp
{

1
2

(

∑L
l=1 αl

∑n
i=1 ui,l − nγ

)}

∏n
i=1 cosh

(∑
L
l=1

αlui,l−γ
2

) . (C.34)

It is easy to verify that
{

{α◦
l }Ll=1 , γ

◦
}

given by the solution of the following set of equations

ρl =
δ

n
+

1

2n

n
∑

i=1

ui,l +
1

2n

n
∑

i=1

tanh

(

∑L
l=1 α

◦
l ui,l − γ◦

2

)

ui,l, l = 1, . . . , L, (C.35)

and

m =
δ

n
+

1

2
+

1

2n

n
∑

i=1

tanh

(

∑L
l=1 αlui,l − γ◦

2

)

, (C.36)

maximize the right hand side of (C.34) (w.r.t.{α}Ll=1 andγ). Thus, using the last results, we have the

following upper bound

∣

∣

∣
Fδ

(

{ρl}Ll=1 ,m
)∣

∣

∣
≤

exp
{

1
2

(

∑L
l=1 α

◦
l

∑n
i=1 ui,l − nγ◦

)}

∏n
i=1 2 cosh

(∑
L

l=1
α◦

l ui,l−γ◦

2

)

exp
{

∑L
l=1 α

◦
l (nρl − δ)− γ◦ (nm− δ)

}
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= exp

{

1

2

(

L
∑

l=1

α◦
l

n
∑

i=1

ui,l − nγ◦

)

−
(

L
∑

l=1

α◦
l (nρl − δ)− γ◦ (nm− δ)

)

+

n
∑

i=1

log

[

2 cosh

(

∑L
l=1 α

◦
l ui,l − γ◦

2

)]}

(C.37)

, Rδ. (C.38)

For a lower bound, we first note that

1 = P

(

v ∈ Fδ

(

{ρl}Ll=1 ,m
)

; {αl}Ll=1 , γ| {ul}Ll=1

)

+ P

(

v ∈ Fc
δ

(

{ρl}Ll=1 ,m
)

; {αl}Ll=1 , γ| {ul}Ll=1

)

(C.39)

≤
∣

∣

∣Fδ

(

{ρl}Ll=1 ,m
)∣

∣

∣

1

R−δ
+ P

(

v ∈ Fc
δ

(

{ρl}Ll=1 ,m
)

; {αl}Ll=1 , γ| {ul}Ll=1

)

(C.40)

where the last inequality follows by the same considerations we have used for obtaining (C.34) (but now

with δ instead of−δ). Using Boole’s inequality,

P

(

v ∈ Fc
δ

(

{ρl}Ll=1 ,m
)

; {αl}Ll=1 , γ| {ul}Ll=1

)

≤ P

(

v :

∣

∣

∣

∣

∣

n
∑

i=1

vi − nm

∣

∣

∣

∣

∣

> δ; {αl}Ll=1 , γ| {ul}Ll=1

)

+ P

(

v :

∣

∣

∣

∣

∣

n
∑

i=1

viui,l − nρl

∣

∣

∣

∣

∣

> δ, l = 1, . . . , L; {αl}Ll=1 , γ| {ul}Ll=1

)

. (C.41)

It is easy to verify that the parameters{αl}Ll=1 andγ that are solving the following the following equations

E

{

1

n

n
∑

i=1

viui,l

∣

∣

∣

∣

∣

{ul}Ll=1

}

= ρl, l = 1, . . . , L, (C.42)

and

E

{

1

n

n
∑

i=1

vi

∣

∣

∣

∣

∣

{ul}Ll=1

}

= m (C.43)

where the expectation is taken w.r.t. the conditional distribution (C.30), are also maximizing the

conditional distribution (maximum-likelihood)9. Therefore, using the strong law of large numbers (SLLN),

the two terms on the right hand side of (C.41) are negligible as n→ ∞, namely,

P

(

v ∈ Fc
δ

(

{ρl}Ll=1 ,m
)

;α, γ| {ul}Ll=1

)

≤ τ (C.44)

for any τ > 0. Thus,

∣

∣

∣
Fδ

(

{ρl}Ll=1 ,m
)∣

∣

∣
≥ (1− τ)R−δ. (C.45)

9Essentially, this follows from the fact that (C.30) maintains all the sufficient statistics induced byFδ({ρl}
L

l=1
,m).
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Whence, (C.38) and (C.45) provide tight (asδ → 0) upper and lower bounds on cardinality of

Fδ

(

{ρl}Ll=1 ,m
)

.

Returning to our problem, we will use the above result in order to find an asymptotic estimate

of Ẑ (y,H , s,mr) in (C.23). Recall that (see, (72))q (s, r) depends ons, r only throughms, mr,
∑n

i=1

∣

∣yThi

∣

∣

2
ri, ms,r,

∑n
i=1

∣

∣yThi

∣

∣

2
siri, and

∑n
i=1

∣

∣yThi

∣

∣

2
si. Accordingly, let

q (s, r) = q̃

(

ms,mr,

n
∑

i=1

∣

∣yThi

∣

∣

2
ri,ms,r,

n
∑

i=1

∣

∣yThi

∣

∣

2
siri,

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

. (C.46)

In accordance to the notations used in the definition ofFδ({ρl}Ll=1 ,m) in (C.24), defineui,1 ,
∣

∣yThi

∣

∣

2
,

ui,2 , si, andui,3 ,
∣

∣yThi

∣

∣

2
si, i.e., the coefficients of the terms which depend onr (recall (C.46)).

Now, the main observation here is that̂Z (y,H , s,mr) can be represented as

Ẑ (y,H , s,mr) = 2n
∫

D⊂R3

q̃

(

ms,mr, ρ1, ρ2, ρ3,

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

exp (nL (mr) ρ1)Cn (dρ1,dρ2,dρ3)

(C.47)

whereD is the codomain10 of (ρ1, ρ2, ρ3), and {Cn} is a sequence of probability measures that are

proportional to the number of sequencesr with
∑n

i=1 riui,j ≈ nρj for j = 1, 2, 3, and
∑n

i=1 ri ≈ nmr.

These probability measures satisfy the large deviations principle (LDP) [44, Ch. 2], with the following

lower semi-continuous rate function

I (ρ1, ρ2, ρ3) =















log 2− 1
n logR0, if {ρl}3l=1 ∈ D

∞, else

(C.48)

whereR0 , limδ→0Rδ is given in (C.38). Indeed, by definition, the probability measureCn is the ratio

between
∣

∣

∣
Fδ

(

{ρl}3l=1 ,mr

)∣

∣

∣
and2n (the number of possible sequences). Thus, for any Borel setB ⊂ D,

limn→∞
1
n logCn (B) = −I (ρ1, ρ2, ρ3). Accordingly, due to its large deviations properties, applying

Varadhan’s theorem [44, Ch. 4.3] on (C.47), one obtains

Ẑ (y,H , s,mr) ∼ Pn · q̃
(

ms,mr, ρ
◦
1, ρ

◦
2, ρ

◦
3,

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

× exp
{

n
(

log 2 + L (mr) ρ
◦
1 − I

(

{ρ◦l }3l=1

))}

(C.49)

where{ρ◦l }3l=1 are given by (using the fact that the exponential term is convex)

(ρ◦1, ρ
◦
2, ρ

◦
3) = arg max

ρ1,ρ2,ρ3∈R

{

log 2 + L (mr) ρ1 − I
(

{ρl}3l=1

)}

10Note that we do not need to explicitly defineD simply due to the fact that the exponential term in (C.47) is concave (see

(C.50)), and thus the dominatingρ1, ρ2, ρ3 are the same overD or overR3.
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= arg max
ρ1,ρ2,ρ3∈R

{

L (mr) ρ1 +
1

n
logR0

}

, (C.50)

andPn is a polynomial function ofn, depending solely on the terms inside the exponent at the r.h.s. of

(C.49), namely,Pn = Pn(mr, ρ
◦
1, ρ

◦
2, ρ

◦
3). We do not provide the explicit form ofPn, due to the fact that

it will also appear in the normalization factor in (C.1), andthus, essentially, will be canceled. Continuing,

the maximizers in (C.50) are the solutions of the following equations:ρ◦1 is the solution of

L (mr) +
1

n

∂

∂ρ1
logR0 = 0, (C.51)

andρ◦j for j = 2, 3, are the solutions of

∂

∂ρj
logR0 = 0. (C.52)

We have that (fori = 1, 2, 3)

1

n

∂

∂ρi
logR0 =

1

2n

3
∑

l=1

∂α◦
l

∂ρi

n
∑

i=1

ui,l −
1

2

∂γ◦

∂ρi
−

3
∑

l=1

ρl
∂α◦

l

∂ρi
− α◦

i +m
∂γ◦

∂ρi

+
1

2n

n
∑

i=1

tanh

(

∑3
l=1 α

◦
l ui,l − γ◦

2

)[

3
∑

l=1

ui,l
∂α◦

l

∂ρi
− ∂γ◦

∂ρi

]

(C.53)

= −α◦
i +

3
∑

l=1

∂α◦
l

∂ρi

[

1

2n

n
∑

i=1

ui,l +
1

2n

n
∑

i=1

tanh

(

∑3
l=1 α

◦
l ui,l − γ◦

2

)

ui,l − ρl

]

+
∂γ◦

∂ρi

[

m− 1

2
− 1

2n

n
∑

i=1

tanh

(

∑3
l=1 α

◦
l ui,l − γ◦

2

)]

, (C.54)

and by using the saddle point equations (C.35) and (C.36), the last two terms in the above equations

vanish, and we remain with

1

n

∂

∂ρi
logR0 = −α◦

i . (C.55)

Thus, combined with (C.51) and (C.52), we conclude thatα◦
1 = L (mr), and thatα◦

2 = α◦
3 = 0.

Accordingly, the exponential term in (C.50) boils down to

L (mr) ρ
◦
1 +

1

n
logR0

∣

∣

∣

∣

ρ◦

= L (mr) ρ
◦
1 +

1

2n

(

L (mr)

n
∑

i=1

ui,1 − nγ◦

)

− L (mr) ρ
◦
1 +mrγ

◦

+
1

n

n
∑

i=1

log

[

2 cosh

(

L (mr)ui,1 − γ◦

2

)]

= mrγ
◦ +

1

n

n
∑

i=1

L (mr) ui,1 − γ◦

2
+

1

n

n
∑

i=1

log

[

2 cosh

(

L (mr)ui,1 − γ◦

2

)]

, h (δ◦,mr) . (C.56)
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Hence, we obtained that (with the substitution ofui,1 =
∣

∣yThi

∣

∣

2
)

Ẑ (y,H , s,mr) ∼ Pn · q̃
(

ms,mr, ρ
◦
1, ρ

◦
2, ρ

◦
3,

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

exp (nh (γ◦,mr)) (C.57)

whereγ◦, {ρ◦l }3l=1 solve the following set of equations (based on (C.35) and (C.36))

mr =
1

2n

n
∑

i=1

[

1 + tanh

(

L (mr)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

, (C.58a)

ρ◦1 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (mr)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∣

∣yThi

∣

∣

2
, (C.58b)

ρ◦2 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (mr)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

si, (C.58c)

ρ◦3 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (mr)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∣

∣yThi

∣

∣

2
si. (C.58d)

Thus far, we have approximated̂Z (y,H , s,mr). Recalling (C.22), the next step in our analysis is

to approximateZ̃ (y,H , s). Using the last approximation, and applying once again Varadhan’s theorem

(or simply, the Laplace method [32, 45]) on (C.22), one obtains that

Z̃ (y,H , s) =
∑

mr

exp
[

n
(

t̃ (mr)
)]

Ẑ (y,H , s,mr)

∼ P̃n · q̃
(

ms,m
◦
r, ρ

◦
1 (m

◦
r) , ρ

◦
2 (m

◦
r, s) , ρ

◦
3 (m

◦
r , s) ,

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

exp
{

n
(

h (γ◦,m◦
r) + t̃ (m◦

r)
)}

(C.59)

whereP̃n = Pn(m
◦
r, ρ

◦
1, ρ

◦
2, ρ

◦
3), and the dominatingm◦

r is the saddle point, i.e., one of the solutions to

the equation

∂

∂m
f (m)− 1

2
Ī (m)− m

2

∂

∂m
Ī (m) +

1

n

∂

∂m
V (m)

‖y‖2
n

+
∂

∂m
h (γ◦,m) = 0 (C.60)

where we have used the fact thatt̃ (m) = f (m)− m
2 Ī (m) + V (m) ‖y‖2 /n. Simple calculations reveal

that the derivative ofh (γ◦,m) w.r.t. m is given by (note thatγ◦ also depends onmr)

∂

∂m
h (γ◦,m) = γ◦ +m

∂

∂m
γ◦ +

1

n

n
∑

i=1

1

2

[

∂

∂m
L (m)ui,1 −

∂

∂m
γ◦
]

+
1

n

n
∑

i=1

tanh

(

L (m)ui,1 − γ◦

2

)

1

2

[

∂

∂m
L (m)ui,1 −

∂

∂m
γ◦
]

(C.61)

= γ◦ +
1

2n

n
∑

i=1

[

1 + tanh

(

L (m)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m)

∂m

∣

∣yThi

∣

∣

2
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+
∂

∂m
γ◦

[

m− 1

2
− 1

2n

n
∑

i=1

tanh

(

L (m)ui,1 − γ◦

2

)

]

, (C.62)

but the last term in r.h.s. of the above equation is zero (due to (C.36)), and thus

∂

∂m
h (γ◦,m) = γ◦ +

1

2n

n
∑

i=1

[

1 + tanh

(

L (m)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m)

∂m

∣

∣yThi

∣

∣

2
. (C.63)

Thus, substituting the last result in (C.60),

γ◦ (m◦
r) =− 1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m◦
r)

∂m◦
r

∣

∣yThi

∣

∣

2 − ∂

∂m◦
r

f (m◦
r) +

1

2
Ī (m◦

r)

+
m◦

r

2

∂

∂m◦
r

Ī (m◦
r)−

∂

∂m◦
r

V (m◦
r)

‖y‖2
n

. (C.64)

So, hitherto, we obtained that the asymptotic behavior ofZ̃ (y,H , s) is given by (C.59), and the various

dominating terms are given by

γ◦ (m◦
r) = − 1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m◦
r)

∂m◦
r

∣

∣yThi

∣

∣

2 − ∂

∂m◦
r

f (m◦
r) +

1

2
Ī (m◦

r)

+
m◦

r

2

∂

∂m◦
r

Ī (m◦
r)−

∂

∂m◦
r

V (m◦
r)

‖y‖2
n

, (C.65a)

m◦
r =

1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

, (C.65b)

ρ◦1 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∣

∣yThi

∣

∣

2
, (C.65c)

ρ◦2 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

si, (C.65d)

ρ◦3 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∣

∣yThi

∣

∣

2
si. (C.65e)

This concludes the asymptotic analysis of the summation over r in (C.19). We now take care of the

summation overs in (C.20). Let

q̂ (s) , q̃

(

ms,m
◦
r , ρ

◦
1 (m

◦
r) , ρ

◦
2 (m

◦
r, s) , ρ

◦
3 (m

◦
r, s) ,

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

. (C.66)

Applying (C.59) on (C.20),

Z (y,H) ∼ P̃n · e{n(h(γ◦,m◦
r)+t̃(m◦

r))} ∑

s∈{0,1}n

q̂ (s) exp

{

n

(

t̃ (ms) + L (ms)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)}

, P̃n · e{n(h(γ◦,m◦
r)+t̃(m◦

r))}∑

ms

exp
(

nt̃ (ms)
)

Z̄ (y,H ,ms) (C.67)
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where as before

Z̄ (y,H ,ms) ,
∑

s: ms=ms

q̂ (s) exp

(

L (ms)

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

. (C.68)

However,Z̄ (y,H ,ms) has essentially the same form of̃Z (y,H , s,mr), which we have analyzed

earlier. So, using the same technique,

Z̄ (y,H ,ms) ∼ Pn · q̄ (ms) exp (nh (γ̃
◦,ms)) (C.69)

whereh (γ̃◦,ms) is defined as in (C.56) (note that the exponential term is similar to the previous one),

and

q̄ (ms) , q̃ (ms,m
◦
r , ρ

◦
1 (m

◦
r) , ρ

◦
2 (m

◦
r ,ms) , ρ

◦
3 (m

◦
r,ms) , ρ

◦
4 (ms)) , (C.70)

in which γ̃◦, {ρ◦l }4l=2 solve the following set of equations

ms =
1

2n

n
∑

i=1

[

1 + tanh

(

L (ms)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

, (C.71a)

ρ◦2 =
1

4n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)][

1 + tanh

(

L (ms)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

, (C.71b)

ρ◦3 =
1

4n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)][

1 + tanh

(

L (ms)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

∣

∣yThi

∣

∣

2

(C.71c)

ρ◦4 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (ms)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

∣

∣yThi

∣

∣

2
. (C.71d)

Finally, the summation overms in (C.67) is again estimated by using the Laplace method, andwe

similarly obtain

Z (y,H) ∼ P̃ 2
n · q̃ (m◦

s,m
◦
r , ρ

◦
1 (m

◦
r) , ρ

◦
2 (m

◦
r,m

◦
s) , ρ

◦
3 (m

◦
r,m

◦
s) , ρ

◦
4 (m

◦
s))

× exp
{

n
(

h (γ◦,m◦
r) + h (γ̃◦,m◦

s) + t̃ (m◦
r) + t̃ (m◦

s)
)}

(C.72)

where

γ◦ (m◦
r) = − 1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m◦
r)

∂m◦
r

∣

∣yThi

∣

∣

2 − ∂

∂m◦
r

f (m◦
r) +

1

2
Ī (m◦

r)

+
m◦

r

2

∂

∂m◦
r

Ī (m◦
r)−

∂

∂m◦
r

V (m◦
r)

‖y‖2
n

,

γ̃◦ (m◦
s) = − 1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

∂L (m◦
s)

∂m◦
s

∣

∣yThi

∣

∣

2 − ∂

∂m◦
s

f (m◦
s) +

1

2
Ī (m◦

s)
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+
m◦

s

2

∂

∂m◦
s

Ī (m◦
s)−

∂

∂m◦
s

V (m◦
s)

‖y‖2
n

,

m◦
r =

1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

,

m◦
s =

1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

,

ρ◦1 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∣

∣yThi

∣

∣

2
, (C.73)

ρ◦2 =
1

4n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)][

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

,

ρ◦3 =
1

4n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)][

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

∣

∣yThi

∣

∣

2

ρ◦4 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

∣

∣yThi

∣

∣

2
. (C.74)

Due to the symmetry betweens and r, it can be seen thatm◦
s = m◦

r, and whence the above set of

equations reduce to

γ◦ = − 1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m◦)

∂m◦

∣

∣yThi

∣

∣

2 − ∂

∂m◦
f (m◦) +

1

2
Ī (m◦)

+
m◦

2

∂

∂m◦
Ī (m◦)− ∂

∂m◦
V (m◦)

‖y‖2
n

, (C.75a)

m◦ =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

, (C.75b)

ρ◦1 = ρ◦4 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∣

∣yThi

∣

∣

2
, (C.75c)

ρ◦2 =
1

4n

n
∑

i=1

[

1 + tanh

(

L (m◦)
∣

∣yThi

∣

∣

2 − γ◦

2

)]2

, (C.75d)

ρ◦3 =
1

4n

n
∑

i=1

[

1 + tanh

(

L (m◦)
∣

∣yThi

∣

∣

2 − γ◦

2

)]2
∣

∣yThi

∣

∣

2
, (C.75e)

and by using (72)

q̃(m◦, {ρ◦l }3l=1) =β
2α (m◦, ρ◦2)

g2 (m◦)
ρ◦3 − 2

α (m◦, ρ◦2) b (m
◦)

g3 (m◦)
β3σ2ρ◦2

[

ρ◦1 −m◦ ‖y‖2
n

]

, (C.76)

whereα (x, y) , α̃ (x, x, y). Finally,

Z (y,H) ∼ P̃ 2
n · q̃(m◦, {ρ◦l }3l=1) exp

{

2n
[

h (γ◦,m◦) + t̃ (m◦)
]}

. (C.77)
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Based on (C.1), we also need to find the asymptotic behavior of

∑

s∈{0,1}n

PS(s)ξ (y,Hs) , (C.78)

However, obviously, the previous analyzed term can be regarded as an extended version of (C.78), and

so we can immediately conclude that11

∑

s∈{0,1}n

PS(s)ξǫ (y,Hs) ∼ P̃n · exp
{

n
(

h (γ◦,m◦) + t̃ (m◦)
)}

. (C.79)

Indeed, recall that what we have analyzed above is

∑

s∈{0,1}n

∑

r∈{0,1}n

PS(s)PS(r)J (y,Hs,Hr) ξ (y,Hs) ξ (y,Hr) , (C.80)

and so, (C.78) is just a special case of (C.80), in which the summation is only overs and without the

leading termJ (y,Hs,Hr). Whence, the asymptotic behavior of (C.78) is affected onlyby ξ (y,Hs),

which after multiplying byPS(s) and summing over{0, 1}n, asymptotically behaves as the exponent at

the r.h.s. of (C.72) (of course, as we sum overs, only the terms related tom◦
s prevail).

Wrapping up, using (C.77) and (C.79), the asymptotic estimate of the inner term of the expectation in

(C.1) is given by

gn ,
σ2

n

n
∑

i=1

Si − Eµs×r
[J (Y ,Hs,Hr)1T s,r

ǫ
] (C.81)

≍ σ2ma − q̃(m◦, {ρ◦l }3l=1) (C.82)

= σ2ma − β2
α (m◦, ρ◦2)

g2 (m◦)
ρ◦3 + 2

α (m◦, ρ◦2) b (m
◦)

g3 (m◦)
β3σ2ρ◦2

[

ρ◦1 −m◦

(

maσ
2R+

R

β

)]

(C.83)

, g∞. (C.84)

Thus, we obtained thatgn → g∞ a.s., asn→ ∞. In order to calculate the MMSE we will apply Lemma

20. First, recall that

gn =
1

n

n
∑

i=1

[

E
{

X2
i |y,H

}

− (E {Xi|y,H})2
]

, (C.85)

and thus, due to Jensens’s inequality,gn is nonnegative for anyn. Then, for anyε > 0, using Cauchy-

Schwartz and Chebyshev’s inequalities, we get

lim sup
n→∞

E
{

gn · 1gn≥c(ε)

}

≤ lim sup
n→∞

(

Eg2n · Pr {gn ≥ c(ε)}
)1/2

(C.86)

11As mentioned earlier (see, (C.50)), the polynomial termP̃n depends only on the exponential behavior of the summations,

and thus, common to (C.79).
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≤ lim sup
n→∞

(

Eg2n
)1/2

(

Egn
c(ε)

)1/2

(C.87)

wherec(ε) is a non-negative real. Now, by the definition of the MMSE, we know thatEgn ≤ σ2 and

that

Eg2n ≤ 1

n
E

[

n
∑

i=1

[

E
{

X2
i |y,H

}

− (E {Xi|y,H})2
]2
]

(C.88)

≤ 1

n
E

[

n
∑

i=1

(

E
{

X2
i |y,H

})2
+ (E {Xi|y,H})4

]

(C.89)

≤ 1

n
E

[

n
∑

i=1

E
{

X4
i |y,H

}

+ E
{

X4
i |y,H

}

]

(C.90)

=
2

n

n
∑

i=1

E
{

X4
i

}

≤ 6σ4, (C.91)

where the first inequality follows from the fact that(a1+. . .+an)
2 ≤ n·(a21+. . .+a2n), the third inequality

is due to Jensens’s inequality, and in the last inequality wehave used the fact thatn−1
∑

i Si ≤ 1 w.p.

1. Therefore,

lim sup
n→∞

E
{

gn · 1gn≥c(ε)

}

≤
√
6σ3

c1/2(ε)
= ε (C.92)

where the last inequality follows by takingc1/2(ε) =
√
6σ3/ε. Thus, we can apply Lemma 20, and obtain

lim
n→∞

mmse(X|Y ,H)

n
= σ2ma − β2

α (m◦, ρ◦2)

g2 (m◦)
ρ◦3

+ 2
α (m◦, ρ◦2) b (m

◦)

g3 (m◦)
β3σ2ρ◦2

[

ρ◦1 −m◦

(

maσ
2R+

R

β

)]

. (C.93)

Finally, we show a concentration property of the saddle point equations given in (C.75), and obtain

“instead” the saddle point equations given in (21)-(25). Accordingly, the expectation in (C.93) becomes

“superfluous”, as all the involved random variables (m◦ and{ρ◦i }3i=1) converge to a deterministic quantity.

According to (C.75), it can be seen that the saddle point equations share the following common term

1

n

n
∑

i=1

φ
(

∣

∣hT
i Y
∣

∣

2
)

(C.94)

whereφ (·) : R → R is some integrable function (in theL1 sense). In the following, we first show that

(C.94) admits an SLLN property. To this end, let us define

Tn ,

n
∑

i=1

Ki, (C.95)
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whereKi , φ
(

∣

∣hT
i Y
∣

∣

2
)

, and letGn = σ (X,W )∩σ (Tn, Tn+1, . . .) be theσ-field (filtration) generated

by Tn, {Ki}i>n, X, andW . We will now show thatMn , −T−n

n is a backwards martingale sequence

w.r.t. Fn , G−n, n ≤ −1. Indeed, form ≤ −1, we have that

E

{

Mm+1

∣

∣

∣

∣

∣

Fm

}

= E

{

T−m−1

−m− 1

∣

∣

∣

∣

∣

G−m

}

. (C.96)

Settingn = −m, we see that

E

{

Tn−1

n− 1

∣

∣

∣

∣

∣

Gn

}

= E

{

Tn −Kn

n− 1

∣

∣

∣

∣

∣

Gn

}

(C.97)

=
Tn
n− 1

− E

{

Kn

n− 1

∣

∣

∣

∣

∣

Gn

}

(C.98)

where we have used the fact thatTn is measurable w.r.t.Gn. Now, we have that

E {Kn|Gn ∩ σ (Y )} = E {Kn|Tn,Y , σ (X,W )} (C.99)

= E {Kj |Tn,Y , σ (X,W )} (C.100)

for any 1 ≤ j ≤ n, where in the first equality we have used the facts thatGn = σ (X,W ) ∩
σ (Tn, Tn+1, . . .) = σ (X,W ) ∩ σ (Tn,Kn+1,Kn+2, . . .), that Y =

∑n
i=1 hiXi + W and that{hi}

are statistically independent, and the second equality follows due toY = HX +W , the symmetry of

Tn w.r.t. K1, . . . ,Kn, and the fact that{hi} are statistically independent. Clearly,
n
∑

i=1

E {Ki|Tn,Y , σ (X,W )} = E

{

n
∑

i=1

Ki

∣

∣

∣

∣

∣

Tn,Y , σ (X,W )

}

(C.101)

= Tn, (C.102)

and thus, due to (C.100), we obtain thatE {Kn|Gn ∩ σ (Y )} = Tn/n a.s. Whence, using (C.98) and the

last result, we obtain

E

{

Tn−1

n− 1

∣

∣

∣

∣

∣

Gn

}

=
Tn
n− 1

− E

{

Kn

n− 1

∣

∣

∣

∣

∣

Gn

}

(C.103)

=
Tn
n− 1

− E

{

E

{

Kn

n− 1

∣

∣

∣

∣

∣

Gn ∩ σ (Y )

} ∣

∣

∣

∣

∣

Gn

}

(C.104)

=
Tn
n− 1

− Tn
n (n− 1)

=
Tn
n
, a.s. (C.105)

This concludes the proof thatMn is a backwards martingale sequence w.r.t.{Fn}n≤−1. Now, by the

backwards martingale convergence theorem [46, 47], we deduce thatTn/n converges asn→ ∞, and in

L1, to a random variableK , limn→∞ Tn/n. Obviously, for allm

K = lim
n→∞

K̃m+1 + . . .+ K̃m+n

n
, (C.106)
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where (due to the fact that{hi}i are i.i.d.)

K̃m+i = φ





∣

∣

∣

∣

∣

∣

hT
m+i





n+m+i
∑

j=m+i

hjXj +W





∣

∣

∣

∣

∣

∣

2

 , for i = 1, . . . , n. (C.107)

Thus K is σ (X,W ) ∩ σ (hm+1, . . .)-measurable, for allm, and hence it is alsoσ (X,W ) ∩
⋂

m σ (hm+1, . . .)-measurable (namely, the tailσ-field generated by{hi} intersected withσ (X,W )).

Thus, by the Kolmogorov’s 0-1 law [46], we conclude that there exists a constantC ∈ R (w.r.t.σ (X,W ))

such thatP {K = C|σ (X,W )} = 1. This constant is obviously given by

C = E {K|σ (X,W )} = lim
n→∞

E

{

Tn
n

∣

∣

∣

∣

∣

σ (X ,W )

}

. (C.108)

Thus, we have shown that

1

n

n
∑

i=1

φ
(

∣

∣hT
i Y
∣

∣

2
)

− 1

n
E

{

n
∑

i=1

φ
(

∣

∣hT
i Y
∣

∣

2
)

∣

∣

∣

∣

∣

X ,W

}

→ 0, (C.109)

a.s. asn → ∞, namely, we show an SLLN property of (C.94). Our next step is to infer the asymptotic

behavior of each summand. First, we note that

hT
i Y = hT

i [HX]i +Xi ‖hi‖2 + hT
i W (C.110)

where [HX]i , HX − hiXi. Let X̂i be a newn-dimensional vector, such that itsith component is

zero and the other components are identical to that ofX. Similarly, let Ĥ i denote a new matrix such

that its ith column contains zeros, and the other columns are identical to those ofH . Accordingly, let

ẑi,j denote thejth row of Ĥ i. With this notations, we have that[HX]i = ĤiX̂ i. Thus,

hT
i Y =

k
∑

j=1

Hj,i

[

ẑT
i,jX̂i +Wj

]

+Xi ‖hi‖2 (C.111)

=
1√
n

k
∑

j=1

H̃j,i

[

ẑT
i,jX̂i +Wj

]

+Xi ‖hi‖2 . (C.112)

where H̃i,j ,
√
nHi,j. Given X, by using Lyapunov’s central limit theorem [48], we may infer the

following weak convergence

1√
n

k
∑

j=1

H̃j,i

[

ẑT
i,jX̂i +Wj

]

d−→ N
(

0, Rmaσ
2 +

R

β

)

, (C.113)

as n → ∞. Accordingly, let Y be the limit point in (C.113), namely,Y is distributed

N
(

0,maσ
2R+R/β

)

. Therefore, based on (C.112), (C.113), and Slutsky’s lemma[49, Lemma 2.8],

we may conclude that (conditioned onX)

hT
i Y

d−→ Y +RXi. (C.114)
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Using the last results, and Lemmas 19 and 20, we obtain that12

1

n

n
∑

i=1

φ
(

∣

∣hT
i Y
∣

∣

2
)

− 1

n
E

{

n
∑

i=1

φ
(

|Y +RXi|2
)

∣

∣

∣

∣

∣

X

}

→ 0. (C.115)

Now, applying the SLLN on (C.115), we finally may write that

1

n

n
∑

i=1

φ
(

∣

∣hT
i Y
∣

∣

2
)

→ E

[

φ
(

|Y +RX|2
)]

, (C.116)

a.s. asn → ∞, where the expectation is taken w.r.t. the product measure corresponding toY , andX

which is distributed according to a mixture of two measures:Dirac measure at0 with weight 1 −ma,

and a Gaussian measure with zero mean and varianceσ2 and weightma. Equivalently, the last result

can be rewritten as

1

n

n
∑

i=1

φ
(

∣

∣hT
i Y
∣

∣

2
)

→ E

[

φ
(

|X |2
)]

, (C.117)

a.s. asn→ ∞, where the expectation overX is now taken w.r.t. a mixture of two measures: Gaussian

measure with zero mean and variance
(

maσ
2R+R/β

)

and weight1 − ma, and a Gaussian measure

with zero mean and variance
(

maσ
2R+R/β +R2σ2

)

and weightma.

Next, we wish to apply the last general asymptotic result to the saddle point equations given in (C.75),

and obtain

γ◦ = −1

2
E

{[

1 + tanh

(

L (m◦) |X |2 − γ◦

2

)]

dL (m)

dm

∣

∣

∣

∣

m=m◦

|X |2
}

− dt (m)

dm

∣

∣

∣

∣

m=m◦

, (C.118)

m◦ =
1

2
E

{

1 + tanh

(

L (m◦) |X |2 − γ◦

2

)}

, (C.119)

ρ◦1 = ρ◦4 =
1

2
E

{[

1 + tanh

(

L (m◦) |X |2 − γ◦

2

)]

|X |2
}

, (C.120)

ρ◦2 =
1

4
E







[

1 + tanh

(

L (m◦) |X |2 − γ◦

2

)]2






, (C.121)

ρ◦3 =
1

4
E







[

1 + tanh

(

L (m◦) |X |2 − γ◦

2

)]2

|X |2






, (C.122)

where for (C.118)-(C.122) the following choices ofφ have been used

φ(x) =
1

2

[

1 + tanh

(

L(m◦)x− γ◦

2

)]

∂L (m◦)

∂m◦
x (C.123)

12In our case, the sequence of random variablesφ
(

∣

∣hT
i Y

∣

∣

2
)

meet the asymptotic uniform integrability assumption of

Lemma 20, for the various choices ofφ according to (21)-(25).
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φ(x) =
1

2

[

1 + tanh

(

L(m◦)x− γ◦

2

)]

(C.124)

φ(x) =
1

2

[

1 + tanh

(

L(m◦)x− γ◦

2

)]

x (C.125)

φ(x) =
1

4

[

1 + tanh

(

L(m◦)x− γ◦

2

)]2

(C.126)

and

φ(x) =
1

4

[

1 + tanh

(

L(m◦)x− γ◦

2

)]2

x, (C.127)

respectively. Indeed, the convergence ofρ◦i for i = 1, 2, 3, in (C.75c)-(C.75e), follows directly by

considering the choices in (C.125)-(C.127), and using (C.117), respectively. However, the convergence

of (C.75a) and (C.75b) is more delicate. Specifically, consider, for example, the convergence of (C.75b)

(the convergence of (C.75a) is handled in a similar manner),and letm◦
n designate the solution of (C.75b)

for a fixedn (now we emphasize the dependency of the saddle point onn), that is,

m◦
n =

1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
n)
∣

∣yThi

∣

∣

2 − γ̃

2

)]

△
= φn(m

◦
n), (C.128)

for any γ̃. We already saw that for a fixedx, φn(x) → φ∞(x) a.s. pointwise. Now, we wish to show that

the sequence of random variables{m◦
n} converges to the solution ofm◦ = φ∞(m◦). To this end, note

that the sequence{m◦
n} is bounded13 in a compact set, and thus, by Bolzano-Weierstrass theorem,there

must exist a converging subsequence
{

m◦
nl

}

along this sequence. Denoting its limit bym◦
∞, we get

m◦
∞ = lim

n→∞
φn(m

◦
nl
). (C.129)

However, due to the fact thatφn(·) is continuous, we have that

m◦
∞ = φ∞(m◦

∞). (C.130)

Finally, we show the existence of a solution to (C.75b). Thisis equivalent to showing that there exists

a solutionx0 ∈ [0, 1] to the equationx = 1
2 [1 + tanh(f(x))]. This follows from the fact thaty(x) =

1
2 [1 + tanh(f(x))] is a bounded between zero and one and thus must have an intersection with the linear

function y(x) = x within the interval[0, 1].

13Letting γ◦

n designate the solution of (C.75a) for a fixedn, the boundedness is, essentially, guaranteed by definition.

Alternatively, it can be shown that the set of vectors{y, {hi}} for which {γ◦

n} is bounded, is of probability 1, for largek and

n.
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APPENDIX D

MATHEMATICAL TOOLS

Lemma 11 ([37]) [Matrix Inversion Lemma] LetU be anN ×N invertible matrix andx ∈ CN , c ∈ C

for which U + cxxH is invertible. Then

xH
(

U + cxxH
)−1

=
xHU−1

1 + cxHU−1x
. (D.1)

Lemma 12 (Matrix Inversion Lemma 2)Under the assumptions of Lemma 11,

(

U + cxxH
)−1

= U−1 − U−1cxxHU−1

1 + cxHU−1x
. (D.2)

Lemma 13 (Resolvent Identity)Let U andV be two invertible complex matrices of sizeN ×N . Then

U−1 − V −1 = −U−1 (U − V )V −1. (D.3)

The following lemma is a powerful tool which is widely used inRMT with many versions and extensions.

Lemma 14 ([28, 29])Let AN ∈ CN×N be a sequence of deterministic matrices, and letxN ∈ CN have

i.i.d. complex entries with zero mean, variance1/N , and boundedlth order momentE
∣

∣

∣

√
NXi

∣

∣

∣

l
≤ νl.

Then, for anyp ≥ 1

E

∣

∣

∣

∣

xH
NANxN − 1

N
trAN

∣

∣

∣

∣

p

≤ Cp

Np/2

(

1

N
trANAH

N

)p/2
[

ν
p/2
4 + ν2p

]

(D.4)

where Cp is a constant depending only onp. Also, if yN ∈ CN is another random vector with

i.i.d. complex entries with zero mean, variance1/N , boundedlth order momentE
∣

∣

∣

√
NYi

∣

∣

∣

l
≤ νl, and

independent ofxN , then:

E

∣

∣

∣

∣

xH
N

(

AN − 1

N
trAN

)

yN

∣

∣

∣

∣

p

≤ Cp

Np/2

(

1

N
trANAH

N

)p/2
[

νp2 + ν2p
]

. (D.5)

Lemma 15 ([29, 40])[Trace Lemma] Let(AN )N≥1, AN ∈ CN×N , be a sequence of random matrices

and (xN )N≥1 = [X1,N , . . . ,XN,N ]T ∈ CN , a sequence of random vectors of i.i.d. entries, statistically

independent of(AN )N≥1. Assume thatE {Xi,j} = 0, E
{

|Xi,j|2
}

= 1, E
{

|Xi,j|8
}

< ∞, and thatA

has bounded spectral norm (in the a.s. sense). Then, a.s.,

1

N
xH
NANxN − 1

N
trAN → 0. (D.6)

Lemma 16 ([50])Let (an)n≥1 , (bn)n≥1 , (ān)n≥1 ,
(

b̄n
)

n≥1
be four infinite sequences of complex random

variables. Assume thatan ≍ ān andbn ≍ b̄n in the a.s. sense.
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• If |an|,
∣

∣b̄n
∣

∣ and/or|ān|, |bn| are a.s. bounded, then a.s.,

anbn ≍ ānb̄n.

• If |an|,
∣

∣b̄n
∣

∣

−1
and/or|ān|, |bn|−1 are a.s. bounded, then a.s.,

an/bn ≍ ān/b̄n.

Lemma 17 ([29, 40])Let (AN )N≥1, AN ∈ CN×N , be a sequence of matrices with uniformly bounded

spectral norm, and(BN )N≥1, BN ∈ CN×N be random Hermitian, with eigenvaluesλ1 ≤ . . . ≤ λN

such that, with probability one, there existǫ > 0 for which λ1 > ǫ for all largeN . Then, forvN ∈ CN ,

1

N
trANB−1

N − 1

N
trAN

(

BN + vNvH
N

)−1 → 0 (D.7)

a.s. asN → ∞, whereB−1
N and

(

BN + vvH
)−1

are assumed to exist with probability 1.

Lemma 18 ([51]) [Rank-1 Perturbation Lemma] Letz ∈ C \ R+, A ∈ CN×N andB ∈ CN×N where

B is Hermitian nonnegative definite, andx ∈ CN . Then,

∣

∣

∣
tr
(

(B − zIN )−1 −
(

B + xxH − zIN

)−1
)

A

∣

∣

∣
≤ ‖A‖

dist(z,R+)
(D.8)

where dist(·, ·) denotes the Euclidean distance.

The following result can be found in [49, Th. 2.3].

Lemma 19 (The continuous mapping theorem)Let Φ : R → R be an almost-everywhere continuous

mapping, and let{Ji} be a sequence of real-valued random variables that converges weakly to a real-

valued random variableJ . Then,{Φ (Ji)} converges weakly to the real-valued random variableΦ (J).

The following result can be found in [49, Theorem 2.20].

Lemma 20 (Portmanteau’s lemma (extended version))Suppose that(Xn)n is a sequence of nonnegative

random variables for whichXn → X∞ a.s. asn → ∞, whereEX∞ < ∞. Then,EXn → EX∞ as

n → ∞ if and only if (Xn)n is uniformly integrable, that is, if, for eachε > 0, there existsc = c(ε)

such that

lim sup
n→∞

E
{

|Xn|1{|Xn|≥c}

}

< ε. (D.9)
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Lemma 21Let xN ∈ CN be a random vector with i.i.d. entries each with zero mean andunit variance,

and letAN ∈ CN×N such thattr
[

(

AH
NAN

)1/2
]

is uniformly bounded for allN . Then, for any finitep,

E
∣

∣xH
NANxN

∣

∣

p
<∞ (D.10)

for all N .

Proof: By Jensen’s inequality we may write that

E
∣

∣xH
NANxN

∣

∣

p ≤ 2p−1
(

E
∣

∣xH
NANxN − trAN

∣

∣

p
+ |trAN |p

)

<∞

where the second inequality follows from the facts that: thefirst term in the r.h.s. is bounded by Lemma

14, and the second term is bounded by assumption due to the fact that |trAN | ≤ tr
[

(

AH
NAN

)1/2
]

.
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[14] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, “Probabilistic reconstruction in compressed sensing:

Algorithms, phase diagrams, and threshold achieving matrices,”J. Stat. Mech. - Theory E., no. 8, p. P08009, Aug. 2012.

[15] ——, “Statistical-physics-based reconstruction in compressed sensing,”Phys. Rev. X 2, 021005, vol. 2, no. 2, May. 2012.

[16] G. Reeves and M. Gastpar, “Approximate sparsity pattern recovery: Information-theoretic lower bounds,”submitted to

IEEE Trans. Inf. Theory, Feb 2010. [Online]. Available: http://arxiv.org/pdf/1002.4458.pdf

[17] M. Bayati and A. Montanari, “The LASSO risk for Gaussianmatrics,” IEEE Trans. Inf. Theory, vol. 58, no. 4, pp.

1997–2017, Mar. 2012.

[18] ——, “The dynamics of message passing on dense graphs, with applications to compressed sensing,”IEEE Trans. Inf.

Theory, vol. 57, no. 2, pp. 764–785, Feb. 2011.

[19] M. Bayati, M. Lelarge, and A. Montanari, “Universalityin polytope phase transitions and message passing algorithms,” in

Proc. IEEE Int. Symp. Inf. Theory. Cambridge, MA, July 2012, pp. 1643–1647.

[20] ——, “Universality in polytope phase transitions and message passing algorithms,”submitted to IEEE Trans. Inf. Theory,

2012. [Online]. Available: arXiv:1207.7321

[21] A. Aeron, V. Saligrama, and M. Zhao, “Information theoretic bounds for compressed sensing,”IEEE Trans. Inf. Theory,

vol. 56, no. 10, pp. 5111–5130, Oct. 2010.

[22] M. Akcakaya and V. Tarokh, “Shannon-theoretic limits on noisy compressive sampling,”IEEE Trans. Inf. Theory, vol. 56,

no. 1, pp. 492–504, Jan. 2009.

[23] A. K. Fletcher, S. Rangan, and V. K. Goyal, “Necessary and sufficient conditions for sparsity pattern recovery,”IEEE

Trans. Inf. Theory, vol. 55, no. 12, pp. 5758–5772, Dec. 2009.

[24] K. Rahnama Rad, “Nearly sharp sufficient conditions on exact sparsity pattern recovery,”IEEE Trans. Inf. Theory, vol. 57,

no. 7, pp. 4672–4679, July 2011.

[25] M. J. Wainwright, “Information theoretic limitationson sparsity recovery in the high-dimensional and noisy setting,” IEEE

Trans. Inf. Theory, vol. 55, no. 12, pp. 5728–5741, Dec 2009.

[26] W. Wang, J. M. Wainwright, and K. Ramchandran, “Information theoretic limits on sparse signal recovery: Dense versus

sparse measurement matrices,”IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2967–2979, June 2010.

[27] N. Merhav, “Optimum estimation via gradients of partition functions and information measures: A statistical-mechanical

perspective,”IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3887–3898, June 2011.

[28] Z. Bai and J. W. Silverstein,Spectral Analysis of Large Dimensional Random Matrices. Springer, 2010.

[29] R. Couillet and M. Debbah,Random Matrix Methods for Wireless Communications. Cambridge University Press, 2011.

[30] W. Huleihel and N. Merhav, “Analysis of mismatched estimation errors using gradients of partition functions,”IEEE Trans.

Inf. Theory, vol. 60, no. 4, pp. 2190–2216, Apr. 2014.

[31] I. Csiszár, “The method of types,”IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2505–2523, Oct. 1998.

[32] N. Merhav, “Statistical physics and information theory,” Foundations and Trends in Communications and Information

Theory, vol. 6, no. 1-2, pp. 1–212, Dec. 2010.

[33] N. Merhav, D. Guo, and S. Shamai, “Statistical physics of signal estimation in Gaussian noise: theory and examples of

phase transitions,”IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1400–1416, Mar. 2010.

[34] J. W. Negele and H. Orland,Quantum many-particles systems. Frontier in Physics Lecture Notes, AddisonWesley, 1988.
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