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Abstract

In this work, a block-wise extension of Tikhonov regularization is proposed for denoising smooth signals contaminated

by wide-band noise. The proposed method is derived from a constrained least squares problem in two forms: 1) a

block-wise fixed-lag smoother with smooth inter-block transitions applied in matrix form, and 2) a fixed-interval

smoother applied as a forward-backward zero-phase filter. The filter response is maximally flat and monotonically

decreasing, without any ripples in its pass-band. The method is also extended to smoothness of multiple smoothness

orders, and its relationship with Lipschitz regularity and block-wise Wiener smoothing is also studied.

The denoising of normal and abnormal electrocardiogram (ECG) signals in different stationary and non-stationary

noise levels is studied as case study. While most ECG denoising techniques benefit from the pseudo-periodicity of the

ECG, the developed technique is merely based on the smoothness assumption, which makes it a powerful method for

both normal and abnormal ECG. The performance of the method is assessed by Monte-Carlo simulations over three

standard normal and abnormal ECG databases of different sampling rates, in comparison with bandpass filtering,

wavelet denoising with various parameters, and Savitzky-Golay filters using Stein’s unbiased risk estimate shrinkage

scheme.

Keywords: Tikhonov regularization, forward-backward filtering, electrocardiogram filtering, wavelet denoising,

Lipschitz regularity, Wiener smoothing.

1. Introduction

Signal denoising is a prominent branch of signal pro-

cessing, which is based on a mixing model and prior as-

sumptions on the signal and noise structure. While the

most widely studied mixing models are additive mix-

tures of signal and noise, the signal/noise priors are to-

tally subjective. Deterministic vs. stochastic, temporal

vs. frequency domain or spatial, static vs. dynamical,

linear vs. periodic, are among the different priors used

for designing denoising schemes [1].

In absence of reliable priors regarding the signal

and noise structure, generic filtering techniques such

as bandpass filtering, wavelet denoising [2], Tikhonov

This is the author’s version of the manuscript accepted for publi-

cation in Elsevier Signal Processing, October 2016. The paper can be

found in its final format at:
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regularization and smoothing splines [3, 4], Savitzky-

Golay filters [5], Stein’s unbiased risk estimate (SURE)

regularization [6], blind or semi-blind source separation

(for multi-channel signals) [7], or even empirical tech-

niques [8] have been used, which are merely based on

prior assumptions such as signal smoothness, time or

transform-domain sparsity, or stochastic independence.

Specifically, Tikhonov regularization has found great

interest in various fields of science and engineering (in-

cluding biomedical engineering) for smoothing noisy

data and signal detrending [9, 4, 10]. Despite its sim-

plicity and good performance over short stationary data

blocks, Tikhonov regularization becomes computation-

ally demanding for long data. Moreover, it is an offline

procedure and does not adapt to signal and noise non-

stationarities.

Herein, a generic filtering scheme is proposed based

on smoothness priors and a constrained least squares

problem, which extends Tikhonov regularization to a

block-wise formulation that is computationally efficient
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and applicable to nonstationary scenarios. Since the

method is applied over rather short segments of data,

it is shown that it is computationally more efficient than

the classical Tikhonov regularization and it can be im-

plemented as an online fixed-lag smoother with smooth

inter-segment transitions, for both stationary and non-

stationary mixtures of signal and noise. The smoother

is also studied in the frequency domain and is shown to

be equivalent to an adaptive filter, which tunes its band-

width according to the signal/noise contents of each data

segment. It is shown that the proposed method bridges

between various concepts and filtering schemes, includ-

ing smoothing splines, Lipschitz regularization [11],

Wiener filtering, and closely related to SURE regular-

ization [6], and Savitzky-Golay filters [5].

The denoising of Electrocardiogram (ECG) signals

is used as a case study for the proposed method. The

problem of ECG denoising is of major importance in

biomedical signal processing. Due to the large diversity

of ECG waveforms, the current gold standard for ECG

acquisition system front-ends are based on rather sim-

ple bandpass filters [12]. More effective techniques for

ECG denoising, such as wavelet denoising, are based on

the concept of wavelet shrinkage using signal smooth-

ness priors [13]. Considering the broad range of pa-

rameters, which can be used for wavelet denoising, var-

ious studies have been carried-out to study the best

set of wavelet denoising parameters for ECG signals

[14]. More recently, Savitzky-Golay filters using the

SURE for optimal order selection have also been used

for ECG denoising and compared with various wavelet-

based schemes [15, 16].

More advanced (yet sophisticated) methods for ECG

denoising have used the pseudo-periodicity of the ECG

for constructing model-based filters using the extended

Kalman filter and its extensions [17, 18, 19]. The idea

has been further utilized for ECG segmentation [20],

decomposition [21], anomaly detection [22], fiducial

point extraction [23], and fetal ECG extraction [24,

25]. Despite the effectiveness of these highly model-

based filtering schemes (and their outperformance ver-

sus wavelet denoising [18]) they are mainly applica-

ble to normal ECG with pseudo-periodic behavior and

their performance degrades in cardiac anomalies with

highly abnormal beat morphologies. However, in the

hereby studied case studies, it is shown that the pro-

posed method, which is merely based on smoothness

priors (similar to wavelet denoising), is equally appli-

cable to normal and abnormal ECG contaminated by

broad-band noise, without requiring the ECG R-peaks.

Due to its minimal assumptions on the ECG and noise

structure, it can be potentially used in a broad range

of ECG-based applications, even in very low signal-to-

noise ratios (SNR).

The organization of the paper is as follows. In Sec-

tion 2, a piecewise smooth matrix form of the proposed

algorithm together with the parameter selection details

are presented. The proposed scheme is related to the

concept of Lipschitz regularity in Section 3. In Sec-

tion 4 using a sample-wise forward-backward smooth-

ing formulation, a frequency domain interpretation is

presented, which gives a Wiener smoothing perspective

to Tikhonov regularization and the proposed method. A

generalization of the developed framework to multiple-

order smoothness is presented in Section 5; followed by

a detailed case study for ECG denoising, in Section 6.

The paper ends with a summary and promising future

directions, in Section 7.

2. Piecewise smooth Tikhonov regularization

2.1. Discrete smoothing operator

Consider dd, a length M finite impulse response ap-

proximation for the dth order derivative operator. As

a simple realization of dd, one can use the following

recursion, which is based on the first order difference

approximation of the derivative operator:

dd = dd−1 ∗ d1, d ≥ 2 (1)

where d1
∆
= (1,−1) is the first-order difference impulse

response and ∗ is the convolution operator. Throughout

the paper, the second-order difference impulse response

d2 = (1,−2, 1) is of special interest.

For integers T > M, D̃d ∈ R
(T−M+1)×T is defined as

the Toeplitz matrix form of dd. As a special case we

have

D̃2 =
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(2)

The left multiplication of D̃d in any column-wise signal

of length T is equivalent to the convolution of the signal

with dd, which is its dth order approximate derivative

in our case. The effectiveness of finite difference ap-

proximations of the derivative depends on the sampling

frequency of the data and the desired accuracy. In prac-

tice, (2) can be replaced by discrete-time differentiators

with a desired impulse response or even a weighted dif-

ference (cf. [5] for a Savitzky-Golay perspective).
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2.2. Data model

Let us consider a signal θ(t) with a decaying Fourier

transform Θ(ω), i.e.,

∫ +∞

−∞

|Θ(ω)|(1 + |ω|ν)dω < +∞ (3)

where ν > 0 determines the rate of decay. Equation (3)

implies that θ(t) is globally d = bνc times continuously

differentiable (cf. [11, Theorem 2.5]).

Further consider θ[m] = θ(mTs) as discrete-time sam-

ples of θ(t), x[m] (0 ≤ m < L) as noisy samples of

θ[m] contaminated by uncorrelated additive noise, and

a strictly monotone sequence of user-defined (or auto-

matically selected) knot points K = {p0, p1, · · · , pN},

pk ∈ [0, L). The knots are used to segmentize the noisy

signal into N non-overlapping segments. Accordingly,

the segment Sk (0 ≤ k < N) is defined in vector form as

xk
∆
= (x[pk], x[pk + 1], · · · , x[pk+1 − 1])T (4)

with length nk
∆
= pk+1− pk. We fix p0 = 0 and pN = L

to assure that each sample of x[m] falls in exactly one

segment.

In each segment Sk, the following signal model is

considered

xk = θk + ηk (5)

where θk ∈ R
nk is the noiseless (desired) signal, and

the noise vector ηk ∈ R
nk is assumed to be uncorrelated

with θk and zero-mean with variance ηT
k
ηk/nk = δ2

k
(a

segment dependent variance).

In order to consider the inter-segment boundary be-

havior of the proposed method, two vectors containing

q neighboring samples of Sk from segments Sk−1 and

Sk+1 are defined:

αk
∆
= (θ[pk − q], θ[pk − q + 1], · · · , θ[pk − 1])T ∈ Rq

βk
∆
= (θ[pk+1], θ[pk+1 + 1], · · · , θ[pk+1 + q − 1])T ∈ Rq

(6)

Exceptionally, for S0 and SN−1, which do not have any

left and right neighbors, respectively, α0 and βN−1 are

defined to be empty vectors.

The knot-sequence and segment boundaries are illus-

trated in Fig. 1. Accordingly, the augmented vector

θ̄T
k

∆
= [ αT

k
θT

k
βT

k
] (7)

contains (nk +2q) successive samples of the desired sig-

nal from the end of Sk−1 to the beginning of Sk+1. In

the following, we set q = M − 1 to guarantee smooth

transitions between successive segments.

q q

αk

βk

xk

θk

S̃k−1 S̃k
S̃k+1p̃k p̃k+1

Sk Sk+1
pk+1

Figure 1: Illustration of the data model for each segment and its

boundaries

Using these definitions, the objective is to find the

least square error (LSE) estimate of θk with controllable

degree of smoothness over Sk and its boundaries with

neighboring segments. The problem can be formulated

as a LSE problem with an inequality constrain:

θ̂k = arg min
θk

‖xk − θk‖
2, s.t. ‖D̃dθ̄k‖

2 ≤ ε2
k (8)

where D̃d ∈ R
(nk+M−1)×(nk+2M−2) is the order d difference

operator, ‖ · ‖ represents the L2-norm and ε2
k

is a pre-

defined upper bound for the signal’s “steepness”. The

Lagrangian form of (8) is as follows:

θ̂k = arg min
θk

{

‖xk − θk‖
2 + λk‖D̃dθ̄k‖

2
}

(9)

where λk is a positive regularization factor that is tuned

to minimize the cost, while satisfying the inequality

constraint in (8).

Equation (9) is in the form of Tikhonov regularization

problems [3, 9], and similar to the regularized SURE

cost function [6]. As noted in [9], a nice interpretation

for the constrained LSE is to draw the unconstrained

LSE solution toward the null space of the matrix D̃d,

resulting in a smooth estimate of θk.

If D̃d is partitioned into D̃d = [ Ed Dd Fd ],

where Ed,Fd ∈ R
(nk+M−1)×(M−1) and Dd ∈ R

(nk+M−1)×nk ,

the argument of (9) can be expanded as

Jk = ‖xk − θk‖
2 + λk‖Ddθk + bk‖

2 (10)

where bk
∆
= Edαk + Fdβk is a boundary vector indepen-

dent of θk. Equation (10) is in the form of a classical

LSE problem with a quadratic constraint. It is straight-

forward to show that the solution is as follows

θ̂k = (I + λkDT
d Dd)−1[xk − λkDT

d bk] (11)

In the special case that the boundary smoothness con-

straint is not required (the boundary conditions are not
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Figure 2: The smoothing matrix of Tikhonov regularization, for T =

100 and λ = 50 (left) and λ = 200 (right). This matrix has a local

effect on the intermediate samples, when left-multiplied in a signal

vector.

available or the data has only one segment), bk = 0

and (11) reduces to the Tikhonov regularization method

used in previous studies [9]:

θ̂k = (I + λkDT
d Dd)−1xk (12)

We refer to (I + λkDT
d

Dd)−1, as the smoothing matrix.

This matrix is shown in Fig. 2 for T = 100 and λ =

50, 200.

In Appendix A, it is shown that an exactly similar

solution is obtained by seeking “maximally smooth es-

timates under an upper bound on the noise variance of

each segment,” using a segment-wise regularization fac-

tor γk = 1/λk.

For the hereby proposed method (and the alternative

formulation stated in Appendix A), there are practical

considerations regarding the selection of the regulariza-

tion factors λk (or γk), and the boundary vectors αk and

βk, which are discussed below.

2.3. Regularization factor selection

Depending on whether the upper bound of signal

roughness εk is know or not, the regularization factor

λk can be fixed or calculated per-segment. Both cases

are studies below.

2.3.1. Known (presumed) smoothness bound

When the smoothness bound is presumed or known

(e.g., from prior knowledge of the signal form), an opti-

mal λk can be calculated using εk. For this, the singular

value decomposition (SVD) of Dd is performed:

Dd = UΣVT (13)

where U ∈ R
(nk+M−1)×(nk+M−1) and V ∈ R

nk×nk are or-

thonormal matrices and Σ ∈ R
(nk+M−1)×nk is a diagonal

matrix, with diagonal entries (σ1, σ2, · · · , σnk
). Next,

letting

θ̃k
∆
= VT θ̂k, x̃k

∆
= VT xk, b̃k

∆
= UT bk, (14)

it is straightforward to show that the block solution in

(11) reduces to a sample-wise update:

θ̃ik =
x̃ik − λkσib̃ik

1 + λkσ
2
i

, (i = 1, · · · , nk) (15)

where θ̃ik, x̃ik, and b̃ik are the ith elements of the nk-

vectors θ̃k, x̃k, and b̃k, respectively. Moreover, the mean

square error and the smoothness bound are

e(λk) = ‖xk − θ̂k‖
2 = ‖x̃k − θ̃k‖

2 =

nk
∑

i=1

(
σ2

i
x̃ik + σib̃ik

1/λk + σ
2
i

)2

(16)

c(λk) = ‖Ddθ̂k + bk‖
2 = ‖Σθ̃k + b̃k‖

2 =

nk
∑

i=1

(
σi x̃ik + b̃ik

1 + λkσ
2
i

)2

(17)

It is seen that e(λk) and c(λk) are monotonically increas-

ing and decreasing with λk, respectively. Therefore, the

minimum of (8) is obtained on the boundary of its con-

straint region.

When the smoothness bound εk is known (or as-

sumed), the optimal regularization factor, denoted by

λ∗
k
, is numerically calculated by solving the following

equation for λ∗
k
:

c(λ∗k) =

nk
∑

i=1

(
σi x̃ik + b̃ik

1 + λ∗
k
σ2

i

)2 = ε2
k (18)

Due to the positive and monotonic decay of (18) to-

ward zero by increase of λ∗
k
, it has a unique solution

if ε2
k
≤ c(0). In order to find λ∗

k
, we use a variant of the

Bisection algorithm [26], detailed in Appendix B. This

optimal value is next used in (11) or (15) to calculate θk.

For ε2
k
> c(0), the boundary of the constrain region is no

longer achieved and λ∗
k
= 0, resulting in θ̂k = xk.

2.3.2. Unknown smoothness bound

When εk is unknown, or no assumption is available

on its upper bound (or equivalently on the noise vari-

ance δ2
k
, as shown in Appendix A), methods such as

the L-curve have been used for finding optimal regu-

larization factors [27, 28, 29, 30, 4]. In [31], a max-

imum a posteriori (MAP) interpretation has been pre-

sented for the constrained least squares problem and

its optimal regularization factor selection using the L-

curve. In our case, the L-curve is the plot of ‖xk − θk‖

versus ‖Ddθk + bk‖, as λ is swept from zero to infinity.

The λ corresponding to the corner of the L-curve (the

point at which ‖xk −θk‖+ ‖Ddθk +bk‖ is minimized) can

be empirically chosen as the optimal regularization fac-

tor, which provides the best balance between the signal
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smoothness and minimum mean square error. The re-

sults of this method versus the aforementioned method,

which is based on prior knowledge of the signal noise

variance are detailed in the results section.

Depending on the problem, one may have additional

priors regarding the signal/noise structure, which can

improve the regularization factor estimate. For instance,

if the signal and noise are both nonstationary from one

block to another (like the ECG example studied in Sec-

tion 6.6), but the noise is known to have rather slow

inter-block variations, the regularization factor λ∗
k

can

be made more consistent and its inter-segment fluctua-

tions can be damped by using the following block-wise

updates:

λ̃∗k = κλ
∗
k + (1 − κ)λ̃∗k−1 (19)

where 0 < κ ≤ 1 is a forgetting factor, which adds

a degree of freedom for block-wise smoothing of λ∗
k
.

This approach is further justified in Section 4, where we

present a more physical interpretation for λ∗
k

(beyond a

simple regularization factor).

2.4. Knot sequence selection

In theory, the knot sequence K is basically arbitrary.

In practice, in order to minimize the impact of smooth-

ing at the segment boundaries, one can customize the

knot sequence on a signal-dependent basis. For in-

stance, for ECG signals, one can detect the fiducial

points of the ECG and set the knots at intermediate

points, which do not convey major clinical informa-

tion. Alternatively, for online filtering, the knots can be

equally spaced throughout the signal. Our experiments

over biosignals such as the ECG, show that by introduc-

ing the segment smoothness margins αk and βk in (11),

the boundary effects are negligible, and the fixed spaced

knots is more appropriate in practice (imposing no pro-

cessing overhead).

2.5. Boundary conditions

Recalling (11), it is seen that for estimating the signal

in each segment, the noiseless samples (or an estimate)

of the boundaries of its left (αk) and right (βk) segments

have been assumed to be known; while in practice they

are not known. For this, we use a two-run procedure for

estimating the boundaries.

Starting from a given knot sequence K =

{p0, p1, · · · , pN} (pk ∈ [0, L], p0 = 0 and pN = L), in

the first run, a boundary-less solution is found for each

block according to (12). Due to the local behavior of

the smoothing matrix shown in Fig. 2, the resulting es-

timates are smooth in their intermediate points; but not

necessarily at the segment boundaries.

In the second run, a secondary knot sequence K̃ =

{p̃0, p̃1, · · · , p̃N} is defined:

p̃0 = p0

p̃i = (pi + pi−1)/2, 0 < i < N

p̃N = L

(20)

which is a 50% shifted and overlapped version of K

(except for the first and last points, which are fixed at 0

and L, respectively), and the signal is re-estimated from

(11), using the boundary vectors αk and βk, from the

first run.

2.6. The block-wise algorithm

Finally, by putting together the details in this section,

the overall block-wise algorithm is summarized in Al-

gorithm 1.

Algorithm 1 Block-wise smoothing algorithm

Require: Noisy signal x[m] (0 ≤ m < L)

Require: Knot sequence K = {p0, p1, · · · , pN}

Require: Upper bound of segment steepness ε2
k

(or up-

per bound of segment noise variance δ2
k
)

1: Segmentize x[m] into N segments xk using K

2: for k = 0, · · · ,N − 1 do . First Run

3: Calculate λ∗
k

for xk, using ε2
k

in Algorithm 2

4: Estimate θ̂k from (12), without boundary over-

laps

5: end for

6: Calculate K̃ = {p̃0, p̃1, · · · , p̃N} from (20)

7: Re-segmentize x[m] into N segments x̃k using K̃

8: for k = 0, · · · ,N − 1 do . Second Run

9: Calculate λ∗
k

for x̃k, using Algorithm 2

10: Set the boundary vectors αk and βk from the

output of the first run

11: Re-estimate θ̂k from (11), using the boundary

vectors

12: end for

It should be noted that this algorithm may be simply

implemented in real-time with one segment of lag. In

this case, the first and second runs of the algorithm can

be interlaced over successive blocks.

3. Local Lipschitz regularity

There is a close relationship between the proposed

block-wise scheme and the concept of global versus lo-

cal regularity. In fact, under the Fourier decaying as-

sumption in (3), θ(t) is uniformly Lipschitz-ν, over R

[11, Ch. 6], which means that there exists a polynomial
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φu(t) of degree d = bνc and a constant ` > 0 (indepen-

dent of ν), for which

∀t ∈ R : |θ(t) − φu(t)| ≤ `|t − u|ν (21)

The parameter ν ≥ 0 is the Lipschitz (or Hölder) expo-

nent and the smallest `, which satisfies (21) is known

as the Lipschitz constant. Equation (3) implies that

θ(t) is d-times continuously differentiable (globally) and

the dth order derivative θ(t)(d) is uniformly Lipschitz-µ,

where 0 ≤ µ = (ν − d) < 1. At each u the polynomial

φu(t) is uniquely defined. Specifically, since θ(t) is d-

times continuously differentiable in a neighborhood of

u, then φu(t) is the Taylor expansion of θ(t) around u [11,

Ch. 6, P. 206]. This result holds for all t ∈ R, including

uniformly sampled values θ[m] = θ(mTs) (m ∈ Z).

On the other hand, by selecting a “sufficiently small”

sampling time Ts > 0, the sequence obtained from ap-

plying the approximate difference operator dd to the

sample sequence θ[m] has the same order as θ(t)(d) and

is bounded by the same upper bound in (21).

While ν and ` are global constants, if we confine the

study to a single segment Sk, the upper bound in (21)

can become tighter and segment dependent. In other

words, one can have local regularity Lipschitz expo-

nents νk and Lipschitz constants `k, which vary from one

segment to another. The block-wise scheme proposed in

the previous section, implicitly seeks the upper bound

ε2
k

through the segment dependent regularity factor λk.

This is the same idea behind the zooming property of

wavelet transforms [11, Ch. 6].

4. Frequency domain analysis: a block-wise

Tikhonov-Wiener smoother

The block-wise matrix-form scheme developed in

the previous section can also be stated in terms of

a zero-phase, forward-backward linear time-invariant

(LTI) smoother. Although, the transfer function of clas-

sical Tikhonov regularization has been already derived

in previous studies [32, 33], our formulation addition-

ally provides a frequency domain interpretation for the

classical Tikhonov regularization in terms of a Wiener

smoother. To show this, the sample-wise form of the

data model in (5) is used. In each data segment k, we

have

xk[m] = θk[m] + ηk[m], (0 ≤ m < nk) (22)

where xk[m] is the noisy signal, θk[m] is the desired sig-

nal and ηk[m] is the zero-mean observation noise, with

E{ηk[m]2} = δ2
k
. Using the difference operator defined

in Section 2.1, the dth order approximate derivative of

θk[m] is found as follows:

wk[m]
∆
= dd[m] ∗ θk[m]

= dd[0]θk[m] + · · · dd[M − 1]θk[m − M + 1]
(23)

Therefore, (9) can be rewritten as

θ̂k[n] = arg min
θk[n]

nk−1
∑

m=0

(xk[m] − θk[m])2 + λk

nk+M−1
∑

m=M

wk[m]2

(24)

where λk ≥ 0 is the regularization factor1. By setting

the derivative of (24) with respect to θk[n] equal to zero

and after some simplifications, we find:

(δ[n] + λkdd[n] ∗ dd[−n]) ∗ θ̂k[n] = xk[n] (25)

where δ[·] is the Kronecker delta. If the first term in (25)

is invertible, we arrive at

θ̂k[n] = (δ[n] + λkdd[n] ∗ dd[−n])−1 ∗ xk[n] (26)

which simply represents LTI non-causal smoothing of

the noisy signal using the following transfer function:

ψk(z)
∆
=

1

1 + λkdd(z)dd(z−1)
(27)

Equation (27) can be regarded as the transfer function

of Tikhonov regularization (smoothing).

It is insightful to rewrite (27) in the following form

ψk(z)
∆
=

ε2
k

dd(z)dd(z−1)

ε2
k

dd(z)dd(z−1)
+ δ2

k

=
S θ(z)

S θ(z) + S η(z)
(28)

which is exactly in the form of an optimal Wiener

smoother for a random process obtained from an auto-

regressive all-pole model with a spectra denoted by

S θ(z), driven by input white (innovation) noise with

variance ε2
k
, in presence of white observation noise with

variance δ2
k

and a white spectra denoted by S η(z). In this

case, the parameter λk = δ
2
k
/ε2

k
is the equivalent regular-

ization factor defined throughout this work.

Fig. 3, illustrates the analogy between Tikhonov

regularization and optimal Wiener smoothing using the

1The lower and upper bounds of the second summation in (24) are

due to the fact that in extending (9) to the sample-wise form, the first

and last M−1 samples of wk[m] correspond with the boundary vectors

and only the middle nk correspond to θk[n].

6



+

Data model Wiener Smoother��� �� ��� �	 
 �� �q �� �h �� � � �� �
Y ��� ��q
Figure 3: An equivalent Wiener smoother scheme for Tikhonov regu-

larization

sample-wise formulation. This shows that the method

proposed in the previous section can be envisaged as

a piecewise-stationary Wiener smoother with smooth

inter-block transitions. The frequency response of each

block is controlled by the regularization factor λk.

Using a real-valued impulse response for dd, ψk(z) is

all-pole, lowpass and non-causal with conjugate sym-

metric pole pairs. Additionally, due to its invariance

with respect to z and z−1, its poles are reciprocal with

respect to the unit circle. The only exception is the pos-

sible poles lying on the unit circle (which is studied be-

low). In other cases, ψk(z) can always be factorized as

the cascade of a minimum-phase system ψmin
k

(z) (using

the poles inside the unit circle) applied as a causal fil-

ter, and a maximum-phase system ψmax
k

(z) (using the

poles outside the unit circle) applied as an anti-causal

(reverse) filter. Therefore, a forward-backward smooth-

ing scheme can be used to implement the smoother. Due

to the reciprocity of the poles of ψk(z) inside and out-

side the unit circle, only ψmin
k

is required for the filter

implementation. The procedure is as follows: first find

vk[n] = ψmin
k

[n] ∗ xk[n]. Next, vk[n] is time reversed

to ṽk[n] = v[−n], and given to the minimum-phase filter

yk[n] = ψmin
k

[n]∗ṽk[n]. The final result is θ̂k[n] = yk[−n].

Unity DC gain is achieved by normalizing the results of

the forward and backward filters by
∑

n ψ
min
k

[n].

The whole procedure is rather similar to the filtfilt

function in Matlab and Octave, using ψmin
k

(z) as the

transfer function. It should just be noted that according

to the two-run scheme described in Section 2.6, during

the forward and backward filtering phases, the output

initial conditions of the convolutions in each segment k

are taken from the outputs of the neighboring segments

Sk−1 and Sk+1, obtained from the first run.

4.1. Stability

ψk(z) is only stable for odd-length dd, as it has in-

evitable unit-circle poles for even-length difference op-

erators. The reasoning is as follows: supposing that dd

is a real-valued FIR impulse response of length M, ψk(z)

is an IIR filter with a denominator of length 2M − 1 and

2M − 2 conjugate symmetric roots. Noting that these

roots should also be reciprocal with respect to the unit

−1 −0.5 0 0.5 1 1.5
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−0.5
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0
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Figure 4: Root locus of the forward-backward smoother defined in

(27), for d = 2. Each line segment is the track of one of the four

conjugate symmetric and reciprocal poles, as λk varies from 0 to ∞

(in directions of arrows).

circle, the reciprocity of the poles is only attained when

the number of poles is a multiple of four, i.e., M is

odd. For even values of M, (at least) two of the con-

jugate symmetric poles are forced to be on the unit cir-

cle, and the remaining poles are reciprocal inside and

outside the unit circle. Therefore, the factorization of

ψk(z) in terms of the cascade of a minimum-phase and a

maximum-phase filter (without any unit-circle roots) is

only achievable for odd values of M, resulting in a sta-

ble forward-backward smoother. The system is unstable

for even values of M.

As a special case, using the frequency form of the dif-

ference operators defined in (1), the frequency response

of the forward-backward smoother is found as follows

ψk(e jω) =
1

1 + λk(2 − 2 cosω)d
=

1

1 + λk(2 sin
ω

2
)2d

(29)

which resembles the amplitude response of a discretized

Butterworth filter of order d, in low frequencies (|ω| =

|2π f / fs| � 1). The filter response is monotonically de-

creasing overω ∈ [0, π] and is maximally flat in its pass-

band, in the sense that its first 2d − 1 derivatives are

zero at ω = 0 without any pass-band or stop-band rip-

ples. Therefore, the formulation is also attractive from

the filter design perspective. The root loci and the cor-

responding filter frequency response of ψk(z) are shown

in Figs. 4 and 5 for different values of d and λk. Accord-

ingly, the block-wise scheme presented in the previous

section can be interpreted as a smoother, which adapts

its bandwidth according to the noise variance and the

signal steepness controlled by λ∗
k
.

4.2. Regularization factor selection

The properties of the LTI model under the variation

of the parameter λk is similar to the block-wise scheme:

7
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Figure 5: The frequency response of the forward backward smoother

defined in (27), (a) for d = 2, as λk varies from 0 to ∞ (from top to

bottom), (b) for λk = 1 and d = 2, 4, 6, 8, 10, 12, 14 (from smoothest

to steepest). The maximally flat pass-band property of the filter is seen

here.

the solution becomes smoother as λk increases from

zero to infinity. From (29), it is noticed how λk is

inversely related to the equivalent lowpass filter band-

width. If the upper-bound of the observation noise vari-

ance δ2
k

is known (or assumed), λk has an optimal value,

which can be numerically found by solving:

1

2π

∫

2π

|X(e jω)(1 − ψk(e jω))|2 = Lδ2
k (30)

which is equivalent to solving e
′

(γ∗
k
) = Lδ2

k
for γ∗

k
, in the

alternative formulation stated in Appendix A and then

setting λ∗
k
= 1/γ∗

k
.

5. Generalization to multiple order smoothness

An interesting generalization of the proposed method

is to penalize the norms of multiple derivatives of the es-

timated signal at the same time, but with different regu-

larization factors. As compared to the formulation pro-

posed in Section 2, this approach provides additional

control over the estimated waveforms, as it draws the

results towards a smaller subset of the null space of Dd.

This feature can be useful for extracting smooth signals

of order d, with bounded lower order derivatives. In this

case, the cost function in (10) can be rewritten as fol-

lows:

JM
k = ‖xk − θk‖

2 +

d
∑

i=0

λ
(i)

k
‖Diθk + b

(i)

k
‖2 (31)

where b
(i)

k

∆
= Eiαk +Fiβk is the multiple order extension

of the boundary vector and λ
(i)

k
is the ith derivative reg-

ularization factor. It is straightforward to show that in

this case, the block-wise solution in (11) is generalized

as follows

θ̂k = (I +

d
∑

i=0

λ
(i)

k
DT

i Di)
−1[xk −

d
∑

i=0

λ
(i)

k
DT

i b
(i)

k
] (32)

Similarly, the sample-wise solution in (25), its corre-

sponding transfer function in (27), and the frequency

response in (29) become

(δ[n] +

d
∑

i=0

λ
(i)

k
di[n] ∗ di[−n]) ∗ θ̂k[n] = xk[n] (33)

ψk(z) =
1

1 +
∑d

i=0 λ
(i)

k
di(z)di(z−1)

(34)

ψk(e jω) =
1

1 +
∑d

i=0 λ
(i)

k
(2 sin

ω

2
)2i

(35)

The discussion regarding the stability is as before (cf.

Section 4.1). As compared to the single order model,

it is apparently more difficult to find multiple optimal

regularization factors λ
(i)

k
. However, they can be simply

fixed by intuition or be found by Monte Carlo simula-

tion over desired datasets.

6. Case study: electrocardiogram denoising

6.1. Motivation

The electrocardiogram (ECG) is a good example of

non-stationary signals. While the normal ECG has a

pseudo-periodic behavior (due to the cardiac rhythm),

abnormal and ectopic ECG beats are highly irregular.

In modern digital ECG acquisition systems, in or-

der to enable better visual interpretations and to cover

the vast inter-subject variations, the ECG is commonly

oversampled far above the minimum required rate. For

instance, although the major diagnostic information of

the ECG is below 100 Hz (in adults), current ECG ac-

quisition standards recommend a sampling frequency of

250-500 Hz for low and moderate quality ECG, and 1-

10 kHz for high quality recordings [12]. On the other

hand, apart from the baseline wander, other ECG noises

and artifacts can span across the entire Nyquist band.

Therefore, in moderate and high-quality digitized ECG,

the desired waveform is rather smooth (the adjacent

samples are highly correlated), while the noise samples

are rather uncorrelated. Based on these facts, in this

section the proposed denoising scheme is used for re-

moving wide-band noise from ECG recordings.

It should be noted that in previous research, filtering

techniques such as extended Kalman filters based on the

pseudo-periodicity of ECG signals have resulted in very

good results for normal ECG [18]. However, the perfor-

mance of these methods significantly degrade for abnor-

mal ECG, which makes them inapplicable for denoising

highly irregular and ectopic beats. Therefore, LTI filters

with fixed impulse responses are still considered as the

gold standard of ECG acquisition system front-ends.
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6.2. Database

Three standard databases from the PhysioBank are

used for evaluation:

1. The MIT-BIH normal sinus rhythm database,

which contains 18 long-term two-channel normal

ECG recordings, sampled at 128 Hz [34].

2. The MIT-BIH arrhythmia database, which con-

tains 48 half-hour two-channel ambulatory ECG

recordings with annotated anomalies, sampled at

360 Hz [35].

3. The PTB diagnostic database (PTB), which con-

tains 549 fifteen channel ECG recordings, sampled

at 1 kHz [36]. Due to the huge size of this database,

only the first ninety subjects are used in this study.

These data are selected to show the performance of the

proposed methods in low, moderate and high sampling

frequencies for normal and abnormal ECG.

6.3. Algorithm parameters

In the following case studies, the smoothness order

is set to d = 2, d2 = (1,−2, 1), and the smoothing op-

erator D̃2 is as defined in (2). The boundary vectors

αk and βk have a length q = M − 1 (=2 in this case).

The knot spacing has been fixed to 100 ms, which is a

fraction of a typical ECG beat length and the ECG is

roughly smooth up to its second order difference. The

accuracy threshold of Algorithm 2 is set to C = 10−8,

and the forgetting factor in (19) is set to κ = 1, to show

the block-wise variations of the regularization factor λ∗
k

without any smoothing.

In the later presented results, several modes of the

proposed algorithm are studied:

1. Single block version (Section 4), using a global op-

timal λ0 found by a naive grid search.

2. A known input noise variance (δ2
k
)

3. Underestimated input noise variance (0.8δ2
k
)

4. Overestimated input noise variance (1.2δ2
k
).

The motivation for the two latter cases is to check the

performance when the pre-assumption on (or estimation

of) the input noise variance is inexact.

6.4. Benchmark algorithms

To date, numerous filters have been used for ECG

denoising. In order to keep the comparisons fair and

generic, we select benchmarks, which are not data de-

pendent, do not require prior assumptions (such as

pseudo-periodicity), the detection of the R-peaks or

other ECG fiducial points, and have been reasonably

successful for ECG denoising in previous work.

6.4.1. Linear time-invariant (LTI) lowpass filter

Although simple, linear-phase LTI filters are cur-

rently the standard choice for ECG system front-ends,

as they impose little assumptions on the signals and pre-

serve their phase contents. Therefore, the first bench-

mark is a naive linear-phase lowpass Butterworth fil-

ter with variable cutoff frequency. The -3dB cutoff

frequency was swept linearly over 100 values ranging

from 5 Hz to the Nyquist frequency (half the sampling

frequency), in three Butterworth filter orders 2, 4, and

6. The designed filters were applied to the data using

the filtfilt function in Matlab (to have zero-phase lag

and provide similar comparison conditions with the pro-

posed method). According to the simulation procedure

described in the sequel, it was found that the filter order

2 slightly outperformed higher orders.

6.4.2. Wavelet denoiser (WD)

The well-known wavelet shrinkage scheme devel-

oped by Donoho et al. was originally developed using

signal smoothness priors [2]. The optimal performance

of this method using appropriate mother wavelets and

different wavelet shrinkage schemes has been exces-

sively studied in the past two decades. WD is offline and

block-wise and highly benefits from the signal proper-

ties in various decomposition levels, which are much

more sophisticated (and perhaps more effective) than

the simple smoothness priors used in this work. Nev-

ertheless, we use it for performance comparison with

the proposed method. Due to the diversity of the liter-

ature on WD performance on ECG signals, an exhaus-

tive Monte Carlo simulation was performed on the three

databases using various combinations of WD parame-

ters, listed in Table 1. Overall, 6960 different parameter

combinations have been studied, which is broader than

our previous WD combination set reported in [18].

Each method was tested in presence of input white

noise in variable SNR ranging from -15 dB to +30 dB.

The average and standard deviation of SNR improve-

ment obtained after filtering was used as a measure of

performance.

Among the different tested parameter combinations,

the SURE shrinkage rule, with a single-level rescaling

and soft thresholding strategy resulted in the highest

performance over all three databases. The multi-level

rescaling performance was rather close (but lower) than

the single-level; but the no-rescaling method always had

poor results, except in very high input SNR (24dB and

above). Among the tested mother wavelets, Coiflets

2, 3, 4, 5, and Symlets 5, 6, 7, 8, Daubechies 2 com-

monly gave superior results, without a significant differ-

ence (considering the standard deviation of the results).
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Table 1: Wavelet denoising parameter combinations tested over the databases

Parameter Values

Mother wavelet
Daubechies 1 (Haar), 2, 3,· · · , 10, 12, 16

Coiflets 1,· · · , 5

Symlets 2,· · · , 8

Biorthogonal 1.5, 2.6, 2.8, 5.5, 6.8

Shrinkage rule SURE, heuristic SURE, universal, minimax

Thresholding strategy hard, soft

Rescaling approach no-scaling, single-level, multi-level

Decomposition level 1,· · · , 10

The optimal decomposition level for WD is known to be

sampling frequency dependent. Throughout the Monte

Carlo simulations, the optimal level was found to be 7,

5, and 9, for the normal, arrhythmia, and PTB databases,

respectively. In the results section, the WD results are

reported in two cases:

1. The best WD decomposition level adapted per each

input SNR (named WAVELET0)

2. A fixed decomposition level optimized over all in-

put SNR (named WAVELET).

The first case is only used as a corner case, as the ex-

act input SNR is not known in practice and the optimal

decomposition level is unknown.

6.4.3. Order-optimized Savitzky-Golay filter (SGF)

The Savitzky-Golay filter using the SURE shrinkage

rule for optimal order selection has been recently used

for ECG denoising [15]. Three variants of the SGF have

been reported in [15]:

1. SGF of order 3 with variable length impulse re-

sponse and using SURE for finding the optimal im-

pulse response (SGBW).

2. SGF of order 3 with variable length impulse re-

sponse and using regularized SURE for finding the

optimal impulse response (SGBWR).

3. SGF of variable order from 1 to 5 using SURE

for finding the optimal impulse response length

(SGO).

All three schemes were applied to the studied

databases2, with the order parameter swept from 5 to

75 in steps of 2 (as required by the algorithm in [15]).

It was noticed that the optimal filter order was inversely

related to the input SNR and the performance highly re-

lied on this parameter. However, as with all the bench-

mark methods, the optimal order was selected as the one

2The source codes for this benchmark were kindly provided by the

authors of [15].
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Figure 6: A sample noisy ECG segment (in gray), the smoothed sig-

nals after the first stage of Algorithm 1 without any boundary con-

straints (in blue), and after the second stage using boundary con-

straints (in red).

that maximized the average SNR improvement over the

entire range of input SNR.

6.5. Stationary white noise removal

6.5.1. Visual inspection

In order to show the impact of considering the bound-

ary conditions between segments, a short ECG segment

adopted from the PTB diagnostic database and the re-

sults obtained from the first and second runs of Algo-

rithm 1 are shown in Fig. 6. Accordingly, the transi-

tions between blocks have become totally smooth after

the second stage of the smoother (in Algorithm 1). Both

runs give rather similar estimates in their intermediate

points, which shows that the segment boundary con-

straints have local impacts and do not affect the interior

samples.

In Fig. 7, a sample ECG segment adopted from the

MIT-BIH arrhythmia database is shown, which contains

ectopic beats. The signal was artificially contaminated

by white Gaussian noise in three input SNR: 0dB, 6dB
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Figure 7: A sample ECG segment containing an ectopic beat in three input SNR: 0dB (left), 6dB (middle) and 12dB (right). From top to bottom,

the signals correspond to: the original signal overlaid with the noisy signal, the sample-wise smoother scheme with a fixed λ, and the block-wise

matrix form. The last signal is the optimal penalty factor γ∗
k
= 1/λ∗

k
corresponding to each 100 ms data segment.

and 12dB. The denoising results using the block-wise

and sample-wise schemes are shown in Fig. 7. In order

to calculate the optimal λ∗
k
, the alternative formulation

of the algorithm described in Appendix A was used and

the noise variance δ2
k

was given to the algorithm as a

prior. For the sample-wise smoother (Section 4), a sin-

gle regularization factor λ was fixed to be the maximum

of λ∗
k

obtained from the block-wise scheme. The opti-

mal penalty factor γ∗
k
= 1/λ∗

k
is shown in the last row

of Fig. 7. Accordingly, although the noise variance was

uniform throughout the whole signal, γ∗
k

has significant

block-wise variations, due to the local ECG amplitude

changes over each beat.

The L-curves corresponding to the data in Fig. 7

are shown in Fig. 8. Accordingly, for all the plot-

ted L-curves, due to the fixed signal SNR, the optimal

λ∗
k

(shown by circles) are located at a fixed error level

‖xk − θk‖, which by visual inspection are rather close to

the corner of the L-curve.

Therefore, for real scenarios in which δ2
k

(or ε2
k
) are

unknown, according to our primary model in (8) an

upper bound of these parameters can be used instead.

Choosing worst case upper bounds for δ2
k

(or ε2
k
) leads

in sub-optimal results. Alternatively, a sweep of the reg-

ularization factor for obtaining the corner of the L-curve

gives an empirical estimate for λ∗
k
.

6.5.2. Monte Carlo simulation

In order to compare the overall performance of the

proposed method, it was applied to the three standard

databases described in Section 6.2. The total number

of 10 s data segments were 1116, 2016, and 1150, for

the Normal, Arrhythmia, and PTB databases, respec-

tively. White noise was synthetically produced and

added to each segment in different SNR ranging from

-15 dB to 30 dB in 3 dB steps, and the performance

was studied for three difference operator orders d =2,

4, and 6. High SNR (above 24 dB) cases are consid-

ered very good quality ECG; intermediate SNR (rang-

ing between 18 dB to -6 dB) have been used as a typi-

cal range for noise stress testing studies [37], and very

low input SNR (-6 dB and below) are only of interest

for extremely noisy cases demanding rather coarse ECG

analysis, such as R-peak detection from poor quality

data (for instance for noninvasive fetal R-wave detec-

tion from highly noisy data [38]).

For this study, the proposed methods were tested us-

ing the parameters described in Section 6.3. For the

block-wise scheme the noise variance was given as

prior and the optimal regularization factor was calcu-

lated according to the γ-based formulation, detailed in

Appendix A. For the sample-wise forward-backward

smoothing scheme, an optimal global regularization

factor γ0 was found for each data segment by using a bi-

section search between 10−12 to 106 over 100 iterations.

The optimal regularization factor γ∗
0
, was selected as the

one which resulted in the maximum SNR improvement

(∆SNR(dB) = SNRout(dB) − SNRin(dB)) at the filter’s

output. The average and standard deviation of SNR im-

provements are shown in Fig. 9, for the three studied

databases, in comparison with the benchmark methods.

Accordingly, in low input SNR, WAVELET0 has the

best average SNR improvement, which was anticipated

due to the scenario used for implementing WAVELET0,

as noted in Section 6.4.2. In high input SNR, the pro-

posed method using fixed λ0 and underestimated input

noise variance (0.8∆2
k
) outperform other methods.

For the WD, as expected, optimizing the decompo-

sition level per input SNR (WAVELET0) gives better

results as compared with a global decomposition level

(WAVELET). The simple lowpass filter and the SGF

highly degrade in high input SNR. Overall, the SGF
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Figure 8: The L-curves corresponding to the data in Fig. 7 as λ is swept from 0.04λ∗
k

to 25λ∗
k
, where λ∗

k
is the optimal regularization factor located

at the circles.

does not show any superior results (neither in terms of

average nor standard deviation), except for the SGBWR

applied to the PTB database in input SNR ranging from

0dB to 10dB.

For the proposed method, the difference operator or-

der d = 2, outperformed higher order factors. Moreover,

the SNR improvement obtained in higher sampling fre-

quencies (specifically for the PTB database) was better

than the results obtained in lower sampling frequencies.

This result was already anticipated, since in higher sam-

pling rates, the noise power, which spans over the total

Nyquist band has less overlap with the desired signal.

In all cases, the optimal regularization factor γ∗
0

is in-

versely related to the SNR. Moreover, the results show

that it is better to overestimate the input noise variance

in low input SNR and to underestimate it for high input

SNR. Using the exact input noise variance has interme-

diate results.

Considering the standard deviation (SD) results in

Fig. 9, all variants of the proposed method are more

robust (have smaller SD) than the previous techniques,

including the WD. In fact, while the SD of the proposed

methods remain bounded with the variation of the input

SNR, the SD of other methods tend to increase in higher

input SNR.

6.6. Non-stationary noise removal

The experiment described in the previous section was

repeated for non-stationary white noise modulated by

sinusoidal envelopes, in three input SNR: -3dB, 0dB

and 3dB (Fig. 10). This noise resembles non-stationary

noise due to electrode displacements and muscle arti-

facts, which are commonly wider in bandwidth as com-

pared with the contaminated ECG; but overlap in the

time and frequency domains. In this case, due to the

variations of the noise variance, using a fixed prior noise

variance δ2
k

is inappropriate as it leads to sub-optimal

performance in each block. For this case, we used the

L-curve method to find the optimal regularization pa-

rameter λ∗
k
. From the last row of Fig. 10, it is noticed

how the variations of γ∗
k
= 1/λ∗

k
is inversely related to

the envelope of the non-stationary noise, which is in full

agreement with the interpretation of λ∗
k
, in Section 4

(Fig. 3), as the ratio of the observation noise variance

divided by the innovation noise variance, i.e., γ∗
k

is in-

versely proportional to the observation noise variance.

Alternatively, for such scenarios (with non-stationary

variable noise variance), a block can be added to the

proposed algorithm, which estimates the block-wise

noise variance using complementary priors. This ex-

tension is not covered in this study.

7. Summary and future work

In this paper, a block-wise extension of the well-

known Tikhonov regularization was proposed for de-

noising smooth signals contaminated by wide-band

noise. The proposed method can be implemented in

two forms: 1) as a block-wise fixed-lag smoother with

smooth inter-block transitions applied in a matrix form,

2) as a fixed-interval smoother applied as a forward-

backward zero-phase filter. The filter response is max-

imally flat and monotonically decreasing, without any

ripples. The method was also extended to smoothness of

multiple derivative orders and its relationship with Lips-

chitz regularity and Wiener smoothing was also studied.

ECG denoising was studies as a typical case study

and compared with conventional bandpass, WD and

SGF filters. All Matlab source codes of the proposed

method are online available in the open-source electro-

physiological toolbox (OSET) [39].

The proposed method is very general with poten-

tial applications in various fields of signal processing.

Some of the promising extensions of the hereby pro-

posed schemes include:
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Figure 9: The results of Monte Carlo simulations over three standard databases. The average SNR improvement (first row) and SNR improvement

standard deviation (second row). The left column corresponds with the Normal Sinus database, the middle column shows the Arrhythmia database

and the right column is the result of the PTB database.

• The data model described in (5) was based on the

assumption that the observed data xk were simply

noisy observations of θk. For applications such

as model identification and signal compression, θk

can be further considered to have a structure, such

as θk = Hsk, where sk are some latent variables

(hidden features) and H is a mixture matrix or even

some basis functions.

• The same framework can be extended to other pri-

ors, such as temporal or spectral priors. This ex-

tension is simply achieved by replacing the opera-

tor Dd with other filter responses, e.g., the original

Savitzky-Golay convolution coefficient set [40], or

recent methods proposed for the optimal order se-

lection of these filters [15]. The filter operator

can also be time-varying, such as signal-dependent

weighted averages.

• The ECG case study shows that WD using SURE

shrinkage rule has very good results for offline ap-

plications, while the proposed framework is more

robust (in terms of SD) and is applicable online. In

future studies, the combination of the two methods

may result in a piecewise online WD schemes with

smooth inter-block transitions. The concept of Lip-

schitz regularity studied in Section 3 can serve as

a common ground for relating wavelet zooming

and wavelet denoising schemes with the proposed

framework.

• The Wiener equivalent formulation stated in (28),

suggests the possible extension of the proposed

method for colored spectral noise (non-constant

S η(z)), having spectral overlap with the desired

signals. In case of non-stationary colored noise,

spectral factorization methods can be used to de-

rive dynamical models for the proposed filters,

which can also be used to construct a Kalman

filter (smoother) implementation of the proposed

schemes.

• The extension to multichannel spatially correlated

data is another promising direction, which can pro-

vide a joint spatio-temporal smoothing technique,

related to semi-blind source separation techniques

using smoothness priors.

• In the current formulation, no assumptions were

made on the stochastic distribution of the signal or

noise; since the constrained least squares scheme

does not rely on the signal distributions. How-

ever, if any such assumptions exist in a specific

scenario (such as Gaussian assumption on the sig-

nal or noise), the formulation can be extended to

a Maximum Likelihood or Maximum a Posteriori

framework, which provide additional statistical in-

terpretations for the minimized costs.
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Figure 10: A sample ECG segment containing an ectopic beat contaminated by non-stationary noise resembling electrode displacements and

muscle artifacts, in three input SNR: -3dB (left), 0dB (middle) and 3dB (right). From top to bottom, the signals correspond to: the original signal

overlaid with the noisy signal, the fixed-lambda sample-wise smoother scheme, and the block-wise scheme with λ∗
k

found by the L-curve method.

The last row is the optimal penalty factor γ∗
k
= 1/λ∗

k
corresponding to each 100 ms data segment.

Appendix A. An alternative formulation: maximal

smoothness with bounded noise vari-

ance

In practice, the knowledge of the segment measure-

ment noise variance δ2
k

can be more accessible than the

signal’s steepness bound ε2
k
. In this case, an alternative

formulation for (8) is to seek the smoothest estimate of

θk under an upper bound for the mean square error vari-

ance:

θ̂
′

k = arg min
θk

‖D̃dθ̄k‖
2, s.t. ‖xk − θk‖

2 ≤ nkδ
2
k (A.1)

In this case, the Lagrangian and the matrix solutions are

respectively as follows

θ̂
′

k = arg min
θk

{

‖D̃dθ̄k‖
2 + γk‖xk − θk‖

2
}

(A.2)

θ̂
′

k = (γkI + DT
d Dd)−1[γkxk − DT

d bk] (A.3)

Equation (A.3) is identical to (11), when the error

penalty γk = 1/λk. Using the SVD matrix definitions

from Section (2.3), and defining θ̃
′

k

∆
= VT θ̂

′

k
, the sample-

wise update, the mean square error and the smoothness

bound are found as follows

θ̃
′

ik =
γk x̃ik − σib̃ik

γk + σ
2
i

, (i = 1, · · · , nk) (A.4)

e
′

(γk) = ‖xk − θ̂
′

k‖
2 =

nk
∑

i=1

(
σ2

i
x̃ik + σib̃ik

γk + σ
2
i

)2 (A.5)

c
′

(γk) = ‖Ddθ̂
′

k + bk‖
2 =

nk
∑

i=1

(
σi x̃ik + b̃ik

1 + σ2
i
/γk

)2 (A.6)

where it is again noticed that the optimal solution is on

the boundary of the constraint region, if nkδ
2
k
≤ e

′

(0).

In this case, the optimal error penalty γ∗
k

is found by

numerically solving the monotonically decreasing func-

tion

e
′

(γ∗k) =

nk
∑

i=1

(
σ2

i
x̃ik + σib̃ik

γ∗
k
+ σ2

i

)2 = nkδ
2
k (A.7)

using the modified bisection scheme described in Algo-

rithm 2. As before, there is a unique solution on the

constraint boundary for nkδ
2
k
≤ e

′

(0). For nkδ
2
k
> e

′

(0),

we have γ∗
k
= 0. The discussion on possible temporal

smoothing of γ∗
k

is similar to Section 2.3.

Appendix B. Modified bisection for optimal regular-

ization factor selection

The modified bisection algorithm used for calculat-

ing the optimal regularization factor described in Sec-

tion 2.3 is detailed in Algorithm 2.
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