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Abstract

This paper demonstrates a general model for nonlinear systems with complex-

valued inputs and its application to communication systems modeling. Based

on Wirtinger calculus and a double Volterra series approach, the proposed rep-

resentation can also be considered as a generalization of the widely linear trans-

formation to incorporate the description of nonlinear systems. The complete

structure is pruned with the assistance of a compressive-sensing algorithm in

order to reduce the number of parameters. To illustrate this approach, it has

been experimentally implemented to model a transmitter for OFDM signals,

which includes an I/Q modulator and a power amplifier.

Keywords: Complex-valued Volterra models, Wirtinger calculus, double

Volterra series, I/Q modulators, power amplifiers.

1. Introduction

Volterra series (VS) is one of the most popular representations to model

modern wireless communication systems [1]. The baseband signal is used in the
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modulator to generate the RF signal, possibly with linear and nonlinear im-

pairments, and the power amplifier (PA) delivers the signal at the desired level,

adding further nonlinear distortion. Without nonlinear effects, the complex en-

velope of the RF output signal can be viewed as a linear transformation of the

complex-valued baseband signal x[k] = xI [k] + jxQ[k]. However, to exploit the

complete statistical characterization of data in complex-valued signal process-

ing, access to the information contained in the complementary correlation is

required through the introduction of widely linear (WL) transformations [2]–

[4]. When nonlinear effects need to be modeled for real-valued systems, the VS

approach is a natural choice, however, its extension to the complex-valued case

is not a direct mapping, and particular models are usually deduced to match

specific problems. Examples of these are the proposals in array processing and

beamforming [5]–[6], or in the case of impairments compensation in I/Q modu-

lators [7], but the use of these particular models is not justified to describe the

output of other systems. The availability of a general complex-valued Volterra

nonlinear model is a relevant topic for the design of nonlinear communication

systems. In this paper, we extend the VS approach to a general nonlinear system

with complex-valued signals by using Wirtinger calculus.

2. Volterra Models for Real-valued Systems

For a nonlinear system described by a Volterra model with a real-valued

signal x[k] applied at the input, the output y[k] can be written as [8]

y[k] = h0 +

∞∑
n=1

Qn∑
qn=0

hn[qn]

n∏
r=1

x[k − qr], (1)

where hn[qn] is the nth-order Volterra kernel,
∏n
r=1 x[k − qr] = x[k − q1]x[k −

q2] · · ·x[k−qn], qn = [q1, q2, · · · , qn]T is a vector of delays of the nth-order term,

with qr = 0, 1, · · · , Qn for all r, and Qn = [Qn, Qn, · · · , Qn]T is the vector of

maximum delays.

For bivariate nonlinear systems, the output can be expressed as a double

Volterra series, equation (1) of [9]. If the two input signals are x[k] and z[k],
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the discrete-time output is expressed as

y[k] = h0,0 +

∞∑
n=1

Qn,0∑
qn=0

hn,0[qn]

n∏
r=1

x[k−qr]+
∞∑
m=1

Q0,m∑
qm=0

h0,m[qm]

m∏
s=1

z[k−qs]+

+

∞∑
n=1

∞∑
m=1

Qn,m∑
qn=0

Pn,m∑
pm=0

hn,m[qn,pm]

n∏
r=1

x[k − qr]

m∏
s=1

z[k − ps]. (2)

The vector of delays pm and the vector of maximum delays Pm have been

defined as in (1). The multidimensional functions hn,0[qn] and h0,m[qm] are

standard Volterra kernels of order n and m, respectively, and the constant h0,0 is

the zeroth-order kernel. The third group of sums contains the bivariate Volterra

kernels hn,m[qn,pm] and cross products of x[k − qr] by z[k − ps].

3. Specific Volterra Models for Complex-valued Systems

In wireless communication systems it is necessary a nonlinear baseband

model to express the relationship between the input and the output complex

envelopes. Let us review three different situations.

• Baseband PA model. The baseband model of a power amplifier can be

derived from the Volterra series RF model (1) [1, 10]. In discrete-time,

the baseband Volterra input-output relationship is

y[k] =

∞∑
m=0

Q2m+1∑
q2m+1=0

h2m+1[q2m+1]

m+1∏
r=1

x[k − qr]

2m+1∏
r=m+2

x∗[k − qr], (3)

where n = 2m+ 1 is the (odd) nonlinear order. Unlike the kernels of the

real-valued Volterra case, in this model hn[qn] is symmetric under any

permutation of its first m + 1 indices, and it is also separately symmet-

ric under any permutation of its last m indices. In the literature, the

model (3) is referred to as the full-Volterra (FV) model to distinguish it

from other pruned baseband Volterra representations, e.g., the memory-

less model. The FV model has been deduced exclusively for PAs, and

direct application to other systems is not proven.
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• Beamforming. For the narrowband array processing problem, a proposal

was introduced in [5] and [6]. It is advanced by establishing the vector of

complex amplitudes of the signals at the output of the sensors, xk. The

input-output relation is defined as

y[k] =

M∑
m=1

m∑
q=0

wH
m,q(x

⊗q
k ⊗ x

∗⊗(m−q)
k ), (4)

where wm,q is a complex filter and ⊗ denotes the Kronecker product.

This approach was applied to a third-order Volterra minimum variance

distortionless response beamformer, considering only polynomial terms of

odd order.

• I/Q modulators. A proposal to model linear and nonlinear impairments

in I/Q modulators was presented in [7]. The output u[k] is given by

u[k] = u0+

∞∑
n=1

{
Qn∑

qn=0

hn,0[qn]

n∏
r=1

x[k − qr] +

Qn∑
qn=0

h0,n[qn]

n∏
r′=1

x∗[k − qr′ ]+

+

n−1∑
µ=1

Qn∑
qn=0

hn−µ,µ[qn]

n−µ∏
r=1

x[k − qr]

n∏
r′=n−µ+1

x∗[k − qr′ ]

 . (5)

This widely nonlinear (WNL) representation can be also viewed as a non-

linear extension of the WL transformation and presents analogies with the

WNL Volterra beamformer (4).

Although the results reported above have shown a good performance in

their respective fields, a particular method cannot be assumed to be valid in

another unknown situation. The availability of a general nonlinear model that

admits complex-valued input signals is mandatory in the joint modeling of the

modulator and the PA in a communications transmitter, for instance.

4. A General Volterra Model for Complex Systems

The results concerning the output of nonlinear functions with complex argu-

ments are not new, although they have gone largely unnoticed by the engineering
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community [4]. In particular, Wirtinger calculus (also denoted as CR-calculus)

presents an elegant approach, which allows keeping all computations and deriva-

tions in the complex domain with expressions very similar to the real-valued

case, and in a more efficient time-consuming manner [3]. In a context where the

input of the system x is complex-valued, the corresponding output y depends on

x and also on the complex conjugate x∗. In that case, Wirtinger calculus allows

treating x and x∗ as independent variables (Theorem 1 of [3]), and therefore,

the double Volterra series representation can be applied. If we replace z by x∗

in (2), the complex-valued output of the system is obtained as

y[k] = h0,0+

∞∑
n=1

Qn,0∑
qn=0

hn,0[qn]

n∏
r=1

x[k−qr]+
∞∑
m=1

Q0,m∑
qm=0

h0,m[qm]

m∏
s=1

x∗[k−qs]+

+

∞∑
n=1

∞∑
m=1

Qn,m∑
qn=0

Pn,m∑
pm=0

hn,m[qn,pm]

n∏
r=1

x[k − qr]

m∏
s=1

x∗[k − ps]. (6)

Remarking that the order of the cross-terms is given by ν = n + m, the

corresponding summation can be calculated by adding all the terms of the same

order ν, with m = 1, 2, · · · , ν − 1, and then add all orders. If we change the

notation in the three sums to designate the order of the terms with the same

index n, the relation (6) can be written as

y[k] = h0,0 +

Q1,0∑
q1=0

h1,0[q1]x[k − q1] +

Q0,1∑
q1=0

h0,1[q1]x∗[k − q1]+

+
∞∑
n=2


Qn,0∑
qn=0

hn,0[qn]

n∏
r=1

x[k − qr] +

Q0,n∑
qn=0

h0,n[qn]

n∏
s=1

x∗[k − qs]+

+

n−1∑
m=1

Qn−m,m∑
qn=0

Pn−m,m∑
pm=0

hn−m,m[qn−m,pm]

n−m∏
r=1

x[k − qr]

m∏
s=1

x∗[k − ps]

 . (7)

The complex Volterra series (CVS) model (7) is the counterpart of the real-

valued Volterra series (1) when the input is complex-valued. Note that if the

nonlinearity of the system can be neglected, the CVS model is reduced to the

WL transformation.

Equation (7) can be written in a more compact form. To that aim, let us

rearrange the elements of the nth-order tensor hn−m,m[qn−m,pm] to form the
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vector hn−m,m as

hn−m,m = [hn−m,m[0, 0, · · · , 0], hn−m,m[0, 0, · · · , 1], · · · ,

hn−m,m[0, 0, · · · , Pn−m,m], · · · , hn−m,m[Qn−m,m, Qn−m,m, · · · , Pn−m,m]]T .

(8)

Recalling that the first n − m indices have maximum delays Qn−m,m and

the other m indices have maximum delays Pn−m,m and using the definition

xQn−m,m,k = [x[k], x[k − 1], · · · , x[k −Qn−m,m]]T , (7) can be rewritten as

y[k] = h0,0 +
∞∑
n=1

n∑
m=0

hTn−m,mx
⊗(n−m)
Qn−m,m,k

⊗ x∗⊗mPn−m,m,k
. (9)

The CVS model is valid to describe the three examples exposed above. In

the PA case, only input products with x and x∗ appearing m+1 and m times, re-

spectively, must be considered and (7) is reduced to the baseband FV model. It

is important to note that the CVS model has been demonstrated without any as-

sumption on the internal structure of these systems and nonetheless it presents

all the terms required for the nonlinear detection and estimation problem in

narrowband array processing [5]–[6]. If we consider an array of Ns narrowband

sensors in (7), then Qn−m,m = Pn−m,m = Ns − 1, for all n and 0 ≤ m ≤ n. In

that case, the CVS model (9) reduces to the WNL Volterra beamformer (4) for

odd-order terms. Finally, in the case of I/Q modulators the WNL representa-

tion (5) is a particular case of the CVS model. In this paper we also refer to (7)

as WNL model.

Considering the increased model complexity because of its structure with a

larger number of parameters, the technique presented in [11] was used to cope

with this great number of coefficients, relying on the sparsity assumption for

the kernels of the model. Recalling that the WNL model is linear with respect

to the coefficients, (9) can be rewritten as

y = X · h + e , (10)

where y is a column vector with the samples of the output complex-envelope, e is

a noise vector, h is a vector which arranges sequentially the normalized Volterra
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coefficients of the model, and X is a measurement matrix whose columns stack

the samples of the model regressors for the same order and delay. The solution

to (10) is the least squares (LS) estimate for the kernel vector

ĥ =
(
XH · X

)−1
XH · y , (11)

where H is the Hermitian transpose operator. If only a few of the regressor

coefficients are active, it is possible to apply the Orthogonal Matching Pur-

suit technique and the Bayesian Information Criterion aimed at determining

the active support set of model coefficients [11]. This approach applied to the

model provides a reduced-complexity structure which will be referred to as WNL

compressed-sensing (WNL-CS) model. The particular model coefficients are still

solved by using (11), but here it only applies to the subset of active regressors

defining the WNL-CS structure.

5. Application to Transmitter Modeling

An experimental study based on a vector signal generator (VSG) and a vec-

tor signal analyzer (VSA) has been conducted. The VSG served as an I/Q

modulator, providing a flexible interface to introduce I/Q impairments, and its

output was fed into a commercial PA constructed with the CGH40010 GaN

HEMT transistor, from Cree Inc. The test signal was a 15-MHz orthogonal

frequency-division multiplexing (OFDM) signal generated at 3.6 GHz according

to the long-term evolution (LTE) downlink standard. In the receiver side, the

RF signal was measured at the VSA with a sampling rate of 92.16 MS/s provid-

ing over 360000 samples. The test signal was composed of 56 OFDM symbols

and model identification was performed with only one symbol.

Following the usual methodology for behavioral modeling of transmitter ar-

chitectures, model parameters were identified by applying a conventional LS

procedure to the input-output measurement datasets, providing the normalized

mean square error (NMSE) between the modeled and measured signal as a qual-

ity metric, in addition to the adjacent channel error power ratio (ACEPR), the

latter evaluated for both the upper and lower adjacent channels.
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Table 1: Modeling performance in terms of the NMSE and ACEPR for the test PA with

impairments in the I/Q modulator

Model
ACEPR (dBc) NMSE #

−30 MHz −15 MHz In-Band +15 MHz +30 MHz (dB) Coeff.

FV-CS −62.8 −54.7 −31.7 −54.6 −66.4 −31.6 16

WNL-CS −68.8 −65.2 −54.5 −65.1 −68.2 −52.7 129

Modeling performance of the proposed WNL approach was compared to the

FV, given its demonstrated accuracy in the context of PAs. Considering the PA

operation point, both models were configured with thirteenth-order, a memory

length Q = 3 for orders one to five, and memoryless kernels for higher orders.

Due to the relatively large number of coefficients in the general proposal (248 for

the FV model and 1370 for the WNL model), the compressed-sensing algorithm

[11] was applied to select the appropriate kernels of both models.

According to Table 1, under I/Q modulator impairments, the FV compressed-

sensing (FV-CS) model reduces the number of coefficients to 16 and degrades

the NMSE to −31.6 dB, while the pruned WNL-CS model consists of 129 coeffi-

cients and presents an NMSE of −52.7 dB that outperforms the former in about

20 dB. While the number of the WNL-CS coefficients can be high, an increase

of the FV-CS coefficients leads to overfitting because the appropriate regres-

sors are missing. This behavior is confirmed by the predicted spectra plotted

in Fig. 1, showing that the model tightly matches the measured signal, while

the FV-CS model fails in the description of spectral regrowth in the adjacent

channels. These outcomes are even more evident in Fig. 2, where the spectra

of the error are depicted. As a reference we include in this figure the results

for the test PA without I/Q modulator impairments (dash-dot line), showing

a very low spectrum error inside the signal band for the FV-CS model. Let

us clarify that impairments were removed from the I/Q modulator output by

using a precompensator based on [7], and therefore this case resembles a non-
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Figure 1: Normalized power spectral density of the measured (dotted line) and modeled (solid

lines) output of the PA driven at 3.6 GHz with an impaired I/Q modulator.

linear system for which the baseband PA model holds. However, when I/Q

impairments are present, the FV model cannot describe accurately the output

and the in-band error degrades by almost 30 dB. On the contrary, the WNL

preserves the performance in that case. The spectrum of the error predicted by

the WNL-CS under compensated I/Q impairments, not shown, is almost the

same as the FV-CS model.

6. Conclusions

A formal deduction of a Volterra model for complex-valued nonlinear systems

has been submitted in this paper. It is also demonstrated that the input-output

relationships derived ad-hoc for several communication systems –a power ampli-
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Figure 2: Spectrum of the error signal between the measured and modeled output of the PA

driven at 3.6 GHz with an impaired I/Q modulator (solid lines) and an I/Q modulator with

precompensated impairments (dot-dashed line).

fier, a beamformer, an I/Q modulator– are particular cases of the CVS model.

To handle the increment of the parameters, we have exploited the kernel spar-

sity in this approach and reduced the structure complexity with the proposed

WNL-CS model. Through experimental validation, it has been also shown that

this model is able to accurately represent a diverse range of distortion sources in

communication subsystems, including impairments at the I/Q modulator com-

bined with the nonlinear distortion associated to PAs. Although conventional

behavioral models are accurate for the description of nonlinearities in PAs, they

show a degraded performance when the input signal is impaired by a quadrature

modulator. On the contrary, the richness of its regressors makes the proposed
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model a robust representation of a general transmitter-receiver architecture.
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