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Abstract

Zero-shot learning (ZSL) extends the conventional image classification tech-
nique to a more challenging situation where the test image categories are not
seen in the training samples. Most studies on ZSL utilize side information such
as attributes or word vectors to bridge the relations between the seen classes
and the unseen classes. However, existing approaches on ZSL typically exploit
a shared space for each type of side information independently, which cannot
make full use of the complementary knowledge of different types of side infor-
mation. To this end, this paper presents an MBFA-ZSL approach to embed
different types of side information as well as the visual feature into one shared
space. Specifically, we first develop an algorithm named Multi-Battery Factor
Analysis (MBFA) to build a unified semantic space, and then employ multi-
ple types of side information in it to achieve the ZSL. The close-form solution
makes MBFA-ZSL simple to implement and efficient to run on large datasets.
Extensive experiments on the popular AwA, CUB, and SUN datasets show its
significant superiority over the state-of-the-art approaches.

Keywords: Zero-shot learning, Multi-battery factor analysis, Image
classification, Attribute, Word vector.

1. Introduction and Related Work

Zero-shot learning (ZSL) aims at solving the problem when the new test
image categories are not seen in the training samples [I]. Different from the
open set recognition and novelty detection which only distinguish abnormalities
in the testing data, ZSL seeks to classify the unseen testing classes [2]. This
is a practical problem setting in image classification, as there are thousands of
categories of objects we intend to recognize, but only a few of them may have
been appropriately annotated. Consequently, it is more challenging than the
conventional image classification problems. The key ideas of ZSL are to choose
better side information (also known as modalities) and to develop an effective
common semantic space. The side information provides a bridge to transfer



knowledge from the seen classes for which we have training data to the unseen
classes for which we do not, and the common space offers a fusion feasibility for
the visual features and the side information.

Two types of commonly used side information in ZSL are attributes [3 [4, [ 6]
and word vectors [7], [§]. Particularly, attributes act as intermediate representa-
tions shared across multiple classes, indicating the presence or absence of several
predefined properties. Direct attribute prediction (DAP) [3] is one of the first ef-
forts to exploit the attributes to ZSL. It learns attribute-specific classifiers with
the seen data and infers the unseen class with the learned estimators. However,
attribute-based approaches suffer from a poor scalability as the attributes ontol-
ogy for each class is generally manually defined. Word-vector-based approaches
[9, 10, 11l M2] avoid this limitation since word vectors are extracted from a lin-
guistic corpus with neural language models such as GolVe [7] and Word2Vec
[8]. Therefore, word vectors have become another popular side information in
ZSL. For instance, Socher et al. [I0] construct a two layer neural network to
project images into the word vector space. In [12], Frome et al. present a deep
visual-semantic embedding model with a hinge loss function, which trains a
linear mapping to link the image visual space to the word vector space.

Besides attributes and word vectors, some other side information, such as
WordNet [13], visual prototypical concepts [14], class co-occurrence statistics
[15], is also applied in ZSL. Further, since different types of side information
captures different aspects of the structure of the semantic space, several studies
have been made to combine them to achieve higher classification performance
[13],[16],[17]. For example, in [I3], Akata et al. first learn the joint embed-
ding weight matrices corresponding to different types of side information, then
perform a grid search over the coefficients on a validation set to get the joint
compatibility model. In [16], semantic projections are trained for attributes and
word vectors independently, followed by a transductive multi-view semantic em-
bedding space to alleviate the projection domain shift problem. These efforts
demonstrate that different types of side information complement each other and
construct a better embedding space for knowledge transfer. However, although
multiple types of side information are utilized, they still exploit each type of side
information in its own semantic space independently, and then just combine the
predicted scores together [I3], [16]. This cannot make full use of the comple-
mentary knowledge of different types of side information. A more efficient and
robust solution is to investigate multiple types of side information in a unified
space. Unfortunately, to the best of our knowledge, there has been little previ-
ous work exploiting this idea. To this end, we present a novel approach called
MBFA-ZSL to employ multiple types of side information in a unified space, as
shown in Fig.

It is worth highlighting several aspects of the proposed MBFA-ZSL approach.
(1) It develops an advanced multi-view embedding algorithm named Multi-
Battery Factor Analysis (MBFA), which extends Tucker’s Inter-Battery Factor
Analysis (IBFA) [I8]. (2) As far as we know, it represents one of the first at-
tempts that embeds both the image visual features and multiple types of side
information into one unified semantic space, which fully utilizes the interrela-
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tions among different types of information. (3) The close-form solution makes
it simple to implement and efficient to run on large datasets. (4) Extensive ex-
periments on popular datasets demonstrate its significant superiority over the
existing state-of-the-art approaches.

The reminder of this paper is structured as follows. Section 2 introduces
the proposed Multi-Battery Factor Analysis (MBFA) algorithm, and Section 3
describes the proposed MBFA-ZSL approach in detail. Experimental results are
presented in Section 4, and conclusions are drawn in the final section.

2. Multi-Battery Factor Analysis

Multi-Battery Factor Analysis (MBFA) is developed to provide a unified se-
mantic space for both the visual features and multiple types of side information.
It originates from Tucker’s Inter-Battery Factor Analysis (IBFA) [18], which
transforms two modalities into a shared space where they are not only well
explained but also as much correlated as possible with each other. Thus, we
first briefly introduce the IBFA algorithm, and then extend it to a multi-view
version, i.e., MBFA.

Given a set of N instances from two modalities, X; = [X11, ..., X1 5] € RP1XV
and Xy = [x21,...,Xon] € RP2XN | where p; and py are their dimensionalities,
respectively. With X, X5 centered, IBFA finds two projection matrices, Wy
and Wy, by the following constrained maximization:

Jnax tr(WTX, XIW,),
1,VV2 (1)
s.t. WIw, =1, WiI'w, =1

where I is an identity matrix. IBFA maximizes the total covariance between
the two modalities, which can be seen plainly by rewriting tr(W7{ X, XIW,) as
Zfil W¥xy,x1, W5, With the Lagrange multiplier method, can be solved
analytically through the eigenvalue decomposition.

Compared with Canonical Correlation Analysis (CCA) [19], (1) can be rewrit-
ten as:

Jnax (corr(WT X1, WIX,) - \/var(WlTxl) : \/var(wg‘ Xs)),
1, 2

s.t. WiIw, =1, WIW, =1

(2)

where corr(a, b) denotes the Pearson correlation, and var(a) = a’a is the vari-

ance. It can be seen from that IBFA attempts to capture both the correlation
and variation of X; and Xy. This is different from CCA that only aims at max-
imizing their correlation. In particular, the maximized correlation and variance
in depict the relationship between X; and X, and strengthen their own
discriminant capabilities, respectively.

To broaden IBFA to a multi-view scenario, we develop the MBFA algorithm
on the basis of IBFA. Given a set of N instances from ¢ modalities, X; =



[Xi1, ..y Xin] € RPIXN 4 = 1,... ¢, where p; denotes the dimensionality, with
X; centered, the objective function of MBFA is expressed as:

c

T T
Wi, W W, Z (Wi XX, Wy).
ij=1 (3)
i#]
s.t. WIW, =1, i=1,...,¢c,c>2.

Similar to IBFA, MBFA tries to find a set of projection matrices that maximize
the total covariance in the common space. Equation can be rewritten as:

max tr(WIMW),
W

. (4)
s.t. W-W=1.

where W and M are as follows:

W= [W[, Wi, Wi (5)
Mi; Mz ... My
M Mz My ... My M { 0, i=j ©)
- . . . . 5 i — T . .
: : .. : J XlX] 5 1 7& 7
Mcl Mc2 v Mcc

Equation can be solved via the eigenvalue decomposition; thus each projec-
tion matrix W; can be obtained. It is obvious that IBFA can be considered as
a special case of MBFA when c is 2.

In addition, the main difference between MBFA and Multi-view Canonical
Correlation Analysis (MCCA) [20], [21] is worth highlighting. Both of them find
a set of linear transformations to project multiple modalities into one common
space. However, MCCA seeks to maximize the total correlation in the common
space, whereas MBFA maximizes the total covariance, which is equivalent to
maximize the total correlation and variance simultaneously. To the best of our
knowledge, there is no previous work using MCCA on ZSL. In this paper, we
also implement MCCA on ZSL as a comparative approach (we call this approach
as MCCA-ZSL).

3. Zero-Shot Learning with MBFA

In a ZSL setting, we are given N, labeled training instances S = {X,Y*, z}
and N, unlabeled testing instances 4 = {X,Y* z}. X € RP*Ns and X €
RP*Nu are the p-dimensional visual feature vectors of training and testing in-
stances respectively. z and z are the seen and unseen class label vectors, and
zNz = @. We have K different types of side information, Y* € R%*¥= and
Y* € R%*Nu denote the k-th type of g,-dimensional side information for train-
ing and testing datasets respectively. Note that for the testing dataset, Y* is



missing as testing instances are unlabeled. The task of ZSL is to predict the
class labels z.

The proposed MBFA-ZSL algorithm mainly contains the following two steps:

Step 1: Build a MBFA space with the seen data. The MBFA algorithm pro-
vides an unified semantic space Z for different types of side information as well
as the visual features. With the seen images together with the side informa-
tion, we can train the MBFA model to obtain a set of projection matrices W;
(i =1,...,c), where c is the sum of all the types of side information and the
visual features, such that ¢ = K + 1. For example, if we use both attributes and
word vectors as the side information, then c is 3.

Step 2: Unseen category Inference. With the projection matrix Wy learned
from the seen data, the unseen image features X; € X can be embedded into the
common space Z by 6(X;) = W7 x;. Typically, the unseen category of X; can be
inferred by searching for the nearest output embedding vector that corresponds
to one of the unseen classes, if there is only single side information available in
Z. Since there are multiple types of side information used in the MBFA-ZSL
approach, we introduce a multi-modality fusion method to predict the unseen
category of the X; with:

K
* = argrlnax{z aksim(Q(ij), <pk(y{“))] JA=1,2,...,n, (7)
k=1

where «y, is a weight associated with each type of side information, which can
be determined by a grid search on the validation set. FEach type of side infor-
mation that corresponds to the I-th unseen class is denoted as ?lk, and it can
be embedded into the common space Z by ¢ (¥F) = W{_Hﬂ“. The similarity
between two vectors can be represented as the common distance measurements,
such as dot product similarity and Euclidean distance. In this paper, the cosine
distance is utilized, i.e., sim(a,b) = aTb/(|a| - ||b]|)

Moreover, MBFA-ZSL has an explicit, close-form solution, which makes it
simple to implement and efficient to run on large datasets. Algorithm 1 out-
lines the procedures of the proposed MBFA-ZSL approach.

4. Experimental Results and Discussion

4.1. Datasets and Settings

We evaluate the proposed MBFA-ZSL approach on three publicly popular
datasets: Animals with Attributes (AwA) [3], Caltech-UCSD-Birds-200-2011
(CUB) [22], and SUN Attribute [23]. Specifically, AwA is a collection of 30,475
images on 50 classes of animals, with 85 associated class-level attributes. We use
the standard training/test (seen/unseen) split as that in [3], which chooses 40
classes for training and validation and 10 classes for testing. CUB provides 200
classes of birds (11,788 images), and each class is annotated with 312 attributes.
Particularly, CUB is a much more challenging dataset in that it is designed for
fine-grained image classification and contains more classes but fewer images.



Algorithm 1 MBFA-ZSL approach

Input: A labeled seen data set S = {X,Yk,z}, an unlabeled unseen data set
U= {f(,?’ﬁi}, and the dimensionality d of the unified embedding space.
Output: Labels of the unseen data U.
1: Construct the covariance matrix M with the labeled visual features X and
the corresponding side information Y.
2: Solve the eigenvalue decomposition problem in , and the eigenvectors
corresponding to the largest d eigenvalues form the projection matrices W.
3: Learn the weight parameters of the category inference function in the
validation set. _
4: Project the unseen visual feature X and the side information of the unseen
classes into the unified space with projection matrices W.
5: Predict the labels of U with @

Similar to [I3], we use 150 classes as training and validation set, leaving 50
disjoint classes as test set. SUN Attribute dataset consists of 14,340 images
from 717 scene categories, and each category is annotated with a taxonomy of
102 discriminate attributes. We adopt the popular training/test (seen/unseen)
split as that in [24], which selects 707 classes for training and validation, and
takes the remaining 10 classes as testing set. We cross-validate the parameters
Qaj in . The example images in these datasets are shown in Fig.

On the AwA dataset, we use the VGG (very deep 19-layer CNN) features
provided in [25] as visual features. On the CUB and SUN dataset, we use a
pre-trained VGG model to extract visual features [26]. For each image, the
4,096 dimensional top-layer hidden unit activations (fc7) of VGG are taken as
visual features.

We use both the word vectors (T) and attributes (A) as the side informa-
tion in MBFA-ZSL. Specifically, we train the Word2Vec model [§] on a corpus
of Wikipedia documents to form 1000-D word vectors for the three datasets.
Meanwhile, we use the attribute information provided by the datasets. The
average per-class top-1 accuracy on the test sets is reported.

4.2. Results on the AwA, CUB, and SUN datasets

We compare the proposed MBFA-ZSL with 7 state-of-the-art approaches as
well as MCCA-ZSL, which utilize a range of side information. Among them,
DAP [3], [], ESZSL [6], and SSE-ReLU [27] only use attributes; LatEm [28] can
make use of either word vectors or attributes; SJE [13], AMP [29], TMV-HLP
[16] and MCCA-ZSL employ more than one type of side information. Different
CNN visual features are applied in these approaches, such as GoogLeNet [30],
Overfeat [31], and VGGNet-19 [26]. Additionally, we also implement MBFA-
ZSL and MCCA-ZSL in the situation where only attributes (A) or word vectors
(T) are available.

The performance of MBFA-ZSL are taken via ten times of cross validation.
It should be noticed that when only T or A is avaliable, the single parame-
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ter ay in does not need to be tuned, thus there is no standard deviation
for the corresponding results. Furthermore, the standard deviations of some
comparative results are absent as they are not avaliable in the original papers.
The comparative results are summarized in Table[T] from which we can observe
that MBFA-ZSL achieves the amazingly best performance in all cases for all the
three datasets. Besides, we also have the following observations:

Table 1. Performance Comparison (%, mean+tstandard deviation) on the AwA,
CUB, and SUN Datasets

e fon PR AwA CUB SUN
mage feature pproach ,1_ A T+A T A T+‘A T A T+A
; SIE 3] 512 86.7 735 34 50.1 51.0% , , B
GoogleNet-22 | 1 (b 2] 61.1 719 - 318 455 -
AMP 2] B 66.0 - , N
Overfeat-8 | oy 1y HLP [16) - - 73.5 - - 479 -
DAP [] - 608 - - E 72.0
SSE-ReLU [27] - 76.3£0.8 : S 304402 - ~ 825413
VGGNet-19 | ESZSL** [§] - TA6£37 - 50.8+0.4 B - 845414 B
MCCA-ZSL** | 658417 749203 753418 321403 458402 46.4=07 50.5=L7 828405 85115
MBFA-ZSL** | 72.5 778 79.940.7  32.4 517  52.240.4  6L5 85.0  87.440.2

T, A represent attributes and word vectors, respectively.

*: additional WordNet hierarchies are used; **: our implementation.

(1) For AwA dataset, the second-best approaches are MCCA-ZSL, SSE-ReL.U,
and MCCA-ZSL in the cases of T, A, and T+A, respectively. MBFA-ZSL out-
performs them in 6.7%, 1.5%, and 4.6%, respectively. For CUB dataset, MBFA-
ZSL outperforms the second-best approaches, MCCA-ZSL in 0.3%, ESZSL in
0.9%, and SJE in 1.2% in the three cases, respectively. For SUN dataset, in the
three cases, MBFA-ZSL outperforms the second-best approaches, MCCA-ZSL
in 2.0%, ESZSL in 0.5%, and MCCA-ZSL in 2.3%, respectively. These are very
promising results.

(2) For MBFA-ZSL, the performance on AwA in T+A is better than those
in T and A in 7.4% and 2.1%, respectively. On CUB, the performance in T+A
is better than those in T and A in 19.8% and 0.5%, respectively. On SUN, the
promotions are 25.9% and 2.4%, respectively. Similar observation can also be
found in MCCA-ZSL. The excellent performance in T4+A of MBFA-ZSL and
MCCA-ZSL demonstrates that it is effective to embed multiple types of side
information into a unified space. It also confirms that different types of side
information complement each other in transferring knowledge.

(3) In the situation of “T+A”, it can be found that MBFA-ZSL outperforms
the others significantly. Take the AwA for example, the performance improve-
ments of MBFA-ZSL over SJE, AMP and TMV-HLP are 6.4%, 13.9%, and
6.4%, respectively. This demonstrates that embedding the visual features and
multiple types of side information in a unified space is more promising than the
conventional methods that projecting the visual features to each type of side
information space independently at first, and then combining them together.

(4) When only single type of side information is available, attributes often
help achieve a higher accuracy than word vectors. This is due to that attributes
are manually defined for a specific dataset, so they are able to describe cate-
gory relationship of the dataset more effectively; nevertheless, word vectors are
extracted from the corpus in an unsupervised manner, whose capacity is con-



strained by the size or specific domain of the corpus, as well as the polysemy
issue.

(5) Interestingly, the performance on CUB is inferior to that on AwA and
SUN. The reason may lie in the fine-grained characteristic of CUB. Both the
visual appearance and the class names in it are similar to each other, which
make it hard to recognize.

To clearly evaluate the performance of MBFA-ZSL on each class, we present
the confusion matrix of AwA with T+A, as illustrated in Fig. [3] The diagonal
elements denotes the correct prediction accuracy of each class, from which we
can see that the proposed MBFA-ZSL can achieve relatively high performance
on every class.
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Figure 3. The confusion matrix between test classes of the AwA dataset.

4.8. Parameter Sensitivity

There are two types of parameters in MBFA-ZSL: the weights oy, in and
the dimensionality d of the unified space that multiple modalities are projected
into. The weights are decided by the cross validation. The impact of dimen-
sionalities d is shown in Fig. [l The optimal dimensionalities for AwA, CUB,
and SUN are 40, 50, and 120, respectively. It can be observed that a higher
dimensionality has no performance improvement.

4.4. Speed Evaluation

Finally, as shown in Table [2| we report the running times of the training and
testing stages for AwA, CUB, and SUN, respectively. Our implementation is
based on an unoptimized Matlab code. On our computer with i5 4590 CPU
and 12G memory, the training times for the three datasets are 18.8s, 22.2s,
and 17.4s, respectively. The test times on each image for the three datasets
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are 0.006ms, 0.010ms, and 0.019ms, respectively. Therefore, MBFA-ZSL is ex-
tremely efficient.

Table 2. Training and Testing Times on the AwA, CUB, and SUN Datasets

AwA | CUB | SUN
Average training time for all the training data (s) | 18.8 | 22.2 | 174

Average training time on each image (ms) 0.8 2.5 1.2
Average testing time for all the testing data (ms) | 39.0 | 29.5 3.8
Average testing time on each image (ms) 0.006 | 0.010 | 0.019

5. Conclusions

In this paper, we have proposed the MBFA-ZSL approach to projecting both
the visual features and multiple types of side information into one unified se-
mantic space to perform ZSL. It can also be applied to the situation where only
a single type of side information is available. The results on the three popular
datasets show its superior performance over the state-of-the-art approaches on
the cases of utilizing A (attributes), T (word vectors), and A+T (attributes +
word vectors) as an effective and efficient method. Moreover, it has a close-form
solution.
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