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Abstract—We consider the design of linear precoders and
receivers in a Multiple-Input Single-Output (MISO) Broadcast
Channel (BC). We aim at minimizing the transmit power while
fullfiling a set of per-user Quality-of-Service (QoS) constraints
expressed in terms of per-user average rate requirements. The
Channel State Information (CSI) is assumed to be perfectly known
at the receivers but only partially at the transmitter. To solve
the problem we transform the QoS constraints intoMinimum
Mean Square Error (MMSE) constraints. We then leverage the
MSE duality between the BC and theMultiple Access Channel
(MAC), as well as standard interference functions in the dual
MAC, to perform power minimization by means of an Alternating
Optimization (AO) algorithm. Problem feasibility is also studied
to determine whether the QoS constraints can be fulfilled or not.
Finally, we present an algorithm to balance the average rates
and manage situations that may be unfeasible or lead to an
unacceptably high transmit power.

Index Terms—Broadcast Channels, imperfect CSI, MSE dual-
ity, QoS constraints, rate balancing, interference functions.

I. I NTRODUCTION

T HE Multiple-Input Single-Output(MISO) Broadcast
Channel(BC) is an appropriate model for the downlink

of a cellular communication system where aBase Station
(BS) with N antennas serves a set ofK single-antenna non-
cooperative users. We assume signals are linearly filtered at
transmission and reception to mitigate the inter-user interfer-
ence. We also assume perfectChannel State Information at the
Receivers(CSIR) but only imperfectChannel State Informa-
tion at the Transmitter(CSIT). This is a reasonable assumption
in practical setups since receivers can accurately estimate the
CSI from the incoming signals whereas the transmitter obtains
the CSI via a feedback channel inFrequency Division Duplex
(FDD) systems, or an estimate of the reciprocal uplink CSI in
Time Division Duplex(TDD) systems.

Several imperfect CSI models have been considered in the
literature. Some authors employ bounded uncertainty models
such as ellipsoidal [1], spherical [2]–[5], or rectangular[5],
and formulate worst-case performance optimization problems
that can be solved usingSemi-Definite Program(SDP) meth-
ods [6]. Other authors, as done in this work, model CSI
uncertainty as a stochastic error whose distribution is known
in single-user [7], [8] and multiple-user [9]–[18] scenarios.

Different performance metrics have been considered for the
BC optimization. Maximizing theSignal to Interference–plus–
Noise Ratio(SINR) [1]–[5], [10], [19]–[25], is a common
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approach closely related to the maximization of the data
rate. Moreover, in [3], [13], [19], [20], [26] imperfect CSIT
is considered by handling approximations for the average
SINR where the expectation is separately applied to the
numerator and the denominator. The tightness of such an
approximation, however, is questionable and it is unclear
whether the approximation is an upper or a lower bound.
Other metrics are based on theMean Square Error(MSE).
Per-user MSE was considered in [5], [27], [28] or recently
in [18], where an approximation of the average MSE based
on a Taylor expansion has been proposed. Sum MSE [9],
[11], [12], [29], [30], and MSE balancing [9], [27], [29] have
also been often addressed. The sum MSE minimization in
the BC can be transformed into an equivalent one in the
dual Multiple Access Channel(MAC) to perform Alternate
Optimization(AO). Finally, weighted sum rate was studied in
[13], [15], [31], [32]. A common approach is to reformulate
the problem as a weighted sum MSE to find solutions based
on Geometric Programing(GP), or on the algorithm proposed
in [32]. However, sum rate optimizations may lead to unfair
and non-desirable situations where some of the users get low
(or even zero) information rates.

Regarding the optimization in the BC, some authors search
for the best metric performance for given transmit power [2],
[9], [11], [12], [15], [20], [22], [24], [25], [29], [33]. Contrary
to that, authors in [1], [3]–[5], [10], [13], [25], [28], [33]
consider the minimization of the total transmit power under
a set ofQuality-of-Service(QoS) constraints, as done in this
work. In particular, we ensure that users enjoy certain average
rate values. Note that such restrictions make it possible to
avoid the unfair situations stated previously.

To tackle this optimization problem, average rate constraints
are replaced by average MMSE requirements using Jensen’s
inequality (see also [34]). Note that, contrary to other solutions
(e.g. [18], [26]), no approximations are needed to theoretically
solve the MSE problem formulation. Hence, we determine the
MISO BC linear precoders and receivers by means of an AO
process in which we resort to the duality between the BC and
the MAC, as done in, e.g., [12], [30], to design the transmit and
receive filters. More specifically, we employ the MSE duality
proposed in [35] for the assumptions of perfect CSIR and
imperfect CSIT.

In the dual MAC, power minimization can be formulated as
a power allocation problem and solved using the standard in-
terference function framework proposed in [36] and extended
in [37].

This work also shows that the proposed power minimization
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Fig. 1. Sytem model of the Gaussian MISO BC.

algorithm converges if the QoS constraints can be fulfilled.
Therefore, we provide a test for checking the feasibility of
the average rate restrictions. This test is a generalization of
that presented in [38] for the vector BC and perfect CSIT and
CSIR.

Additionally, we consider the rate balancing problem: the
minimum of the average rates is maximized under a total
transmit power constraint. Again, this problem is reformu-
lated bounding the average rates by average MMSEs. Such
a reformulation leads to the minimization of the maximum
weighted average MSE under a total power constraint, and
can be solved combining a bisection search with the proposed
power minimization algorithm.

In recent communication systems, users are equipped with
more than one antenna. When we extend the system model
to the MIMO scenario two directions arise: considering single
and multiple per-user streams. Considering more than one per-
user stream adds more complexity to the problem, since the
per-user average rate constraints have to be divided between
all the streams allocated to the user. Such discussion is outof
the scope of this work. However, the methods proposed for
the MISO BC directly apply in the single-stream MIMO BC,
as shown in [39].

The paper is organized as follows. Section II describes the
MISO BC system model and the BC/MAC MSE duality. Sec-
tion III addresses the power minimization problem using the
standard interference function framework and an AO approach.
Section IV considers the feasibility of the QoS constraints
while Section V considers the rate balancing problem. Finally,
the results of simulation experiments are given in Section VI
and the conclusions in Section VII.

The following notation is employed. Matrices and column
vectors are written using upper an lower boldface characters,
respectively. By[X]j,k, we denote the element in rowj and
column k of the matrixX; diag(xi) represents a diagonal
matrix whoseith diagonal element isxi; IN stands for the
N ×N identity matrix, and1 represents the all ones vector.
The superscripts(·)∗, (·)T, and (·)H denote the complex
conjugate, transpose, and Hermitian.ℜ{·} represents the real
part operator. Finally,E[·] stands for statistical expectation,
tr(·) denotes the trace operation, and| · |, ‖ · ‖2, ‖ · ‖F stand
for the absolute value, the Euclidean norm, and the Frobenius
norm, respectively.

II. SYSTEM MODEL

Let us consider the system model of a Gaussian MISO BC
depicted in Fig. 1. We assume the BS is equipped withN

transmit antennas and sends the data signalsk ∈ C to the user
k ∈ {1, . . . ,K}. The data signal vectors = [s1, . . . , sK ]T

is assumed to be zero-mean, unit-variance, uncorrelated, and
Gaussian, i.e.,s ∼ NC(0, IK). The data signals are precoded
with the linear filterspk ∈ CN at the BS and propagate over
the vector channelshk ∈ C

N . At the users-ends, the received
signals are linearly filtered withfk ∈ C to produce an estimate
of the k-th user data signal

ŝk = f∗
kh

H
k

K
∑

i=1

pisi + f∗
kηk, (1)

whereηk ∼ NC(0, σ
2
ηk
) represents the thermal noise which is

independent of the data signals. Note that, according to this
signal model the transmit power is

∑K
k=1 ‖pk‖

2.
We assume that the receiverk has perfect knowledge of

its own channelhk. Contrarily, the BS has only imperfect
knowledge of the CSI which is modeled through the random
variablev. The random nature ofv is due to numerous sources
of error (i.e., channel estimation, quantization, delay, .. . ) that
affect the process of acquiring the CSIT in both TDD and
FDD systems. The imperfect channel knowledge is expressed
through the conditionalProbability Density Functions(PDF)
fhk|v(hk|v), assumed to be known at the transmitter.

Recalling (1),ŝk is a noisy version of the data signalsk.
The achievable instantaneous data rate in such situation is

Rk = log2(1 + p
H
k hkh

H
k pkx

−1
k ), (2)

wherexk = hH
k (
∑

i6=k pip
H
i )hk+σ

2
ηk

. In this work we search
for the precoderspk that minimize the transmit power fulfilling
the Quality of Service (QoS) constraintsE[Rk(v)] ≥ ρk, k ∈
{1, . . . ,K}, where{ρk}Kk=1 is the set of per-user average rates
to be fulfilled by the system. Note that the notationRk(v)
highlights that the transmitter has access to the partial CSIT v
for any channel realizationhk, ∀k. Based on partial CSITv,
the BC precoders are determined according to the variational
problem

min
{pk(v)}K

k=1

E

[

K
∑

k=1

‖pk(v)‖22

]

s.t. E [Rk(v)] ≥ ρk, ∀k.

(3)
Note that the optimization is over the mapspk(v), i.e., the

precoders depending on the partial CSITv. The constrained
minimization problem (3) is difficult to solve in general.
However, in the ensuing subsection, we exploit the relationship
between the average rate and the average MMSE to reformu-
late (3) in a more manageable way.

A. MSE Constrained Optimization

Let MSEBC
k = E[|sk − ŝk|2] be the instantaneous MSE of

the k-th user in the BC. For given channelhk,

MSEBC
k = 1− 2ℜ

{

f∗
kh

H
k pk

}

+ |fk|2
(

∣

∣hH
k pk

∣

∣

2
+ xk

)

, (4)

wherexk is that defined below (2). Note thathk is assumed to
be fixed in (4). Therefore, also the partial CSITv is fixed and
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we drop the dependence ofpk on v for the sake of brevity.
Correspondingly, the minimum MSE receive filter is given by

fMMSE
k (hk) =

(

hH
k

K
∑

i=1

pip
H
i hk + σ2

ηk

)−1

hH
k pk, (5)

and the MMSE is obtained substituting (5) into (4), i.e.,

MMSEBC
k = 1− fMMSE,∗

k (hk)h
H
k pk. (6)

Finally, by applying the equality1 − a
b = (1 + a

b−a )
−1 to

(6) it is possible to express thek-th user rate (2) asRk =
− log2(MMSEBC

k ) (cf. [34]).
Equations (4), (5) and (6) are suitable for the BC design with

perfect CSI at both ends of the communication system. Notice,
however, that imperfect CSIT is assumed in this work. For this
reason, consider the average MSE at the BCE[MSEBC

k (v)].
Correspondingly, the average MMSE at the BC is given by

E[MMSEBC
k (v)] = E

[

1− fMMSE,∗
k (hk)h

H
k pk(v)

]

,

where we highlight the perfect CSIR assumption byfk(hk).
Taking advantage of the concavity of thelog2(·) function

and employing Jensen’s inequality, we arrive at the following
lower bound for the average rate

E [Rk(v)] ≥ − log2 E
[

MMSEBC
k (v)

]

≥ − log2 E
[

MSEBC
k (v)

]

(7)
An example of the gap between the average rate and the
average MMSE lower bound is examined in Appendix A.

The constraints in (3) hold for− log2 E[MSEBC
k (v)] ≥ ρk,

and they are conservatively rewritten accordingly as

E
[

MSEBC
k (v)

]

≤ 2−ρk . (8)

Hence, the optimization problem (3) can be reformulated as

min
{pk(v),fk(hk)}K

k=1

E

[

K
∑

k=1

‖pk (v)‖22

]

s.t. E
[

MSEBC
k (v)

]

≤ 2−ρk , ∀k. (9)

Contrary to (3), the scalar receive filtersfk(hk) are now
involved in the optimization process. Nevertheless, in the
optimum of (9), MMSE filters are employed [see (5)].

We now note that by means of Bayes’ rule
E[MSEBC

k (v)] = E[E[MSEBC
k (v)| v]]. Then, introducing

MSE
BC
k (v) = E[MSEBC

k (v)| v], the variational problem (9)
can be solved pointwise for givenv as follows

min
{pk(v),fk(hk)}K

k=1

K
∑

k=1

‖pk(v)‖22 s.t. MSE
BC
k (v) ≤ 2−ρk , ∀k.

(10)
Note that the average transmit power resulting from (10) is
larger than that obtained from (3) since the MMSE constraints
in (10) are more restrictive than the rate constraints in (3).In
the following, we usepk, fk and MSE

BC
k for the sake of

notational brevity.

B. BC/MAC MSE Duality

It is important to note thatMSE
BC
k is independent of the

receive filterfj for j 6= k but depends on all precoderspj for
j 6= k. This means thatpk cannot be individually optimized
when solving (10) but all precoders should be optimized
jointly. Nevertheless, it is possible to avoid such dependence
by exploiting the MAC/BC MSE duality described in [35].

In the Single-Input Multiple-Output(SIMO) MAC dual to
the MISO BC, the receive and transmit filters are represented
by gk ∈ CN and tk ∈ C, respectively, whileθk = hkσ

−1
ηk
∈

C
N andn ∼ NC(0, IN ) represent the channel response and

noise in the dual MAC, respectively. The average MSE is then

MSE
MAC
k (v) = 1− 2E

[

ℜ
{

gHk θktk
}

| v
]

+ ‖gk‖22

+ E

[

K
∑

i=1

|ti|2
∣

∣gHk θi
∣

∣

2

∣

∣

∣

∣

∣

v

]

, (11)

where the expectations are taken w.r.t. all channels for given
partial CSIv as inMSE

BC
k (v) from (10).

Suppose now that the filters in the MAC, i.e.,tk andgk, are
given. Introducing the set{αk}Kk=1 ∈ R+, and the following
relationships between the MAC and the BC filters

pk(v) = αkgk(v),

fk = α−1
k σ−1

ηk
tk (θ1, θ2, . . . , θK) , (12)

it is possible to achieve identical MSEs for all the users in the
BC as in the MAC, i.e.,MSE

BC
k = MSE

MAC
k ∀k. Moreover, the

average transmit power is preserved [35]. Note that even not
always explicitly remarked in the notation, the MAC receive
filters and precoders are functions of the partial CSITv and
the channel, respectively, as the corresponding BC precoders
and receive filters.

In summary, a problem in the BC based onMSE
BC
k can be

equivalently reformulated in the dual MAC withMSE
MAC
k , and

vice-versa. This duality result will be exploited in the ensuing
sections to determine the BC precoderspk.

III. POWER M INIMIZATION

We now focus on solving the power minimization problem
as formulated in (10). First of all, for given BC precoderspk,
the MMSE BC scalar receive filtersfMMSE

k are readily obtained
via (5) considering perfect CSIR. Next, we transform the BC
receive filtersfk into the MAC precoding weightstk using
the MSE duality. Recall thattk is a function ofhk.

Let us now define the average transmit powerξk =
E[|tk|2| v] and the normalized MAC precodersτk = tk/

√
ξk

such thatE[|τk|2| v] = 1. Let us also introduce the conditional
expectationsµk = E[τkθk| v] and Θi = E[|τi|2θiθHi | v].
Finally, let us defineξ = [ξ1, . . . , ξK ]T as the vector contain-
ing the average transmit powers for all users, i.e., the power
allocation vector. Notice that, unlike the precoderstk, ξ only
depends on the partial CSITv, similar to the total transmit
power

∑K
k= ‖pk(v)‖22 in the BC.
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With these definitions,MSE
MAC
k from (11) reads as

MSE
MAC
k = 1− 2

√

ξkℜ
{

gHk µk

}

+ gHk

(

K
∑

i=1

ξiΘi + IN

)

gk.

(13)

Therefore, the equalizers minimizing theMSE
MAC
k are

gMMSE
k =

(

K
∑

i=1

ξiΘi + IN

)−1
√

ξkµk. (14)

By substituting (14) into (13), we obtain the following expres-
sion for the average MMSE conditioned onv

MMSE
MAC
k = 1− ξkµH

k

(

K
∑

i=1

ξiΘi + IN

)−1

µk. (15)

We now show that a scaled version ofgMMSE
k also minimizes

the MSE
MAC
k given by (13). This result will be exploited later

on to obtain a simple update of the equalizers in the iterative
algorithm that minimizes the transmit power. Let us introduce
the scalar MAC parametersrk so thatgk = rkg̃k. With this
new notation, theMSE

MAC
k in (13) reads as

MSE
MAC
k = 1− 2ℜ

{

r∗kg̃
H
k µk

√

ξk

}

+ |rk|2 g̃Hk

(

K
∑

i=1

ξiΘi + IN

)

g̃k. (16)

For giveng̃k, the optimal scalar filters are

rMMSE
k = g̃Hk µk

√

ξk

(

g̃Hk

(

K
∑

i=1

ξiΘi + IN

)

g̃k

)−1

. (17)

SubstitutingrMMSE
k into (16) yields the following minimum

average MAC MSE

Σk = 1− ξk
∣

∣g̃Hk µk

∣

∣

2
y−1
k , (18)

whereyk = g̃Hk (
∑K

i=1 ξiΘi+ IN )g̃k. Note now that replacing
g̃k in (18) by gMMSE

k given by (14), leads to (15). Therefore,
(14) is the minimizer of (13) and (18).

A. Power Allocation

So far, we have found the MMSE vector receivers in
the MAC, {gMMSE

k }Kk=1, corresponding to the BC precoders
{pk}Kk=1. We now search for the optimal MAC receivers
{gk}Kk=1 and power allocationξ that minimize the transmit

power (subject to the QoS constraintsMMSE
BC
k ≤ 2−ρk )

for given normalized precoders{τk}Kk=1. Due to the mutual
dependence of{gk}Kk=1 and ξ, we have to jointly optimize
both of them.

To that end, we rely on standard interference functions [19],
[36]. Interference functions concisely describe the framework
of the system requirements depending on the power allocation
as the vector inequalityξ ≥ f(ξ). To ensure that the fixed
point iterationξ(n+1) = f(ξ(n)) converges to the optimal so-
lution for ξ, the functionf(·) must be a standard interference
function, i.e., it satisfies

f(ξ) > 0 (positivity)
af(ξ) > f(aξ) ∀a > 1 (scalability), and
f(ξ) ≥ f(ξ′), ξ ≥ ξ′ ( monotonicity).

We now defineIk(ξ) = ξkΣk which can be interpreted as
the interference for userk. Applying the equality1 − a

b =
(1 + a

b−a )
−1 to (18) gives

Ik (ξ) =

(

1

ξk
+
∣

∣g̃Hk µk

∣

∣

2
(

yk − ξk
∣

∣g̃Hk µk

∣

∣

2
)−1

)−1

. (19)

We next collect all these functions into the vectorI(ξ) =
[I1(ξ), . . . , IK(ξ)]. As shown in Appendix B,I(ξ) fulfills the
properties of a standard interference function.

Note that, due to the average MSE BC/MAC duality, the
QoS constraints can equivalently be expressed asMSE

MAC
k ≤

2−ρk . Furthermore, sinceΣk = Ik(ξ)
ξk

, we reformulate the
power minimization problem (10) in the dual MAC for a given
set of normalized precoders{τk}Kk=1 as

min
{ξk,g̃k}K

k=1

K
∑

i=1

ξi s.t.
Ik (ξ)

ξk
≤ 2−ρk , ∀k. (20)

As shown in [36], sinceI(ξ) is a standard interference
function, the iterationξ(n)k = 2ρkIk(ξ

(n−1)) converges toξopt
k

for given {g̃k}Kk=1.
Moreover, the previously mentioned iteration can also be

used to jointly find the{ξk, g̃k}Kk=1 that solve the power
minimization problem (20). Indeed, letIk(ξ, g̃k) = ξkΣk

be the same function as before, but explicitly highlighting
the dependence oñgk. Similarly, we rewrite the interfer-
ence function asI(ξ, G̃) = [I1(ξ, g̃1), . . . , IK(ξ, g̃K)]T with
G̃ = [g̃1, . . . , g̃K ]. SinceI(ξ, G̃) is standard for anỹG, so is
minG̃ I(ξ, G̃) where the minimization is performed element-
wise. As a consequence, the Alternating Optimization (AO)
iteration

g̃
(n)
k ← argmin

g̃k

Ik

(

ξ(n−1), g̃k

)

∀k,

ξ
(n)
k ← 2ρkIk

(

ξ(n−1), g̃
(n)
k

)

∀k, (21)

converges to the global optimum of (20), as shown in [19].
Finally, the obtained dual MAC equalizers can be trans-

formed into the BC precoders by applying the average MSE
BC/MAC duality [see (12)]. Afterwards, the BC MMSE
receive filters can be updated for these BC precoders. The
iterative process that alternates between the optimization of
both filters is referred to as AO.

B. Power Minimization Algorithm

Algorithm 1 presents the steps to solve the optimization
problem (10) according to the ideas presented so far.

Recall that we assumev and fhk|v(hk|v) are known at
the transmitter according to th imperfect CSIT model. Since
closed-form expressions of the expectations in (20) are not
known for general channel models, we evaluate them by
using a Monte Carlo method. To that end, we generateM

channel realizationsh(m)
k ∼ fhk|v(hk|v), m = 1, . . . ,M , and

introduce the matrixHk = σ−1
ηk

[h
(1)
k , . . . ,h

(M)
k ] to collect the
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M dual MAC channel realizations. We also definet(m)
k as the

k-th user scalar MAC precoder for given channel realization
h
(m)
k . Collecting thet(m)

k we get the normalized precoding
diagonal matrix

Tk =
1√
ξk

diag
(

t
(1)
k , . . . , t

(M)
k

)

, (22)

whereξk = 1
M

∑M
m=1 |t

(m)
k |2 is thek-th user average transmit

power for givenv. Therefore, we calculate the expectations as
µk = 1

MHkTk1 andΘk = 1
MHkTkT

H
k H

H
k .

We start with an initial set of BC random precoders
{p(0)k }Kk=1 (line 1). We next calculate theM BC receivers
f

MMSE,(m)
k corresponding to the channel realizationsh(m)

k

(line 5). Applying the BC/MAC duality we determine theM
dual MAC precoders (line 7). The normalized matrix of MAC
precoders is obtained after the execution of lines 8 and 9.

The following two steps (lines 10 and 11) perform it-
eration (21) to update the power allocation and the dual
MAC receivers. Observe, however, that we do not include the
loop arising from the optimization in (21). The reason is to
avoid convergence problems, which may occur even when the
problem constraints are feasible, caused by the non-feasibility
of the power minimization problem for given MAC precoders
T

(ℓ)
k at the ℓ-th iteration (cf. (20)). Therefore, considering

a single loop we avoid this undesirable effect, as can be
appreciated from our simulation experiments (cf. [39]–[41]).

After the power allocation and the receive filters update
(lines 10 and 11), the new MAC transmit filters are determined
in line 13. Finally, we switch back to the BC in line 15. Due to
the existence of a unique minimum in (10), and to the fact that
every step in the algorithm either reduces the average MMSEs
or the total transmit power, the convergence of the algorithm is
guaranteed when the QoS constraints are feasible (see Section
IV). To check whether we have reached the desired accuracy
or not, we set a thresholdδ (line 16).

Note that the algorithm computational complexity is approx-
imately linear in the number of channel realizations,O(M),
since the sizes of the matrices to be inverted in lines 7, 15 and
11 are small compared toM , i.e.K ≪M andN ≪M .

IV. PROBLEM FEASIBILITY

In this Section we analyze the feasibility of the power
minimization problem (10). Due to the imperfect CSI as-
sumption, interferences cannot be completely removed in the
BC. Consequently, increasing the total transmit power does
not necessarily lead to a reduction of the MMSEs for all the
users because, although it increases the received power, italso
increases the power of the interferences. In certain scenarios,
the QoS constraints may require that some users achieve low
MMSE values that may be unfeasible even though the transmit
power is increased unlimitedly. In the following we presenta
feasibility test to determine whether it is possible or not to
accomplish the QoS constraintsMMSE

MAC
k = 2−ρk .

Let us start considering the average MMSE in the MAC

MMSE
MAC
k = 1− θ̄Hk

(

σ2IN +

K
∑

i=1

E[|ti|2 θiθHi | v]
)−1

θ̄k,

(23)

Algorithm 1 Power Minimization by AO

1: ℓ← 0, initialize p(0)i , ∀i
2: repeat
3: ℓ← ℓ+ 1, execute commands for allk ∈ {1, . . . ,K}
4: for m = 1 to M do
5: f

(ℓ,m)
k ←f

MMSE,(ℓ,m)
k [see (5)]

6: end for
7: t

(ℓ,m)
k ← BC-to-MAC conversion [see Sec. II-B]

8: ξ
(ℓ−1)
k ← 1

M

∑M
m=1 |t

(ℓ,m)
k |2

9: T
(ℓ)
k ← 1

√

ξ
(ℓ−1)
k

diag(t
(ℓ,1)
k , . . . , t

(ℓ,M)
k )

10: ξ
(ℓ)
k ← 2ρk Ik(ξ

(ℓ−1)) [power update]
11: g̃

(ℓ)
k ← update MAC receiver [see (14)]

12: for m = 1 to M do
13: t

(ℓ,m)
k ←

√

ξ
(ℓ)
k [T

(ℓ)
k ]m,m [include power allocation]

14: end for
15: p

(ℓ)
k ← MAC to BC conversion [see Sec. II-B]

16: until ||ξ(ℓ) − ξ(ℓ−1)||1 ≤ δ

where θ̄k = E[θktk| v] and σ2 is the thermal noise vari-
ance in the dual MAC. We now introduce the matrixΥ =
[θ1, . . . , θK ] diag(t1, . . . , tK) and rewrite (23) as follows

MMSE
MAC
k = 1−

[

E[ΥH|v] (24)
(

E[ΥΥH|v] + σ2
IN

)−1
E[Υ |v]

]

k,k
.

Hence, the sum average MMSE is

K
∑

i=1

MMSE
MAC
i = K− (25)

tr
(

E[ΥH|v]
(

E[ΥΥH|v] + σ2
IN

)−1
E[Υ |v]

)

.

WhenK ≥ N and the channel knowledge is perfect at both
sides, (25) can be made arbitrarily small [38]. However, due
to the imperfect CSI at the MAC receiver we cannot reduce
the average MMSE as much as desired.

Expression (25) allows to determine the region where the
feasible average MMSEs lie. Indeed, setting the MAC thermal
noise variance to zero (i.e.,σ2 = 0) we obtain the following
lower bound for the sum average MMSE for any finite total
average power allocation

K
∑

i=1

MMSE
MAC
i > K − tr{X}, (26)

whereX = E[ΥH|v](E[ΥΥH|v])−1 E[Υ |v]. The bound is
asymptotically achieved when the powers for all users reach
infinity. Therefore, we can formulate a necessary conditionfor
the feasibility of QoS targets: any power allocation with finite
sum power achieves an MMSE tuple{MMSE

MAC
i }Ki=1 inside

the polytope

P =

{

{MMSE
MAC
i }Ki=1 |

K
∑

i=1

MMSE
MAC
i ≥ K − tr {X}

}

.

(27)
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We now show that for each MMSE tuple inP there exists
a power allocation vectorξ. To do so, we leverage on the
uniqueness property of the fixed point in the interference
functions, meaning that if the fixed point exists it is unique
and, as a consequence, there is a bijective mapping between
the power allocationξ and the average MMSE targets.

Let f(x; c) be a multivariate function that depends on a
vector of independent variablesx and a vector of parameters
c. Such function has a fixed pointx = f(x; c) if it satisfies
the following set of sufficient conditions [42]

f(0; c) ≥ 0, (28)

∃a > 0 such that f(a; c) > a, (29)

∃ b > a such that f(b; c) < b. (30)

We now defineεk = 2−ρk as the MMSE targets in the
MMSE QoS constraints (8) andε = [ε1, . . . , εK ]T as the
vector that collects all such targets. We also introduce the
following definitions

ϕk =
1√
ξk
θ̄k, (31)

Φk =
1

ξk
E[(θktk − θ̄k)(θktk − θ̄k)H| v], (32)

Ak =
K
∑

i=1

ξiΦi +
∑

j 6=k

ξjϕjϕ
H
j + σ2

IN , (33)

which, applying the matrix inversion lemma, enable us to
rewrite (23) as

MMSE
MAC
k =

(

1 + ξkϕ
H
kA

−1
k ϕk

)−1
, (34)

and hence define the following functions

fk(ξ; ε) :=
(

ε−1
k − 1

) (

ϕH
kA

−1
k ϕk

)−1 ∀k. (35)

We next show that the fixed pointsξk = fk(ξ; ε) corre-
spond to the optimal power allocation vectorsξopt for which
MMSE

MAC
k = εk, ∀k. To do so, we show in the following that

the functionf(ξ; ε) = [f1(ξ; ε), . . . , fK(ξ; ε)]T satisfies the
fixed point conditions (28), (29), (30).

The first requirement (28) is easy to show because when
the transmit power isξ = 0, the inter-user interference drops
out and

fk(0; ε) =
1− εk
εk

σ2

‖ϕk‖22
. (36)

Note thatfk(0; ε) ≥ 0 as long as0 < εk ≤ 1. Moreover, (36)
also provides a lower bound forfk(ξ; ε), i.e., for anyξ ≥ 0

fk(ξ; ε) ≥
1− εk
εk

σ2

‖ϕk‖22
. (37)

The second condition (29) is also easy to show. Indeed, let
ā be the minimum element off(0; ε). Hence,f(ξ; ε) ≥ ā1
for any ξ ≥ 0. Note from (37) that̄a > 0 as long asεk < 1.
Observe now that the power allocationξ = a1 with a < ā
givesf(a1; ε) ≥ ā1 > a1 thus satisfying (29).

The proof for the last condition (30) is more involved and
can be found in Appendix C.

In summary, the power minimization problem (10) has a
solution, i.e., the MMSE QoS targetsε = [2−ρ1 , . . . , 2−ρK ]T

are feasible, if and only ifε ∈ P , with P defined in (27).

V. RATE BALANCING

So far we have considered the design of the precoders
and receivers in a MISO BC to minimize the transmit power
while fulfilling certain QoS constraints. However, when the
QoS constraints are rather stringent, the problem may be
unfeasible. We now address a different problem referred to
as rate balancing in the literature, in which the per-user
average rate constraints{ρk}Kk=1 are scaled by a common
factorς ∈ R+, and a power restrictionPtx is imposed. Observe
that, unlike the power minimization formulation, we can relax
the per-user requirement so that the problem is always feasible.
For such a formulation, we propose to jointly optimize the
balance levelς together with the precoders and receivers for
given transmit powerPtx.

Using the lower bound (7), the rate balancing problem
formulation reads as

max
{ς(v),pk(v),fk(hk)}K

k=1

E [ς(v)] s.t. E

[

K
∑

i=1

‖pi(v)‖22

]

≤ Ptx,

and E
[

MSEBC
k

]

≤ 2−E[ς(v)]ρk , ∀k. (38)

Following an argumentation similar to the one presented in
Sections II and III, the problem (38) can be solved pointwise
for eachv using the MSE duality and the interference func-
tions. Hence, we rewrite (38) as

max
{ς,ξk,gk}K

k=1

ς s.t.
Ik (ξ)

ξk
≤ 2−ςρk , and

K
∑

i=1

ξi ≤ Ptx.

(39)
whereξ = [ξ1, . . . , ξK ]T is the power allocation vector,gk
are the dual MAC receivers andIk (ξ) are the interference
functions as given by (19). Similarly to (20), this formulation
considers given MAC precoders. Algorithm 1 can be used to
determine optimum filters for givenς but it does not provide
the optimumς . Our proposal is to combine it with a bisection
search to solve (39).

Indeed, let us start setting two feasible rate balancing values
ςL and ςH such thatςL ≤ ςopt ≤ ςH. Let ξL and ξH be the
optimum power allocation vectors corresponding toςL andςH,
respectively. Such optimal power allocation vectors satisfy on
the one handIk(ξ

L)
ξL
k

= 2−ςLρk and Ik(ξ
H)

ξH
k

= 2−ςHρk , and on

the other
∑K

i=1 ξ
L
i ≤

∑K
i=1 ξ

opt
i ≤

∑K
i=1 ξ

H
i , as we will show

in the following.
Now, we introduce the average MMSE balancing factors

ǫk = 2−ςρk

2−ρk
= 2−ρk(ς−1). Note that increasing the balance

level ς , decreases the scaling factorsǫk, ∀k. Let ǫL
k and

ǫH
k be the MSE scaling factors correspoding toςL and ςH,

respectively. Note thatǫL
k ≥ ǫopt

k ≥ ǫH
k .

To proof that a bisection search can be performed, we
considerǫL

k = aǫopt
k , with a > 1. The constraints in (39)

are fulfilled with equality whenǫk = ǫopt
k and ξ = ξopt.

Hence, aǫopt
k 2−ρk = a Ik(ξ

opt)

ξopt
k

meaning that increasing the
MSE targets results in a decrease in the transmit power (i.e.
ξk = a−1ξopt

k , ∀k) when we keep the interference constant.
Moreover, notice that keeping the interference constant sets
an upper bound for the interference with the reduced transmit
powersIk(a−1ξopt) < Ik(ξ

opt). Therefore, the power needed
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to fulfill the constraint with equality is lower thana−1ξopt,
and1TξL < a−1

1
Tξopt < Ptx holds.

We now prove the relationship in the reverse direction, that
is, a power reduction translates into larger scaling factors
ǫk. Let us consider the power reductionAξopt with A =
diag(a1, · · · , aK) < I, that leads to certain average MSE scal-
ing factor ǫ̃k for some userk, i.e., ǫ̃k2−ρk = 1

akξ
opt
k

Ik(Aξ
opt).

Since no assumption about userk has been made, we can
focus on userk′ such thatak′ ≤ ak ∀k. Consequently,

ǫ̃k′2−ρk′ =
Ik′

(

Aξopt)

ak′ξopt
k′

≥ Ik′

(

ak′ξopt)

ak′ξopt
k′

>

Ik′

(

ξopt)

ξopt
k′

= ǫ
opt
k′ 2

−ρk′ . (40)

Therefore,ǫ̃k′ > ǫopt
k′ for ξopt > Aξopt. We have previously

shown that relaxing the balancing levelǫopt
k implies a power

reduction with respect toξopt. Hence, we conclude that a
power reduction entails a lower balancing levelς , and vice-
versa, when the precoders, receive filters, and power allocation
vectors are optimum for every balancing level.

Finally, reducing the gap betweenςL and ςH results in the
optimum balancing levelςopt for the total average transmit
power1Tξopt = Ptx.

A. Rate Balancing Algorithm

Algorithm 2 presents the steps to solve the optimization
problem (39). The algorithm is initialized with two balancing
levels ςL,(0) and ςH,(0) (line 1). Next, their corresponding
vector power allocation vectors,ξH,(0) and ξL,(0), are com-
puted via Algorithm 1 (line 2). Observe that the optimum
lies in between the initial balance levels. Next, the algorithm
enters a loop that first computes a new balancing level as
the geometric mean of the balancing levels obtained in the
previous iteration (line 5). Then, the power allocation vector
for this new balancing level is computed via Algorithm 1 (line
6). Next, we check whether the power obtained is lower than
the power constraint or not (line 7) and update the balancing
levels accordingly (lines 8 and 10). Finally, we test if the
current power has the desired accuracy (line 12).

The proof for the convergence of Algorithm 2 depends on
the feasibility of the initial average MSE targets2−ςH,(0)ρk ∀k.
Indeed, recall that the feasibility region is described in Section
IV as a bounded polytope and that the initial balancing
levels ςL,(0) and ςH,(0) are chosen such asςL,(0) ≤ ςopt ≤
ςH,(0). Hence, if2−ςH,(0)ρk ∀k lies inside the polytope so does
2−aςH,(0)ρk ∀k for any 0 ≤ a < 1. Taking into account that
the average MMSE given by1

ξ
(ℓ)
k

Ik(ξ
(ℓ)) is monotonically

decreasing inξ(ℓ), the bisection procedure reduces the gaps
(ςH,(ℓ) − ςL,(ℓ)) and |1Tξ(ℓ) − Ptx| at every iteration until a
desired accuracyδ is achieved.

VI. SIMULATION RESULTS

In this section we present the results of several simulation
experiments carried out to show the performance of the

Algorithm 2 Rate Balancing

1: ℓ← 0, initialize ςL,(0), ςH,(0)

2: find ξH,(0) ≤ ξL,(0) via Alg. 1 [power min.]
3: repeat
4: ℓ← ℓ+ 1
5: ς(ℓ) ←

√

ςL,(ℓ−1)ςH,(ℓ−1) [new candidate]
6: find ξ(ℓ) for ς(ℓ) via Alg. 1 [power min.]
7: if

∑K
i=1 ξ

(ℓ)
i < Ptx then

8: ςH,(ℓ) ← ς(ℓ), ςL,(ℓ) ← ςL,(ℓ−1) [weights update]
9: else

10: ςL,(ℓ) ← ς(ℓ), ςH,(ℓ) ← ςH,(ℓ−1) [weights update]
11: end if
12: until |∑K

i=1 ξ
(ℓ)
i − Ptx| < δ

proposed algorithms. First, let us introduce the followingerror
model corresponding to the imperfect CSIT

hk = h̄k + h̃k, (41)

where h̄k = E[hk| v] and h̃k is the error. This flexible
model can represent, for example, the errors due to cali-
bration in TDD systems or the quantization and estimation
errors in FDD systems. We assume that the imperfect CSI
error is zero-mean Gaussian, i.e.h̃k ∼ NC(0,Ck) where
Ck = E[(hk − h̄k)(hk − h̄k)

H| v] is thek-th user CSI error
covariance matrix. Recall thatv and fhk|v(hk|v) are known
at the transmitter, although the specific realizations ofhk

and h̃k are not. According to that assumption, it is possible
to generate the channel realizationsh(m)

k = h̄k + h̃
(m)
k for

k = {1, . . . ,K} andm = {1, . . . ,M}, with h̄k = E[hk|v]
and h̃(m)

k ∼ NC(0,Ck). In our scenario, the number of users
and transmit antennas wereK = 4 andN = 4, respectively.
We generatedM = 1000 channel realizations considering
Ck = IN , and h̄k ∼ NC(0, IN ), ∀k. We also considered
σ2
ηk

= 1, ∀k.

A. Power Minimization

In this subsection the Algorithm 1 that solves the optimiza-
tion problem (3) is considered. We choose users with different
rate requirements, viz.,ρ1 = 0.5146, ρ2 = 0.737, ρ3 = 1
and ρ4 = 0.2345 bits per channel use, respectively. These
requirements correspond to the following targets in the MMSE
domain:ε1 = 0.7, ε2 = 0.6, ε3 = 0.5 and ε4 = 0.85. The
threshold in Algorithm 1 is set toδ = 10−2. Initial precoders
are random.

Fig. 2 shows how the MMSE for all users converges to
the desired targetsεk. Since the problem is feasible, the
minimum total average power will be reached when the
constraints in (20) are fulfilled with equality. As can be seen
in Fig. 2, the first steps go in the direction of fulfilling the
requirements and the MMSEs are reduced. Nevertheless, the
subsequent iterations increase the MMSEs until the targets
εk are reached for all users. Correspondingly, as shown in
Fig. 3, the total average power is initially above16 dB and
it gradually reduces throughout the subsequent iterationsuntil
convergence is reached at3 dB. The total average power is
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dramatically reduced during the first five iterations whereas
the improvement is marginal after iteration15.

Fig. 4 shows the evolution of the average rates over the
iterations. Recall from (7) that the actual average rates are
lower bounded by the MMSE-based targetsεk, i.e.,E[Rk| v] ≥
− log2(εk), as discussed in Section II [see [3]]. The gap

between the average rates obtained with Algorithm 1 and the
average rate targets corresponding to the QoS constraints can
be also observed from Fig. 4. Moreover, we also include in this
figure the rates obtained employing the SINR approximation
utilized in [26] and widely employed afterwards (e.g. [3],
[20], [13]). This approach determines the average rates as
log2(1 + SINRk) where SINRk is obtained from applying
separately the expectation operator to both the numerator and
the denominator of the SINR, i.e.,

SINRk =
pHk E

[

hkh
H
k | v

]

pk

σ2
ηk

+
∑

i6=k p
H
i E

[

hkh
H
k | v

]

pi
. (42)

Fig. 4 shows the resulting values forlog2(1 + SINRk) along
the iterations in Algorithm 1. Note that the average rates for
the SINR approximation are larger than the true average rates
for users2 and 3, but smaller for users1 and 4. Hence, it
is not possible to guarantee the QoS restrictions. Contraryto
this, fulfilling the MMSE-based targets, as proposed in our
approach, ensures average rates larger than the targets.

B. Rate Balancing

This subsection focuses on the performance of Algorithm
2. This algorithm solves the optimization problem (38) by
means of Algorithm 1 and a bisection process for which it
is necessary to decide two starting points,ςL,(0) and ςH,(0),
such that the optimum balancing level lies in between, i.e.,
ςL,(0) ≤ ςopt ≤ ςH,(0). The rate targets employed in Subsection
VI-A are also used in this section. We scale them with a
common factor to obtain the rate targets. The threshold to
check convergence is set toδ = 10−2.

Taking into account the numerical results obtained in Sub-
section VI-A, we consider a total average transmit power of3
dB leading to an expected balancing level of approximately
one. Therefore, we pickςL,(0) = 0.6 and ςH,(0) = 1.3,
from which ςopt ∈ [0.6, 1.3]. Fig. 5 plots the average power
versus the balancing level for the different iterations of the
bisection algorithm. The two initial values correspond to the
points located on the left and the right vertical axis in the
figure. Note that the searching interval reduces as the algorithm
progresses until it converges after five iterations to the point
ςopt = 0.99659 andPtx = 3.0072 dB. This is in accordance to
the experimental results obtained in Subsection VI-A.

We also performed a computer experiment to compare
our approach to that presented in [29], where a duality that
allows to solve several optimization problems consideringa
scenario where the users and the BS share the same CSI. More
specifically (see Section V.B of [29]) the following weighted
MSE Min-Max problem is addressed

min
{pk,fk}K

k=1

max
i

MSE
BC
i

wi
s.t.

K
∑

j=1

‖pj‖22 ≤ Ptx (43)

wherewi is the weight for theith user. Robust precoders
and filters are designed via an AO process, and the power
allocation is calculated solving an eigen-system [27]. The
optimum of (43) is obtained after a few iterations and fulfills
∑K

i=1 ‖pi‖
2
2 = Ptx andMMSE

BC
k /wk = wopt, ∀k (see Fig. 6).

The error precision for the min max ratiowopt is 10−4.
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This min max problem can be seen as a balancing problem
with wi = εi. Thus, Fig. 7 represents the comparison between
the solutions employing robust transceivers and the one pro-
posed in this work. As can be seen in the figure, the proposed
Algorithm 2 performs better becauseςopt = 0.99659 is closer
thanwopt = 1.1442 to 1. However, the robust filters from [29]
are designed sharing imperfect CSI using a computationally
cheaper algorithm.

VII. C ONCLUSION

We focused on the design of linear precoders and receivers
to minimize the transmit power in a MISO BC while fullfiling
a set of per-user QoS constraints expressed in terms of
per-user average rate requirements. We explained that QoS
constraints can be substituted by more manageable restrictions
based on the average MMSE. We next exploited the MSE
BC/MAC duality to jointly determine the optimum transmit
and receive filters by means of an Alternating Optimization
(AO) algorithm. Additionally, the optimum power allocation
is found employing the so-called standard interference func-
tions framework. We also analyzed the problem feasibility
to ensure convergence of the proposed algorithm. Moreover,
we addressed the balancing problem combining the proposed
algorithm with a search. We carried out simulation experi-
ments to show the performance of the proposed methods and
compare them with existing solutions in the literature.

APPENDIX A
AVERAGE-MMSE-BASED LOWER BOUND GAP

In this appendix, we study the gap between the average rate
and the average MMSE lower bound in the inequality (7). For
simplicity reasons, we focus on the case whereK = N = 1. In
such case, the MISO BC (1) reduces to aSingle-Input Single-
Output (SISO) system model. Consideringh ∼ NC(0, 1) and
η ∼ NC(0, σ

2), the average MMSE is

E[MMSE] = E

[

σ2

|hp|2 + σ2

]

. (44)
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We now approximate the MMSECumulative Distribution
Function (CDF) by a beta distribution. Fig. 8 illustrates the
tightness of such approximation showing the CDF of the
MMSE for |p|2 = 1 and σ2 = 10, and the CDF of a beta
random variable withα = 6.54162 andβ = 1.12133.

We next introduce the PDFfε(MMSE) and the auxiliary
variableε = MMSE. Now, the expectation of the logarithm
of ε is

E[ln(ε)] =

∫ 1

0

fε(ε) ln(ε)dx.

Consideringε has a beta PDF, the logarithm of the geometric
mean reads as

E[ln(ε)] = ψ(α) − ψ (α+ β) ,

whereψ(x) is the digamma function. Such a function can be
approximated asψ(x) ≈ ln(x + 1

2 ) for x > 1. Then, the
average MMSE lower bound is approximated as follows

− E[log2(ε)] ≈
1

ln(2)
log2

(

1 +
β

α− 1
2

)

Considering the expectation of the beta distribution
is E[ε] = α

α+β , the average MMSE lower bound is
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− log2(E[ε]) =
1

ln(2) ln(1 + β
α ). Hence, the gap between the

average rateE[R] and the lower bound is

E [R]− [− log2 (E [MMSE])]

≈ 1

ln(2)
log2

(

1 +
β

α− 1
2

)

− 1

ln(2)
ln

(

1 +
β

α

)

=
1

ln(2)

[

ln

(

1 +
β

α− 1
2

)

− ln

(

1 +
β

α

)]

= log2

(

1 +
β
2

(

α− 1
2

)

(α+ β)

)

.

In our example this giveslog2(1 + 0.0121) = 0.0174.

APPENDIX B
INTERFERENCEFUNCTION PROPERTIES

We show in this appendix thatIk(ξ) as given by (19)
satisfies the properties of a standard interference function.

Observe thatyk − ξk|g̃Hk µk|2 with yk from (18) is positive
and increasing inξ. Then, it is straightforward to see thatIk(ξ)
is positive. Moreover, since both terms inside the outer inverse
of (19) are decreasing inξ, the whole expression increases
with ξ and satisfies monotonicity.

To prove scalability we consider the scalara > 1. Hence

aIk(ξ) = a

(

1

ξk
+
∣

∣g̃Hk µk

∣

∣

2
(

yk − ξk
∣

∣g̃Hk µk

∣

∣

2
)−1

)−1

>

(

1

aξk
+

∣

∣g̃Hk µk

∣

∣

2

a

(

zk − ξk
∣

∣g̃Hk µk

∣

∣

2
)−1

)−1

= Ik(aξ),

wherezk = g̃Hk (
∑K

i=1 ξiΘi +
1
aIN )g̃k.

APPENDIX C
PROOF FOR THE CONDITION(30)

The proof for the condition (30) will be divided into two
cases depending on the number of users and transmit antennas.

1) N ≥ K: This is the case where the number of transmit
antennas is greater than or equal to the number of users. We
start searching for an upper bound forfk(ξ; ε), or equivalently,
a lower bound for the inverse term in (35). To do so, we
introduce the following matrices

Bk̄ = [ϕi1 , . . . ,ϕiK−1
]ij 6=k, ∀j , (45)

Ξk̄ = diag(ξi)i6=k, (46)

which allow us to rewrite the second summand in (33) as
∑

i6=k ξiϕiϕ
H
i = Bk̄Ξk̄B

H
k̄

. If we also define

Φ =

K
∑

i=1

ξiΦi + σ2
IN , (47)

we can rewrite the matrixAk as

Ak = Φ+Bk̄Ξk̄B
H
k̄ . (48)

Applying now the matrix inversion lemma it is possible to
write the inverse ofAk as

A−1
k = Φ−1

[

IN −Bk̄

(

Ξ−1
k̄

+BH
k̄ Φ

−1Bk̄

)−1
BH

k̄ Φ
−1
]

.

Defining ψk = Φ−1/2ϕk and Dk̄ = Φ−1/2Bk̄ leads us,
eventually, to the lower bound

ϕH
kA

−1
k ϕk ≥ ψH

k

(

IN −Dk̄

(

DH
k̄Dk̄

)−1
DH

k̄

)

ψk, (49)

and the corresponding upper bound

fk(ξ; ε) ≤
1− εk
εk

(

ψH
k

(

IN −Dk̄

(

DH
k̄Dk̄

)−1
DH

k̄

)

ψk

)−1

.

Notice that matrixDH
k̄
Dk̄ is non-singular whenN ≥ K.

Observe that the equality in the last expression holds for
ξk → ∞, ∀k. Since f(ξ; ε) ≥ ā1 > a1 for any ξ ≥ 0

sets a lower bound, we only have to findb such thatbk >
( 1
εk
− 1)(ψH

k (I−Dk̄(D
H
k̄
Dk̄)

−1DH
k̄
)ψk)

−1 to complete the
proof for the third requirement (30) whenN ≥ K .

2) N < K: We now focus on the case in which the number
of transmit antennas is smaller than the number of users. The
power allocation is set tob = αb0, whereb0 belongs to the
simplexS = {x|∑k xk = 1 andxk ≥ 0 ∀k}. For α → ∞
(or σ2 → 0) andb0 > 0, we can rewrite (35) as

f∞
k (b0; ε) :=

1
εk−1

ϕH
k

(

∑

i

b0,iΦi +
∑

j 6=k

b0,jϕjϕ
H
j

)−1

ϕk

.

The average MMSE targets collected inε have to satisfy
equality in (26) for α → ∞, i.e., a tupleε that lies in
the region that separates feasible from unfeasible targets
B = {ε|1Tε = K − tr(X)}. Note thatb0 = f∞(b0; ε) is a
fixed point off∞ but we need to verify the bijective mapping
in order to complete the proof, that is, for any average MMSE
target tupleε ∈ B there is a unique power allocationb = αb0.

First, we define the SINR as SINR= 1/MMSE
MAC
k − 1.

In the limit caseα → ∞, the expression for theSignal to
Interference Ratio(SIR) is

SIRk = b0,kϕ
H
k

( K
∑

i=1

b0,iΦi +
∑

j 6=k

b0,jϕjϕ
H
j

)−1

ϕk,
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from which we rewrite SIRk = b0,k(Qk(b0))
−1. Thus, we

can use the properties of the functionQk(b0) (see [37]) to
guarantee the existence and uniqueness of the optimal power
allocation for the balancing problem

max
r,b0

r s.t.
b0,k
Qk (b0)

= rSIR0,k ∀k ∈ {1, . . . ,K}. (50)

Since we established a relationship between the SIR and the
MMSE

MAC
when we let the power grow without restriction

(i.e. α → ∞), we use the bound for1ε to find the optimal
balancing levelr for (50) via

K
∑

i=1

1

1 + rSIR0,i
= K − tr{X}. (51)

The previous equation only has a single solution since the
functions(1+ rSIR0,k)

−1 are monotonically decreasing with
r > 0, e.g., if we obtain the SIR targets from MMSE targets
lying in the region of interestB, (51) is fulfilled with r = 1.

Thus far we have shown that a unique power allocationb =
αb0, with b0 ∈ S andα→∞, always exists for any MMSE
tuple in the region that separates feasible and unfeasible targets
ε′ ∈ B such thatf(b; ε′) = b. Note thatf(b; ε) is decreasing
in ε and we can prove that the third requirement (30) is also
fulfilled for N < K due to the fact that for any targetε > ε′

we have
f(b; ε) < b. (52)
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