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Abstract—Constrained adaptive filtering algorithms including
constrained least mean square (CLMS), constrained affine pro-
jection (CAP) and constrained recursive least squares (CRLS)
have been extensively studied in many applications. Most existing
constrained adaptive filtering algorithms are developed under
the mean square error (MSE) criterion, which is an ideal
optimality criterion under Gaussian noises. This assumption
however fails to model the behavior of non-Gaussian noises
found in practice. Motivated by the robustness and simplicity
of maximum correntropy criterion (MCC) for non-Gaussian
impulsive noises, this paper proposes a new adaptive filtering
algorithm called constrained maximum correntropy criterion
(CMCC). Specifically, CMCC incorporates a linear constraint
into a MCC filter to solve a constrained optimization problem
explicitly. The proposed adaptive filtering algorithm is easy to
implement and has low computational complexity, and in terms
of convergence accuracy (say lower mean square deviation)
and stability, it can significantly outperform those MSE based
constrained adaptive algorithms in presence of heavy-tailed
impulsive noises. Additionally, the mean square convergence
behaviors are studied under energy conservation relation, and a
sufficient condition to ensure the mean square convergence and
the steady-state mean square deviation (MSD) of the proposed
algorithm are obtained. Simulation results confirm the theoretical
predictions under both Gaussian and non-Gaussian noises, and
demonstrate the excellent performance of the novel algorithm by
comparing it with other conventional methods.

Index Terms—adaptive filtering, constrained maximum cor-
rentropy criterion, non-Gaussian signal processing, convergence
analysis.

I. INTRODUCTION

CONSTRAINED adaptive filtering algorithms have been
successfully applied in domains of signal processing and

communications, such as system identification, blind interfer-
ence suppression, array signal processing, and spectral analysis
[1]–[4]. The main advantage of constrained adaptive filters
is that they have an error-correcting feature that can prevent
the accumulation of errors (e.g. the quantization errors in a
digital implementation). As a well-known linearly-constrained
adaptive filtering algorithm, the constrained least mean square
(CLMS) [5] is a simple stochastic-gradient based adaptive
algorithm, originally conceived as an adaptive solution to
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a linearly-constrained minimum-variance (LCMV) filtering
problem in antenna array processing [6]. Other stochastic-
gradient based linearly-constrained adaptive algorithms were
also developed [7]–[11]. Although the LMS-type algorithms
are simple and computationally efficient, they may suffer
from low convergence speed especially when the input signal
is correlated. In order to improve the convergence rate, the
constrained recursive least squares (CRLS) algorithm was
derived in [12], at the cost of higher computational complexity.
Some improvements of the CRLS can be found in [13], [14].
Several constrained affine projection (CAP) algorithms were
also developed [15], [16].

Most of the existing constrained adaptive filtering algo-
rithms have been developed based on the common mean
square error (MSE) criterion due to its attractive features,
such as mathematical tractability, computational simplicity and
optimality under Gaussian assumption [17], [18]. However,
Gaussian assumption does not always hold in real-world
environments, even though it is justified for many natural
noises. When the signals are disturbed by non-Gaussian noises,
the MSE based algorithms may perform poorly or encounter
the instability problem [19], [23]. From a statistical viewpoint,
the MSE is insufficient to capture all possible information
in non-Gaussian signals. In practical situations, non-Gaussian
noises are frequently encountered. For example, some sources
of non-Gaussian impulsive noises are ill synchronization in
digital recording, motor ignition noise in internal combustion
engines, scratches on recording disks, and lighting spikes in
natural phenomena [20]–[22].

To deal with the non-Gaussian noise problem (which usually
causes large outliers), various alternative optimization criteria
have been proposed to replace the MSE criterion for devel-
oping robust adaptive filtering algorithms in the literature.
In recent years, maximum correntropy criterion (MCC) has
been successfully applied in diverse domains due to its sim-
plicity and robustness [19], [23]–[29]. As a nonlinear and
local similarity measure directly related to the probability
of how similar two random variables are in the bisector
neighborhood of the joint space controlled by the kernel
bandwidth, correntropy is insensitive to large outliers, and is
frequently used as a powerful method to handle non-Gaussian
impulsive noises in various applications of engineering. For
instance, Singh et al. [30] and Zhao et al. [25] utilized the
correntropy as a cost function to develop robust adaptive
filtering algorithm for signal processing, and Chen et al.
extended the original correntropy by using the generalized
Gaussian density (GGD) function as the kernel, and proposed
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a generalized correntropy for robust adaptive filtering [31]. He
et al. presented a MCC-based rotationally invariant principal
component analysis (PCA) algorithm for image processing
[32], and also incorporated the correntropy induced metric
(CIM) into MCC to develop an effective sparse representa-
tion algorithm for robust face recognition [33]. Bessa et al.
adopted MCC to train neural networks for wind prediction
in power system [34]. Hasanbelliu et al. utilized information
theoretic measures (entropy and correntropy) to develop two
algorithms that can deal with both rigid and non-rigid point
set registration with different computational complexities and
accuracies [35]. However, constrained adaptive filtering based
on MCC has not been studied yet in the literature. In this
work, a constrained maximum correntropy criterion (CMCC)
adaptive filtering algorithm is proposed for signal processing
especially in presence of heavy-tailed impulsive noises.

Our main contributions in this paper are summarized as
follows:
• First, we develop the CMCC adaptive filtering algorithm

by incorporating a linear constraint into the MCC, instead
of the traditional MSE criterion, to solve a constrained
optimization problem explicitly. The computational com-
plexity analysis is also presented.

• Second, based on the energy conservation relation [36]–
[39], we analyze the mean square convergence behaviors
of the proposed algorithm, and present particularly a suffi-
cient condition to guarantee the mean square convergence
and the steady-state mean square deviation (MSD) in the
cases of Gaussian and non-Gaussian noises.

• Finally, we confirm the validity of theoretical expecta-
tions experimentally, and illustrate the desirable perfor-
mance (e.g. lower MSD) of CMCC by comparing it with
other methods in linear-phase system identification and
beamforming application.

The rest of the paper is organized as follows. In Section II,
after briefly reviewing the MCC, we develop the CMCC al-
gorithm and analyze the computational complexity. In Section
III, we study the mean square convergence of the proposed
algorithm. Simulation results are then presented in Section IV.
Finally, Section V gives the conclusion and discusses some
work in the future. Some derivations are relegated to the
Appendix.

II. CMCC ALGORITHM

A. Maximum Correntropy Criterion

As a similarity measure between two random variables X
and Y , correntropy is defined by [23], [27], [29]–[31]

V (X,Y ) = E[κ(X,Y )] =

∫
κ(x, y)dFXY (x, y) (1)

where E[·] denotes the expectation operator, κ(·, ·) is a shift-
invariant Mercer kernel, and FXY (x, y) stands for the joint
distribution function of (X,Y ). It takes the advantage of
a kernel trick that nonlinearly maps the input space to a
higher dimensional feature space. In the present work, without
mentioning otherwise, the kernel function of correntropy κ(·, ·)
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Fig. 1: MCC cost function in the joint space (σ = 1.0).

is the Gaussian kernel, given by

κσ(x− y) =
1√
2πσ

exp

(
− (x− y)2

2σ2

)
(2)

where σ > 0 is the kernel bandwidth parameter. In most
practical situations, the join distribution FXY (x, y) is usu-
ally unknown, and only a finite number of data samples
{(x(n), y(n))}Nn=1 are available. In these cases, the corren-
tropy can be estimated by

V̂N,σ =
1

N

N∑
n=1

κσ(x(n)− y(n)) (3)

Under the maximum correntropy criterion (MCC), an adaptive
filter will be trained by maximizing the correntropy between
the desired response and filter output, formulated by

max
W

JMCC =
1

N

N∑
n=1

κσ(e(n)) (4)

where e(n) denotes the error between the desired response
and filter output, and W stands for the filter weight vector.
Fig. 1 shows the MCC cost function κσ(x − y) in the joint
space of x and y. As one can see clearly, the MCC is a
local similarity measure, whose value is mainly decided by
the kernel function along the line x = y. Furthermore, from
a view of geometric meaning, we can divide the space in
three regions, namely Euclidean region, transition region and
rectification region. The MCC behaves like 2-norm distance
in the Euclidean region, similarly like a 1-norm distance in
the transition region and eventually approaches a zero-norm
in the rectification region, which also interprets the robustness
of correntropy for outliers [23], [29].

B. CMCC Algorithm

Consider a linear unknown system, with an M -dimensional
weight vector W ∗ = [w∗1(n), w∗2(n), · · · , w∗M (n)]T that needs
to be estimated. The measured output d(n) of the unknown
system at instant n is assumed to be

d(n) = y∗(n) + υ(n) = W ∗TX(n) + υ(n) (5)

where y∗(n) = W ∗TX(n) denotes the actual output of
the unknown system, X(n) = [x1(n), x2(n), · · · , xM (n)]T

is the input vector, with [·]T being the transpose operator,
and υ(n) stands for an interference or measurement noise.
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Suppose the estimator is another M -dimensional linear filter,
with an adaptive weight vector W (n). Then the instantaneous
prediction error at instant n is

e(n) = d(n)− y(n) = d(n)−WT (n− 1)X(n) (6)

where y(n) = WT (n−1)X(n) denotes the output of the adap-
tive filter. For a constrained adaptive filter, a linear constraint
will be imposed upon the filter weight vector as

CTW = f (7)

where C is an M×K constraint matrix, and f is a vector con-
taining K constraint values. The CLMS algorithm is derived
by solving the following optimization problem [5], [37]:

min
W

E
[(
d(n)−WT (n− 1)X(n)

)2]
subject to CTW = f (8)

leading to the following weight update equation:

W (n) =P [W (n− 1) + η(d(n)−
WT (n− 1)X(n))X(n)] +Q (9)

where η > 0 is the step-size parameter, P = IM −
C(CTC)−1CT with IM being an M × M identity matrix,
and Q = C(CTC)−1f .

In this work, we use the MCC instead of MSE to develop
a constrained adaptive filtering algorithm. Similar to (8), we
propose the following CMCC optimization problem

max
W

E
[
κσ(d(n)−WT (n− 1)X(n))

]
subject to CTW = f (10)

and accordingly the CMCC cost JCMCC is

JCMCC =E[κσ(d(n)−WT (n− 1)X(n))]+

ξT (n)
(
CTW (n− 1)− f

)
(11)

where ξ(n) is a K×1 Lagrange multiplier vector. A stochastic-
gradient based algorithm can thus be derived as (see Appendix
A for a detailed derivation)

W (n) =P [W (n− 1) + ηg(e(n))(d(n)−
WT (n− 1)X(n))X(n)] +Q (12)

where g(e(n)) is a nonlinear function of e(n), given by

g(e(n)) = exp

(
−e

2(n)

2σ2

)
(13)

The above algorithm is referred to as the CMCC algorithm,
whose pseudocodes are presented in Table I.

C. Computational Complexity

The computational complexity of the proposed CMCC algo-
rithm and other constrained adaptive algorithms-CLMS, CAP
and CRLS, in terms of the total number of required additions
and multiplications at each iteration, are shown in Table II,
where Γg is a constant associated with the complexity of
the nonlinear function g(e(n)). Obviously, the computational
complexity of these algorithms are O(M2). When Γg is small,

TABLE I: CMCC Algorithm

Parameters: η, σ, C and f

Initialization : P = IM − C(CTC)−1CT

Q = C(CTC)−1f

W (0) = Q

Update: y(n) = WT (n− 1)X(n)

e(n) = d(n) − y(n)

W (n) = P [W (n− 1) + ηg(e(n))e(n)X(n)] +Q

TABLE II: Computational Complexity of CMCC, CLMS,
CAP and CRLS

Algorithm Computational Complexity
CMCC 2M2 + 5M + Γg

CLMS 2M2 + 5M + 1
CAP 2M2 + (2L+ 3)M + 1

CRLS 7M2 + (6K2 + 9K + 5)M + 3K

it can be seen that the proposed algorithm has lower computa-
tional cost than CRLS due to calculating the covariance matrix
R per iteration for CRLS, also has lower computational cost
than CAP (especially when the sliding window length L is
large). Generally speaking, the computational complexity of
CMCC is almost the same as that of the CLMS.

III. CONVERGENCE ANALYSIS

In this section, we analyze the mean square convergence
behaviors of the proposed CMCC algorithm. First, we give
the following assumptions:

1) The input sequence {X(n)} is independent multi-
variate Gaussian, with zero-mean and the positive-
definite covariance matrix of the input sequence R =
E[X(n)XT (n)].

2) The noise {υ(n)} is zero-mean, independent, identically
distributed, and independent of any other signals in the
system.

3) The error nonlinearity g(e(n)) is asymptotically uncor-
related with

{
X(n)XT (n)

}
at steady-state.

4) The filter is long enough such that the a priori error
ea(n) = (W ∗ −W (n))

T
X(n) is zero-mean Gaussian.

The independence assumptions 1) and 2) are common in
the literature of adaptive filtering [36]–[39]. When the filter is
long enough, assumption 3) will become realistic and valid.
Assumption 4) is reasonable by the central limit theorem, and
also remains valid in the whole stage of adaptation (see [18],
[38] for more detailed explanation about assumptions 3) and
4)).

A. Mean Square Stability

Let us define the weight error vector:

W̃ (n) = W (n)−Wopt (14)
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where Wopt stands for the optimal solution of the CMCC
optimization problem under the above assumptions, given by
(see Appendix B for the detailed derivation)

Wopt = W ∗ + R−1
g C

(
CTR−1

g C
)−1 (

f − CTW ∗
)

(15)

where Rg = E
[
g(e(n))X(n)XT (n)

]
denotes a weighted

autocorrelation matrix of the input vector. We also define

εw = W ∗ −Wopt (16)

Substituting (5), (14) and (16) into (12) yields

W̃ (n) =P [W (n− 1) + ηg(e(n))(d(n)−
WT (n− 1)X(n))X(n)

]
+Q−Wopt

=P
[
IM − ηg(e(n))X(n)XT (n)

]
W̃ (n− 1)+

ηg(e(n))υ(n)PX(n) + ηg(e(n))PX(n)×
XT (n)εw + PWopt −Wopt +Q (17)

Due to PWopt −Wopt +Q = 0M×1 (Here 0M×1 denotes the
M × 1 zero vector), we can rewrite (17) as

W̃ (n) =P
[
IM − ηg(e(n))X(n)XT (n)

]
×

W̃ (n− 1) + ηg(e(n))υ(n)PX(n)+

ηg(e(n))PX(n)XT (n)εw (18)

Note that matrix P is idempotent, namely P = P 2 and
P = PT . Multiplying both sides of (18) by P and after some
straightforward matrix manipulations, we can obtain

PW̃ (n) = W̃ (n) (19)

Combining (18) and (19), we have

W̃ (n) =PW̃ (n− 1)− ηg(e(n))PX(n)XT (n)W̃ (n− 1)+

ηg(e(n))υ(n)PX(n) + ηg(e(n))PX(n)XT (n)εw

=
(
IM − ηg(e(n))PX(n)XT (n)P

)
W̃ (n− 1)+

ηg(e(n))υ(n)PX(n) + ηg(e(n))PX(n)XT (n)εw
(20)

Under assumptions 1), 2) and 3), taking the expectations of
the squared Euclidean norms of both sides of (20) leads to the
following energy conservation relation:

E
[
‖W̃ (n)‖2

]
= E

[
‖W̃ (n− 1)‖2H

]
+ η2E

[
g2(e(n))

]
×

E
[
υ2(n)

]
E
[
XT (n)PX(n)

]
+ η2E

[
g2(e(n))

]
× εTwE

[
X(n)XT (n)PX(n)XT (n)

]
εw (21)

where E
[
‖W̃ (n)‖2

]
is called the weight error power (WEP)

at iteration n , ‖W̃ (n− 1)‖2H = W̃T (n− 1)HW̃ (n− 1) , and

H =IM − 2ηE [g(e(n))]PRP + η2E
[
g2(e(n))

]
×

PE[X(n)XT (n)PX(n)XT (n)]P

Since P = P 2, we derive

E
[
XT (n)PX(n)

]
=E

[
XT (n)PPX(n)

]
=tr {PRP}
=tr {Υ} (22)

where tr {·} stands for the trace operator, and Υ = PRP .
According to the Isserlis’ theorem [40] for Gaussian vectors
h̄1, h̄2, h̄3 and h̄4, we have

E
[
h̄1h̄

T
2 h̄3h̄

T
4

]
=E

[
h̄1h̄

T
2

]
E
[
h̄3h̄

T
4

]
+ E

[
h̄1h̄

T
3

]
E
[
h̄2h̄

T
4

]
+E

[
h̄1h̄

T
4

]
E
[
h̄T2 h̄3

]
(23)

With h̄1 = X(n), h̄2 = X(n), h̄3 = PX(n) and h̄4 = X(n),
we obtain

E
[
X(n)XT (n)PX(n)XT (n)

]
= RPR + RPR + E

[
XT (n)PX(n)

]
R

= tr {Υ}R + 2RPR (24)

Since PRεw = 0M×1, Substituting (22) and (24) into (21),
we get

E
[
‖W̃ (n)‖2

]
=E

[
‖W̃ (n− 1)‖2H

]
+ η2E

[
g2(e(n))

]
×

tr {Υ}
(
εTwRεw + E

[
υ2(n)

])
(25)

and

H =IM − 2ηE [g(e(n))]PRP + η2E
[
g2(e(n))

]
×

(tr {Υ}PRP + 2PRPRP )

Let λi (i = 1, . . . ,M −K) be the eigenvalues of the matrix
Υ. A sufficient condition for the mean square stability can be
obtained as [5], [24], [37]∣∣1− 2ηE [g(e(n))]λi + η2E

[
g2(e(n))

]
tr {Υ}λi+

2η2E
[
g2(e(n))

]
λ2
i

∣∣ < 1

i = 1, . . . ,M −K (26)

After some simple manipulations, we have

0 < η <
2E [g(e(n))]

[2λmax + tr {Υ}]E [g2(e(n))]
(27)

where λmax denotes the largest eigenvalue of the matrix Υ.
Due to E [g(e(n))] ≥ E

[
g2(e(n))

]
> 0, one can obtain a

stronger condition to guarantee the mean square stability:

0 < η ≤ 2

2λmax + tr {Υ}
(28)

Remark: Since we only derive (27) and (28) under the steady-
state assumption, we cannot solve the problem of how to
select the best step-size for a specific application. However,
the condition provides a possible range for choosing a step-
size for CMCC algorithm.

B. Steady-state mean square deviation (MSD)

Assume that T is an arbitrary symmetric nonnegative defi-
nite matrix. Under assumptions 1), 2) and 3) , one can derive
the following relation by taking the expectations of the squared
-weighted Euclidean norms of both sides of (20):

E
[
‖W̃ (n)‖2T

]
=E

[
‖W̃ (n− 1)‖2U

]
+ η2E

[
g2(e(n))

]
×

E
[
υ2(n)

]
E
[
XT (n)PTPX(n)

]
+ η2×

E
[
g2(e(n))

]
εTwE

[
X(n)XT (n)×

PTPX(n)XT (n)
]
εw (29)
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in which

U =E
[
(IM − ηg(e(n))X(n)XT (n))PTP×(

IM − ηg(e(n))X(n)XT (n)
)]

=PTP − ηE [g(e(n))] RPTP − η×
E [g(e(n))]PTPR + η2E

[
g2(e(n))

]
×

E
[
X(n)XT (n)PTPX(n)XT (n)

]
(30)

In the same way as for (22) and (24), we derive

E
[
XT (n)PTPX(n)

]
= tr {TΥ} (31)

E
[
X(n)XT (n)PTPX(n)XT (n)

]
= tr {TΥ}R + 2RPTPR (32)

Thus we can rewrite (30) as

U = (IM − ηE [g(e(n))] R)PTP (IM − ηE [g(e(n))] R) +

η2E
[
g2(e(n))

]
tr {TΥ}R + 2η2E

[
g2(e(n))

]
×

RPTPR− η2E2 [g(e(n))] RPTPR (33)

From [41], some useful properties can be obtained, that is,

vec{BCD} =
(
DT ⊗ B

)
vec{C}

and

tr
{

BTC
}

= vecT {C} vec {B}

where vec {·} denotes the vectorization operator, ⊗ stands for
the Kronecker product. With the vectorization and the above
properties, we have

vec {U} = Ft (34)

where

F = (IM − ηE [g(e(n))] R)P ⊗ (IM − ηE [g(e(n))] R)P

+ 2η2E
[
g2(e(n))

]
(RP ⊗ RP ) + η2E

[
g2(e(n))

]
×

vec {R} vec {Υ} − η2E2 [g(e(n))] (RP ⊗ RP )

and t = vec {T} . Combining (31), (32) and (34), we can
rewrite (29) as

E
[
‖W̃ (n)‖2t

]
=E

[
‖W̃ (n− 1)‖2Ft

]
+ η2E

[
g2(e(n))

]
×(

εTwRεw + E
[
υ2(n)

])
vecT {Υ} t (35)

We define the steady-state MSD as follows:

S = lim
n→∞

E
[
‖W̃ (n)‖2

]
(36)

Assume that the filter is stable and achieves the steady-state,
i.e. lim

n→∞
E
[
‖W̃ (n)‖2

]
= lim

n→∞
E
[
‖W̃ (n− 1)‖2

]
. By (35),

we have

lim
n→∞

E
[
‖W̃ (n)‖2(IM2−F)t

]
= lim
n→∞

η2E
[
g2(e(n))

]
×(

εTwRεw + E
[
υ2(n)

])
×

vecT {Υ} t (37)

Therefore, by selecting an appropriate t =
(IM2 − F)

−1 vec{IM}, we can obtain

S =η2
(
εTwRεw + E

[
υ2(n)

])
vecT {Υ}×

lim
n→∞

(IM2 − F)
−1 vec{IM}E

[
g2(e(n))

]
(38)

Based on assumption 3), we can rewrite (15) as following:

Wopt =W ∗ + R−1C
(
CTR−1C

)−1 (
f − CTW ∗

)
(39)

and accordingly

εw = R−1C
(
CTR−1C

)−1 (
CTW ∗ − f

)
(40)

In order to obtain the theoretical value of the steady-state
MSD, we also need to evaluate the values of lim

n→∞
E [g(e(n))]

and lim
n→∞

E
[
g2(e(n))

]
. We consider two cases below:

1) If υ(n) is zero-mean Gaussian distributed with variance
σ2
υ , then

lim
n→∞

E [g(e(n))] ≈ σ√
σ2 + εTwRεw + σ2

υ

(41)

lim
n→∞

E
[
g2(e(n))

]
≈ σ√

σ2 + 2εTwRεw + 2σ2
υ

(42)

Thus

S ≈η2
(
εTwRεw + σ2

υ

)
vecT {Υ} (IM2 − F)

−1×

vec{IM}
σ√

σ2 + 2εTwRεw + 2σ2
υ

(43)

2) If υ(n) is non-Gaussian, then by Taylor expansion we
have

lim
n→∞

E [g(e(n))] ≈ E
[
exp

(
−υ

2(n)

2σ2

)]
+

1

2
εTwRεw×

E

[(
υ2(n)

σ4
− 1

σ2

)
exp

(
−υ

2(n)

2σ2

)]
(44)

lim
n→∞

E
[
g2(e(n))

]
≈ E

[
exp

(
−υ

2(n)

σ2

)]
+ εTwRεw×

E

[(
2υ2(n)

σ4
− 1

σ2

)
exp

(
−υ

2(n)

σ2

)]
(45)

It follows that

S ≈η2
(
εTwRεw + E

[
υ2(n)

])
vecT {Υ} (IM2 − F)

−1×

vec{IM}
(
E

[
exp

(
−υ

2(n)

σ2

)]
+ εTwRεw×

E

[(
2υ2(n)

σ4
− 1

σ2

)
exp

(
−υ

2(n)

σ2

)])
(46)

Remark: It is worth noting that (43) and (46) have been
derived by using the approximation W (n) ≈ Wopt at the
steady state. In addition, the theoretical value for non-Gaussian
noise case has been derived by taking the Taylor expansion of
g(e(n)) around υ(n) and omitting the higher-order terms. If
the noise power is very large, the approximation is not accurate
and hence, the derived values at steady state may deviate
seriously from the actual results. The detailed derivations for
(41) to (46) can be found in Appendix C.
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IV. SIMULATION RESULTS

In this section, we present simulation results to confirm
the theoretical conclusions drawn in the previous section, and
illustrate the superior performance of the proposed CMCC
algorithm compared with the traditional CLMS algorithm [5],
CAP algorithm [11] and CRLS algorithm [12]. The selection
of kernel bandwidth is also discussed in the end.

A. Non-Gaussian Noise Models

Generally speaking, the non-Gaussian noise distributions
can be divided into two categories: light-tailed (e.g. binary,
uniform, etc.) and heavy-tailed (e.g. Laplace, Cauchy, mixed
Gaussian, alpha-stable, etc.) distributions [31], [38], [39],
[42], [43]. In the following experiments, five common non-
Gaussian noise models including binary noise, Laplace noise,
Cauchy noise, Mixed Gaussian noise, and alpha-stable noise,
are selected for performance evaluation. Descriptions of these
non-Gaussian noises are as following:

1) Binary noise model: Standard binary noise takes the
values of either υ = 1 or υ = −1, with probability
mass function Pr{υ = 1} = Pr{υ = −1} = 0.5.

2) Laplace noise model: The Laplace noise is distributed
with probability density function (PDF):

p(υ) =
1

2
exp−|υ| (47)

3) Cauchy noise model: The PDF of the Cauchy noise is

p(υ) =
1

π(1 + υ2)
(48)

4) Mixed Gaussian noise model: The mixed Gaussian noise
model is given by:

(1− θ)N
(
λ1, υ

2
1

)
+ θN

(
λ2, υ

2
2

)
(49)

where N
(
λi, υ

2
i

)
(i = 1, 2) denote the Gaussian distri-

butions with mean values λi and variances υ2
i , and θ is

the mixture coefficient. Usually one can set θ to a small
value and υ2

2 � υ2
1 to represent the impulsive noises (or

large outliers). Therefore, we define the mixed Gaussian
noise parameter vector as Vmix =

(
λ1, λ2, υ

2
1 , υ

2
2 , θ
)
.

5) Alpha-stable noise model: The characteristic function of
the alpha-stable noise is defined as:

ψ(t) = exp{jδt− γ|t|α[1 + jβsgn(t)S(t, α)]} (50)

in which

S(t, α) =

{
tan(απ2 ) if α 6= 1
2
π log |t| if α = 1

(51)

From (50), one can observe that a stable distribution
is completely determined by four parameters: 1) the
characteristic factor α; 2) the symmetry parameter β;
3) the dispersion parameter γ; 4) the location parameter
δ. So we define the alpha-stable noise parameter vector
as Valpha = (α, β, γ, δ).

It is worth mentioning that, in the case of α = 2, the alpha-
stable distribution coincides with the Gaussian distribution,
while α = 1, δ = 0 is the same as the Cauchy distribution.

B. Validation of Steady-state MSD

In this experiment, we show the values of the theoretical
and simulated steady-state MSDs of the CMCC in a linear
channel with weight vector (M = 7)

W ∗ =[0.332,−0.040,−0.094, 0.717,

− 0.652,−0.072, 0.580]T (52)

Assume that K = 3, C is full-rank, and the input covariance
matrix R is positive-definite with tr {R} = M [13]. The input
vectors are zero-mean multrivate Gaussian, and the disturbance
noises considered include Gaussian noise, binary noise (light-
tailed disturbance) and Laplace noise (heavy-tailed distur-
bance). Fig. 2 shows the theoretical and simulated steady-
state MSDs with different step-sizes, and Fig. 3 presents the
theoretical and simulated steady-state MSDs with different
noise variances. If not mentioned otherwise, simulation results
are averaged over 500 independent Monte Carlo runs, and
in each simulation, 5000 iterations are run to ensure the
algorithms to reach the steady state, and the steady-state MSDs
are obtained as averages over the last 200 iterations. Evidently,
the steady-state MSDs are increasing with the step-size and
noise variances increasing. In addition, the steady-state MSDs
obtained from simulations match well with those theoretical
results (computed by (41) for Gaussian noise and (46) for
Non-Gaussian noise).

C. Linear System Identification

We consider a linear system identification problem where
the length of the adaptive filter is equal to that of the unknown
system impulse response. Assume that the weight vector W ∗

of the unknown system, the constraint parameters C and f ,
the input vectors, and the input covariance matrix R are the
same as the previous experiment. In the simulations below,
without mentioning otherwise, 500 independent Monte Carlo
simulations are performed and in each simulation, 3000 itera-
tions are run to ensure the algorithms to reach the steady state.
The sliding data length for CAP is set to 4, and the forgetting
factor for CRLS is set to 0.998. The kernel bandwidth for
CMCC is σ = 2.0.

First, we illustrate the performance of the proposed CMCC
compared with CLMS, CAP and CRLS in four noise dis-
tributions. Simulation results are shown in Fig. 4. In the
simulation, the mixed Gaussian noise parameters are set at
Vmix = (0, 0, 0.01, 100, 0.05), the alpha-stable noise param-
eters are set as Valpha = (1.5, 0, 0.4, 0), the laplace noise is
zero-mean with standard deviation 5, and the cauchy noise
is reduced to 1

10 . The step-sizes are chosen such that all the
algorithms have almost the same initial convergence speed.
As one can see clearly, the CMCC algorithm significantly
outperforms other algorithms in terms of stability, and achieves
much lower steady-state MSD.

Second, we demonstrate how the kernel bandwidth σ
will influence the convergence performance of CMCC. Fig.
5 shows the convergence curves of CMCC with different
σ, where the mixed gaussian noise is chosen for mea-
surement noise and the noise parameters are the same as
the previous simulation. The step-sizes are set at η =
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Fig. 2: Theoretical and simulated steady-state MSDs with dif-
ferent step-sizes η: (a) Gaussian noise (σ = 8.0, σ2

υ = 0.81);
(b) Binary noise (σ = 2.0, σ2

υ = 1.0); (c) Laplace noise
(σ = 1.0, σ2

υ = 1.0).

0.06, 0.012, 0.01, 0.01, 0.01 for σ = 0.5, 2.0, 8.0, 16.0, 32.0
respectively. Obviously, the kernel bandwidth has significant
influence on the convergence behavior. In this example, the
proposed algorithm achieves the lowest steady-state MSD
when σ = 2.0. If the kernel bandwidth is too larger (e.g.
σ = 32.0) or too small (e.g. σ = 0.5), the convergence
performance of CMCC will become poor. We provide some
useful properties later for kernel bandwidth selection in prac-
tical applications.

Third, we investigate the stability problem of the CMCC
in different step-sizes η. Fig. 6 illustrates the convergence
performance with different step-sizes, and accordingly Fig. 7
shows the performance evolution curve. The noise is still the
mixed Gaussian noise with same parameters. From simulation
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Fig. 3: Theoretical and simulated steady-state MSDs with
different noise variance σ2

υ: (a) Gaussian noise (η = 0.01,
σ = 8.0); (b) Binary noise (η = 0.01, σ = 6.0); (c) Laplace
noise (η = 0.01, σ = 0.8).

results, one can observe clearly that: 1) when the step-size
is very large (such as η ≥ 0.5), the CMCC will be divergent,
which confirms the validity of the theoretical analysis of mean
square stability in section III; 2) As the step-size increases, the
mean and variance of MSD of the proposed algorithm become
larger. Simulation results show that a larger step-size leads to a
more unstable algorithm, and even make the new algorithm to
become diverge. Additionally, in this simulation, we calculate
the value of 2

2λmax+tr{Υ} (by (28)) to 0.278, not larger than
0.4, which also illustrates the effectiveness of (28).

D. Beamforming Application

In this scenario, we consider a uniform linear array consist-
ing of M = 7 omnidirectional sensors with an element spacing
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Fig. 4: Convergence curves of CLMS, CAP, CRLS and CMCC in different noises: (a) Mixed Gaussian noise; (b) Alpha-stable
noise; (c) Laplace noise; (d) Cauchy noise
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Fig. 5: Convergence curves of CMCC with different σ

of half wavelength. We also assume that there are four users.
Among them, the signal of one user is of interest, and is pre-
sumed to arrive at the direction-of-arrival (DOA) of ϕd = 0◦,
while the other three signals are considered as interferers with
DOAs of ϕ1 = −25◦, ϕ2 = 30◦, ϕ3 = 60◦, respectively. We
choose the constraint matrix C =

[
IM−1

2
, 0,−JM−1

2

]
with J

being a reversal matrix of size (an identity matrix with all rows
in reversed order), and the response vector f = 0 [13]. The
measurement noise υ(n) is the additive non-Gaussian noise,
and the measured output of the unknown system is set to
d(n) = υ(n) [11]. In the following simulations, simulation
results are averaged over 1000 independent Monte Carlo runs,
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Fig. 6: Convergence curves of CMCC with different η

and in each simulation, 3000 iterations are run to ensure the
algorithms to reach the steady state, and the steady-state MSDs
are obtained as averages over the last 200 iterations. The
signal-to-noise ratio (SNR) is set to 0 dB, and the interference-
to-noise ratio (INR) is set to 10 dB. The sliding data length
for CAP is set to 4, and the forgetting factor for CRLS is set
to 0.999. The kernel bandwidth σ is set at 20.

The convergence curves of CLMS, CAP, CRLS and CMCC
in alpha-stable noise are illustrated in Fig. 8, and accordingly,
the beampatterns of different methods are given in Fig. 9. The
noise parameters are set at Valpha = (1.2, 0, 1.6, 0), and other
parameters are chosen such that all algorithms have almost the
same initial convergence rate. As one can see that, compared
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Fig. 9: Beampatterns of CLMS, CAP, CRLS and CMCC.

with these traditional constrained adaptive filtering algorithms,
the proposed algorithm performs best in all scenarios in term
of MSD and beampattern shape. Furthermore, it has similar
performance to the optimal beamformer after convergence.

Fig. 10 shows the steady-state MSDs of CLMS, CAP, CRLS
and CMCC with different α = (0.6, 0.8, 1.0, 1.2, 1.4, 1.6) and
different γ = (1.2, 1.4, 1.6, 1.7, 1.8, 1.9) in 3-D space. Other
parameters are the same as in the previous simulation for all
algorithms. As expected, the proposed algorithm can achieve
much better steady-state performance than CLMS, CAP and
CRLS in all cases.

Fig. 10: Steady-state MSDs of CLMS, CAP, CRLS and CMCC
in 3-D space.

E. Parameter Selection

The kernel bandwidth σ is an important free parameter in
CMCC since it controls all robust properties of correntropy.
An appropriate kernel bandwidth can provide an effective
mechanism to eliminate the effect of outliers and noise.

According to the previous studies, some useful tricks for
kernel bandwidth selection are as follows [23]–[30]:

1) If the data are plentiful, a small σ should be used so
that high precision can be achieved; however, the kernel
bandwidth must be selected to make a compromise
between estimation efficiency and outlier rejection if the
data are small.

2) As σ increases, the contribution of the higher-order
moments decays faster, and the second-order moment
plays a key role. Therefore, a large σ is frequently
appropriate for Gaussian noises, while a small σ is
usually adapt to non-Gaussian impulsive noises.

3) For a given noise environment, there is a relatively large
range of σ that provides nearly optimal performance.

Currently, Silverman’s rule, one of the most widely used
methods in kernel density estimation, is often used to estimate
σ. However, the limitation is that this method cannot obtain
the best possible value. Therefore, in a practical application,
σ is manually selected or optimized by trials and errors.

V. CONCLUSION

In this paper, we have developed the constrained maximum
correntropy criterion (CMCC) adaptive filtering algorithm by
incorporating a linear constraint into the maximum correntropy
criterion. We also studied the mean square convergence per-
formance including the mean square stability and the steady-
state mean square deviation (MSD) of the proposed algorithm.
Simulation results have confirmed the theoretical conclusions
and shown that the new algorithm can significantly outperform
the traditional CLMS, CAP and CRLS algorithms when the
noise is of heavy-tailed non-Gaussian distribution.

A main benefit of correntropy is that the kernel bandwidth
controls all its properties. However, in practical applications,
the kernel bandwidth is manually selected by scanning the
performance. Therefore, how to select an optimal kernel
bandwidth is a big challenge for future study. On the other
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hand, CMCC belongs to the family of stochastic gradient based
algorithms, which usually suffers from slow convergence. It
is expected to solve this problem by investigating the MCC-
based constrained affine projection algorithm and recursive
maximum correntropy algorithm.

APPENDIX A
DERIVATION OF (12)

Based on (11), we can easily derive the following instanta-
neous weight update equation [24], [29]

W (n) = W (n− 1) + η
∂JCMCC

∂W
|W=W (n−1)

= W (n− 1) + ηg(e(n))
(
d(n)−WT (n− 1)X(n)

)
×X(n) + ηCξ(n) (53)

where the weight vector W is initialized at a vector satisfying
W (0) = C(CTC)−1f . Due to

f =CTW (n)

=CT [W (n− 1) + ηCξ(n) + ηg(e(n))×(
d(n)−WT (n− 1)X(n)

)
X(n)

]
(54)

we have

ξ(n) =
1

η
(CTC)−1

[
f − CTW (n− 1)− ηg(e(n))×(

d(n)−WT (n− 1)X(n)
)
CTX(n)

]
(55)

Substituting (55) into (53), and after some simple vector
manipulations, we derive

W (n) =P [W (n− 1) + ηg(e(n))(d(n)−
WT (n− 1)X(n))X(n)

]
+Q (56)

which is the CMCC algorithm.

APPENDIX B
DERIVATION OF (15)

Setting ∂JCMCC

∂W |W=W (n−1) = 0M×1, one can derive the
optimal weight vector Wopt under CMCC as follows:

E
[
g(e(n))(d(n)−WT

optX(n))X(n)
]

+ Cξ(n) = 0M×1

⇒ E
[
g(e(n))X(n)XT (n)

]
Wopt = E [g(e(n))d(n)X(n)] +

Cξ(n)

⇒ RgWopt = Pg + Cξ(n)

⇒Wopt = R−1
g Pg + R−1

g Cξ(n) (57)

where Pg = E [g(e(n))d(n)X(n)] is a weighted cross-
correlation vector between the measured output and the input
vector. Since

CTWopt = f

⇒ CT
[
R−1
g Pg + R−1

g Cξ(n)
]

= f

⇒ ξ(n) =
[
CTR−1

g C
]−1 (

f − CTR−1
g Pg

)
(58)

one can rewrite (57) as

Wopt =R−1
g Pg + R−1

g C
[
CTR−1

g C
]−1×(

f − CTR−1
g Pg

)
(59)

Under the assumptions 1) and 2), we derive by using (5)

d(n) = W ∗TX(n) + υ(n)

⇒ d(n)XT (n) = W ∗TX(n)XT (n) + υ(n)XT (n)

⇒ g(e(n))d(n)XT (n) = g(e(n))W ∗TX(n)XT (n)+

υ(n)g(e(n))XT (n)

⇒ Pg = RgW ∗

⇒W ∗ = R−1
g Pg (60)

Therefore, combining (59) and (60), we obtain

Wopt = W ∗ + R−1
g C

(
CTR−1

g C
)−1 (

f − CTW ∗
)

(61)

APPENDIX C
DERIVATION OF (41)∼(46)

Here we consider two cases below:
1) Gaussian noise case

Since e(n) = ea(n) + υ(n), in this case e(n) is also
zero-mean Gaussian. Let σ2

e be the variance of the error
e(n). Then we have

σ2
e = E

[
e2
a(n)

]
+ σ2

υ (62)

Using (16) and the approximation W (n) ≈Wopt at the
steady-state, we obtain

ea(n) ≈ (W ∗ −Wopt)
T
X(n) = εwX(n) (63)

Therefore

σ2
e ≈ εTwRεw + σ2

υ (64)

It follows that

lim
n→∞

E [g(e(n))] = lim
n→∞

1√
2πσe

∞∫
−∞

exp

(
−e

2(n)

2σ2

)
×

exp

(
−e

2(n)

2σ2
e

)
de(n)

=
σ√

σ2 + σ2
e

≈ σ√
σ2 + εTwRεw + σ2

υ

(65)

lim
n→∞

E
[
g2(e(n))

]
= lim
n→∞

1√
2πσe

∞∫
−∞

exp

(
−e

2(n)

σ2

)
×

exp

(
−e

2(n)

2σ2
e

)
de(n)

=
σ√

σ2 + 2σ2
e

≈ σ√
σ2 + 2εTwRεw + 2σ2

υ

(66)

Substituting (65) and (66) into (38), we obtain

S ≈η2
(
εTwRεw + σ2

υ

)
vecT {Υ} (IM2 − F)

−1×

vec{IM}
σ√

σ2 + 2εTwRεw + 2σ2
υ

(67)
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2) Non-Gaussian noise case
Taking the Taylor expansion of g(e(n)) with respect to
ea(n) around υ(n), we have

g(e(n)) =g(ea(n) + υ(n))

=g(υ(n)) + g′(υ(n))ea(n)+

1

2
g′′(υ(n))e2

a(n) + o(e2
a(n)) (68)

where

g(υ(n)) = exp

(
−υ

2(n)

2σ2

)
(69)

g′(υ(n)) = −υ(n)

σ2
exp

(
−υ

2(n)

2σ2

)
(70)

g′′(υ(n)) = (
υ2(n)

σ4
− 1

σ2
) exp

(
−υ

2(n)

2σ2

)
(71)

Thus

E [g(e(n))] ≈E [g(υ(n))] +
1

2
E [g′′(υ(n))]E

[
e2
a(n)

]
=E

[
exp

(
−υ

2(n)

2σ2

)]
+

1

2
εTwRεw×

E

[(
υ2(n)

σ4
− 1

σ2

)
exp

(
−υ

2(n)

2σ2

)]
(72)

E
[
g2(e(n))

]
≈E

[
g(υ2(n))

]
+ E

[
e2
a(n)

]
×

E
[
g(υ(n))g′′(υ(n)) + g′2(υ(n)))

]
=E

[
exp

(
−υ

2(n)

σ2

)]
+ εTwRεw×

E

[(
2υ2(n)

σ4
− 1

σ2

)
exp

(
−υ

2(n)

σ2

)]
(73)

Substituting (72) and (73) into (38) yields

S ≈η2
(
εTwRεw + E

[
υ2(n)

])
vecT {Υ} (IM2 − F)

−1×

vec{IM}
(
E

[
exp

(
−υ

2(n)

σ2

)]
+ εTwRεw×

E

[
(
2υ2(n)

σ4
− 1

σ2

)
exp

(
−υ

2(n)

σ2

)]
) (74)
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