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Abstract

The very fundamental operation of even/odd decomposition is at the core of

some of the simplest information representation and signal processing tasks. So

far most of its use has been for rearranging data to provide fast implementations

of various types of transforms (Fourier, DCT, ...) or for achieving elementary

data transformation, such as the Walsh-Hadamard transforms. This work pro-

poses to look into the decomposition framework to obtain a richer perspective.

In the context of an iterated even/odd decomposition, it is possible to pinpoint

intermediate layered levels of symmetries which cannot be easily captured in

the original data. In addition this determines a hierarchical fingerprinting for

any sort of continuous finite support analog signal or for any discrete-time se-

quence which may turn out useful in several recognition or categorization tasks.

It also may help to achieve sparsity within a natural hierarchical framework,

which could be easily extented for many other types of orthogonal transforma-

tions. This paper also suggests a global measure of the energy imbalance across

the hierarchy of the decomposition to capture the overall fingerprinting of this

interpretation.
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1. Introduction

The need to find particular signal characteristics, e.g. to make classification

and/or labeling possible, is inherent in many signal processing applications.

These include but are not limited to tasks such as event classification, anomaly

detection, denoising, ... [16] [3] [14]. Such a broad class of applications adopts5

the most diverse technical solutions. It is however possible to enumerate a num-

ber of common approaches to such problems, all based on the search for possible

hidden patterns in the data, for example the presence of (locally) periodic sig-

nals. In many cases, specific patterns are directly looked for thanks to pattern

matching techniques [1] or indirectly through correlation-based measures [2].10

Other possible approaches exploit specific stochastic properties found in natu-

ral data [11]. Feature extraction is a commonly found intermediate step, that

is applied either in the original data domain or in a transformed one.

A particular approach, which is not always part of the aforementioned tech-

niques, consists in finding symmetries of some kind that arise naturally for many15

classes of signals. Interest in symmetry detection exists for many different com-

munities and it is aimed at various signal modalities. Symmetries can be either

local or global in nature, and the search methods for these symmetry classes can

be quite different (see [13] and [18]). It is well known that exploiting signals’

inherent symmetries is an effective way to model the source, which may turn20

out useful for e.g. information compression [17]. Such alternative information

descriptions have been widely adopted, since they allow to condense (sparsify)

important properties of the original signal. Often that is why a reversible trans-

formation of the original data is applied to reach this more compact descrip-

tion. Good examples of such transformations are omnipresent: see Fourier and25

multiresolution transforms [14] [15]. Non linear alternatives exist such as the

iterative function system (IFS) paradigm for computing fractal dimensions or

near-by signal regeneration [10].

One of the simplest decomposition proposed in signal processing, which is

by its very definition constructed upon the signals symmetries, is the even/odd30

2
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decomposition [15]. It turns out that, given the resulting intuitive geometrical

interpretation and the parity preservation of the Fourier transform, even/odd

decomposition is quite common in signal processing. It becomes then a natural

proposition to try iterating this process to each half of the even/odd parts,

which are necessary for reconstruction. The same geometrical interpretation35

can thus be preserved over the resulting decomposition tree. This in turn gives

a peculiar characterization of the signal that is based on how its decomposition

tree is shaped.

Therefore, this paper studies how to perform an iterative even/odd decom-

position of 1-D signals around their midpoint, which in addition allows for a fast40

implementation. Such process is possible for both continuous and discrete-time

signals and involves only very simple operations at each stage, without increas-

ing the interval support or the number of samples necessary to represent the

original signal. It will be shown that the recursive application of the even/odd

decomposition for discrete sequences provides results identical to the application45

of a radix-2 implementation of the Walsh-Hadamard discrete transform (WHT)

[5]. On another hand, the iterative nature of the transform allows for a deeper

analysis of hidden symmetric patterns in the data during the computation. Such

patterns do not correspond to local symmetries but are instead indicative of an

even/odd relation between parts of the signal existing at a particular level of50

the decomposition tree, thus permitting to make decisions, such as to arrest

the resulting decomposition tree at an earlier stage, without significantly im-

pairing the quality of the representation. This approach therefore ensures both

a fast implementation and an efficient way to detect these peculiar symmetric

relations, leading thus to a naturally sparse representation of the decomposition55

tree. To prove how sparsity in the decomposition tree is an useful signal char-

acterization, a tree sparsity measure is employed to classify broad 1-D signal

types.

The rest of the presentation is organized as follows. Section 2 fixes some

notation and presents some preliminary processing background by recapping60

briefly the even/odd decomposition of signals, along with how such operation

3
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motivates the considerations put forward in this paper. Section 3 provides a

description of the iterative application of the even/odd decomposition to obtain

a decomposition tree in the case of continuous time signals. The discussion is

extended to the discrete time case in Section 4, leaving the resolution of some65

caveats that such domain causes till Section 6. The paper follows with some

experimental simulation results described in Section 5 and ends by drawing the

conclusions in Section 7.

1.1. Contributions

This paper introduces a decomposition tree for finite energy signals using the70

basic even/odd decomposition as the core decomposition step. It provides a

blueprint for its fast implementation for finite, discrete sequences through the

recursive application of a “butterfly”-like computation, similar to that employed

in the fast computation of the Walsh-Hadamard Transform. As opposed to

WHT, the iterative nature of the proposed decomposition allows to analyze ev-75

ery step of the process (the decomposition level), for example to extract features

on the tree nodes. This paper is in particular focused on detecting sparsity in

the decomposition tree as it is built from the root (the original signal) up to the

leaves. Sparsity is measured during the iterative generation of intermediate re-

sults rather than relying on the L0 norm of the leaves of the decomposition tree.80

Proving how such sparsity can provide a discriminating feature across different

data types, it is suggested how such decomposition tree can find a particular

type of symmetry in the data, that is not directly connected to local or global

symmetries of the whole signal.

2. Motivation and Background85

An iterative decomposition process can be undertaken based on the well-known

even/odd decomposition basic signal manipulation, sometimes also referred to

as the parity decomposition. The even/odd decomposition of a given energy

signal x(t) ∈ L2(R) states that x(t) can be expressed as the sum of its even and

4
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odd parts, respectively xe(t) and xo(t), given by:

xe(t) =
x(t) + x(−t)

2
; xo(t) =

x(t)− x(−t)
2

; x(t) = xe(t) + xo(t) (1)

The even signal is such that xe(t) = xe(−t); the odd signal is such that xo(t) =

−xo(−t). Since L2(R) is a Hilbert space, with inner product < x(t), y(t) >=∫
R x(t)y∗(t)dt, such decomposition is possible ∀x(t) and represents the vector

x(t) as the sum of two orthogonal vectors since the inner product <xe(t), xo(t)>

is obviously 0.90

The energy E is defined as the squared Euclidean norm of the signal x(t)

and it is easy to see that:

E =

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|xe(t) + xo(t)|2dt = (2)

=

∫ ∞
−∞
|xe(t)|2dt +

∫ ∞
−∞
|xo(t)|2dt = Ee + Eo

where Ee and Eo are the energy of the even and odd parts respectively. The

last step exploits the orthogonality of xe(t) w.r.t. xo(t).

The motivation under our interest in this elementary operation is its ability95

to readily detect inherent symmetries in the data. In fact, if the original signal

x(t) is of an inherently even (resp. odd) shape, the most part of its energy will

be carried by its even (resp. odd) component. For example, in Figure 1 the

latter case applies: the odd part carries around 70% of the total energy, or more

than twice as much as that of the even part.100

This characteristic can be generally useful for a number of tasks in signal

processing, e.g. it favors a compact representation of the original signal. In fact,

if the signal is reconstructed not by summing both parts but just by retaining

the one which carries the most energy, the signal can be represented without

introducing too much distortion. Obviously, in general for a given signal it is105

unlikely that such a condition holds after a single decomposition step, unless the

signal possesses a very obvious symmetric/antisymmetric shape. For example,

in Figure 1 one could hardly imagine to represent x(t) using only xo(t).

For finite support signals, let us now propose to iterate the analysis, by ap-

plying the decomposition on the resulting informative part of the even and odd110

5
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signals (i.e. their causal part which is recentered around the origin), thus con-

structing a decomposition tree. As the signals are decomposed again and again

through Eq. (1) into pairs of orthogonal vectors, they can be analyzed in turn to

exploit the symmetry content description which is inherent in the energy they

carry. For example, to continue with the example above regarding the compact115

representation of a given signal, after a certain number of decompositions it can

happen that (at least) one of the constituting signal can be safely discarded

because it has energy below a certain tolerance threshold.

Of course, there are many possible strategies to handle the signals resulting

from the iterative application of the even/odd decomposition, i.e. the decompo-120

sition tree nodes, depending on what is the intended objective. For example, for

strongly symmetric data it could happen that, ending the process after a certain

number of decompositions, just a small fraction of the tree leaves carry almost

all of the energy of the original signal, thus retaining just them to reconstruct

the signal leads to a compact representation of it. Hence, we can set such a125

threshold B, which can be possibly adapted to the decomposition level l being

considered. If some of the leaves or nodes carry less energy than B they are

−1.5 −1 −0.5 0 0.5 1 1.5
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x
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Figure 1: An example of standard parity decomposition. x(t) (black) is the sum

of xe(t) (blue) and xo(t) (red).
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omitted from the reconstruction. If one of the leaves is missing because it has

been discarded, only the surviving companion leaf is used to reconstruct the

parent tree node.130

On the other hand detecting an energy imbalance in some nodes of the

decomposition tree, corresponds to a hidden symmetric relation which is present

at the corresponding level of the decomposition tree.. The tree nodes can be

analyzed as they are created from the top (root) down to the leaves to identify

an energy concentration in some of the tree nodes. In this case a threshold S135

should be set on the ratio between the energies of the children nodes generated

after a decomposition step and that of the associated parent node.

In the experimental results that will be shown in Section 5 we show how

these strategies work to highlight how to reflect 1-D symmetries in the data.

In the same section, we will give more examples of potential applications, for140

example the one presented in [6], before we draw the conclusions in Section 7.

3. Iterative Even/Odd Decomposition for Continuous Time Signals

In this section we discuss the even/odd decomposition of a finite support, finite

energy signal in the continuous-time case, and discuss how it is possible to

iterate such an operation to form a decomposition tree of the original signal.145

The objective is to introduce such a tree detailing the resulting processing. The

derived more practical discrete-time case is described in Section 4.

To begin, let us consider a real-valued signal x(t) ∈ L2(R), i.e. a finite

energy signal. We shall assume that the signal has finite support, ignoring the

case of infinite support signals for reasons that are to be discussed in what150

follows. We will also assume it is time-centered, i.e. with support [−T, T ],

without losing generality considering the possibility of zero-padding the signal.

The even/odd decomposition has been defined in Section 2 and an example of

such decomposition is shown in Figure 1, with T = 1.

The pair of signals xe(t) and xo(t) obtained through the above decomposition155

step constitute an alternative representation of x(t). Following Eq. (1), both

7
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xe(t) and xo(t) have support [−T, T ]. However, the new representation does not

increase the temporal support needed to reconstruct the original signal. In fact,

the parity property of the even and odd parts implies that even if they both have

the same support of the original signal, only e.g. their causal part (respectively160

x
(c)
e (t) and x

(c)
o (t), both with support [0, T ] and respectively defined by x

(c)
e (t) =

xe(t) ·1(t ≥ 0) and x
(c)
o (t) = xo(t) ·1(t ≥ 0)) is as informative and thus sufficient

to describe the entire signal. In other words, given just the causal part of both

the even and odd parts, the anti-causal parts x
(ac)
e (t) = xe(t) · 1(t < 0) and

x
(ac)
o (t) = xo(t) · 1(t < 0) can be readily obtaining by suitably mirroring the165

causal parts3:

xe(t) = x(c)
e (t) + x(ac)

e (t) = x(c)
e (t) + x(c)

e (−t) (3)

xo(t) = x(c)
o (t) + x(ac)

o (t) = x(c)
o (t)− x(c)

o (−t)

The original signal x(t) is then reconstructed as in Eq. (1). By retaining just

the causal part of the even and odd parts, their energy is respectively Ee/2 and

Eo/2, and their sum gives E/2, because for both signals the anti-causal part

has the same exact energy as the causal part, being just a mirrored copy of the170

latter (plus a further inconsequential change of sign for the odd part).

Figure 2 provides an approximate depiction of the effects of the decomposi-

tion process adopting a vector space representation (the approximation derives

from representing infinite-dimensional vectors in a 3-D space). The even and

odd signals xe(t) and xo(t) are orthogonal and sum up to x(t), then multiplying175

them by the indicator function to take just the causal part again separates them

into orthogonal signals, i.e. x
(c)
e (t) and x

(ac)
e (t) for the even part, because they

have disjoint supports. However, what is really worth noting is that the causal

parts x
(c)
e (t) and x

(c)
o (t) are no longer orthogonal.

As mentioned before, our objective is to iterate the even/odd decomposition180

of Eq. (1). This way we can build a decomposition tree by repeating the decom-

3The second equality in Eq. (3) is not exact for t= 0, however it is intended to highlight

the concept that the anti-causal part can be readily obtained by flipping the causal part.

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

position process for every sub-even and sub-odd component. This operation is

carried only on the causal part of each signal (except of course the root of the

tree), i.e. without increasing the alternative representation support. The de-

x(c)
e (t)

x(c)
o (t)

xo(t)

x(ac)
o (t)

x(ac)
e (t)

xe(t)

x(t)

x

y

z

xo(t)

xoe(t)

xoo(t)

xe(t)

xee(t)

xeo(t)

Figure 2: Even/odd decomposition iteratively presented on a 3D plot. The

original signal x(t) (black) is decomposed into two orthogonal vectors, the even

signal xe(t) (blue) and the odd signal xo(t) (red). We have decided to align

the x-axis and the z-axis along the direction of xe(t) and xo(t) respectively.

They are in turn split into their causal and anti-causal part, which are again

orthogonal to each other, as described by Eq. (3): the causal parts represent the

orthogonal projections on the causal subspace of the original even/odd parts.

On such subspace they represent the nodes of the decomposition tree. In the

ovals, we sketched the next iteration of the decomposition, applied to the causal

parts of xe(t) and xo(t) (the superscript is dropped in the ovals showing the

next level of decomposition since the signals must be recentered).

9
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composition after a single iteration applied just to the causal parts in abstract185

vector form is shown in the ovals of Figure 2. As we mentioned, the causal

parts determine orthogonal projections on the causal subspace of the original

even/odd parts. However, in such a subspace they are no longer orthogonal to

each other and they can be considered as new, “independent” signals.

To start the iterative process, Eq. (1) constitutes the first level of the trans-190

form, and x(t) is the root of the tree. The iteration then goes as follows: the

signals x
(c)
e (t) and x

(c)
o (t), the causal parts of the output of Eq. (1) and the first

level (l = 1) children nodes, can be further decomposed as well into their even

and odd parts. Of course, before each decomposition of the causal part of each

output signal (i.e. a node), the latter has to be time-recentered by shifting it195

by T/2l (to the left if the causal part is retained as we assumed) before iterat-

ing the decomposition. Thus, after iterating the decomposition again four new

children nodes in the second level of the transform (l = 2) are obtained, consti-

tuted by respectively xee(t), i.e. the even part of the time-recentered causal even

part, xeo(t), xoe(t) and xoo(t) (the subscripts having the appropriate meaning,200

i.e. listing which component to retain after each decomposition read from left

to right, and dropping the (c) superscript after recentering) and then just the

causal part is again retained. In turn, they can be decomposed again into their

own even and odd parts (after recentering) and so on. The new representation

obtained after each decomposition still does not increase the temporal support205

needed to reconstruct the original signal. In fact, as it was the case with a

single decomposition, only the causal parts of each obtained signal after the

decomposition step is necessary. Figure 3 depicts an example of an iterative

decomposition process, stopped at the second level, using a signal defined in the

finite support [−10, 10]. Note how at each level the number of signals doubles210

but the support is halved by retaining just its causal part.

It is evident that in the case of continuous-time signals the iterative decom-

position goes on forever, with ever-shrinking node supports. In general, level l

of the transform tree is constituted by 2l signals, or tree nodes, with support

[0, T/2l−1]. Theoretically, there is no limit on the number of decomposition lev-215

10
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(a) The original signal x(t) (black) is decom-

posed into the even and odd signals, xe(t)

(blue) and xo(t) (red), according to Eq. (1).
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(b) Level 1 of the decomposition. In the left plot the causal part of xe(t) (blue in Figure 3a)

is recentered and becomes the signal to be decomposed (x
(c)
e (t), black; here we have retained

the superscript (c) for clarity, but it can be dropped after recentering). The same happens

to x
(c)
o (t) in the right plot (black, the recentered causal part of xo(t), red in Figure 3a).
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(c) Level 2 of the decomposition. From left to right, the decomposition of respectively x
(c)
ee (t),
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(c)
eo (t), x

(c)
oe (t) and x

(c)
oo (t) is depicted. Each of these is again the causal, recentered part of

the corresponding signals in the first level of Figure 3b.

Figure 3: Even/odd decomposition tree of a signal x(t), illustrated from the

root (top) to the second level (down).
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els, although the decomposition process can be of course arrested at any desired

level, e.g. if the support becomes smaller than a chosen quantity.

Supposing to arrest the decomposition at a given level, the complementary

reconstruction process, which iterates a single reconstruction step, consists of

first mirroring the even and odd signals around the time origin (retaining and220

changing the sign respectively, as in Eq. (3)) and then adding them to obtain

the parent node on the precedent level. The reconstruction process can also be

observed from the decomposition shown in Figure 3: starting from a given level,

it consists of summing the blue and red signals to obtain the black signal and

then copying it to the above level to form the new blue or red signal (depend-225

ing on the particular node considered), after it has been shifted and mirrored

accordingly.

As a side note, if the original signal has infinite temporal support, the initial

decomposition of Eq. (1) produces even and odd parts with infinite support as

well, and again the informative part is contained in the causal support [0,+∞]230

that retains half of the energy of the original signal, so this principle holds

for infinite support signals as well. However, it is not feasible to iterate the

decomposition since it is impossible to recenter the even and odd parts around

the time origin (and padding can not help either). Therefore, for the scope of

this paper we are considering only finite support signals.235

4. Iterative Even/Odd Decomposition for Discrete Time Signals

The discussion of Section 3 applies to the discrete case as well, provided that

some additional care is used in handling how the energy is distributed (an im-

portant fact later) and interpreting the supports. To keep the presentation as

streamlined as possible, we will discuss such details in Section 6. For now, let

us briefly restate the problem from the beginning in the discrete-time setting.

Consider a discrete-time, real-valued, finite-energy sequence x[n] ∈ L2(Z), with

support −N, . . . , N . This choice implies that L, the length of x[n], is odd,

namely L = 2N + 1, which is still general if one assumes to pad with a single 0

12
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even-length sequences. Now the even-odd decomposition is described as:

xe[n] =
x[n] + x[−n]

2
; xo[n] =

x[n]− x[−n]

2
; x[n] = xe[n] + xo[n] (4)

In this case, the informative support, that is the one which carries “unique”

samples and not simply mirrored ones, for the even part is 0, . . . , N and that of

the odd part is 1, . . . , N (since xo[0] = 0 by definition, which is non informative).

So, what is needed for reconstructing the original sequence x[n] is x
(c)
e [n] which240

is xe[n] limited to the 0, . . . , N support and x
(c)
o [n] which is xo[n] limited to the

1, . . . , N support. The formal way to obtain xe[n] and xo[n] from x
(c)
e [n] and

x
(c)
o [n] is discussed in Section 6, but for now it can be highlighted that even if

the decomposition is unbalanced as the informative support of the even part is

N + 1 samples versus the N samples for the odd part, still the decomposition245

does not increase the support needed for the original signal reconstruction.

Alternatively, for even-length sequences one can divide the original sequence

into a “right” part and a “left” part of length L/2. The causal even sequence is

then the semi-sum of the right part with the flipped version of the left part, while

the causal odd sequence is the semi-difference of the two, and both therefore250

have L/2 samples. This abstraction, valid for L even, is simpler to understand

and allows to perform the decomposition without zero-padding. Again, more

details can be found in Section 6.

In any case, Eq. (2) still holds, provided the integration operator is substi-

tuted by the summation one:

E =

N∑
n=−N

|xe[n] + xo[n]|2 =

N∑
n=−N

|xe[n]|2 +

N∑
n=−N

|xo[n]|2 = Ee + Eo (5)

The iteration of the basic even/odd decomposition is possible for discrete

time signals as well, with an important difference. Given the discrete nature of255

the signal domain, the iteration is bound to stop when single-sample sequences

are encountered, a situation not found for the continuous time signals considered

in Section 3. Therefore, decomposition trees for discrete-time finite support

signals are always finite.

13
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Obviously, the need to iterate the even-odd decomposition can be controlled260

by checking suitable parameters, such as the energy of the sequence being de-

composed. In fact, it is entirely possible to arrest a subtree if the energy involved

are under a user-defined threshold, as we mentioned in Section 2. We will ex-

plore how to control the decomposition process with respect to the intended

objective of the whole process in Section 5.265

The iterative decomposition of a discrete-time signals and the complemen-

tary reconstruction process are as follows. First, let us assume that L is even

and in particular a power of 2, L = 2m. In this case the decomposition com-

prises m levels (assuming that no energy thresholding is applied during the

decomposition process and thus the tree is completely developed all the way270

to one-sample leaves), and the nodes in the decomposition tree at each level

have all the same length. After the first decomposition step, the even and odd

parts, corresponding to the first level nodes in the tree, are L/2 samples long.

In general, nodes of level l always have the same length L/2l = 2m−l, that is

half of that of the parent node. At the m-th and last level there are 2m leaves,275

i.e. nodes with unitary length, that cannot be decomposed anymore. In this

case, the decomposition tree is perfectly balanced, i.e. it forms a binary tree.

For example, if L = 4 = 2m, with m = 2, the decomposition tree is 2-levels

deep. The first level is obtained dividing x[n] into a left part (the first two

samples, let us say x[1] and x[2]) and a right part (the last two samples, x[3] and280

x[4]). In this case, the (strictly) causal part of xe[n] is [x(3)+x(2) x(4)+x(1)]/2

and of xo[n] is [x(3)−x(2) x(4)−x(1)]/2 (the left part is flipped as we mentioned

before). Therefore, the two first-level nodes have a length of 22−1 = 2. The

second level of the transform takes the semi-sum and the semi-difference of the

two samples of xe[n] and xo[n], which is what happens if the right-left separation285

is applied again, and outputs the final 4 leaves.

Even if it is not immediately apparent, one can show that in the above

case of a discrete-time signal defined in 1, . . . , L with L equal to a power of 2,

the recursive even-odd decomposition is strictly related to the Walsh-Hadamard

transform of the signal [5]. Both can be obtained through a fast implementation

14
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through a classic “butterfly” diagram, the only difference being a permutation of

the output sequence that involves bit-reversing of the output indices. To prove

that, it is beneficial to start from the basic operation on a 2-sample input. Let

us assume that x[n] is a column vector, x = (x[1] x[2])T and that the output

vector y = (y[1] y[2])T is also a column vector with the even signal written

before the odd one, that is y = (x
(c)
e [1] x

(c)
o [1])T . Remembering to take the

“causal” (right) part, x
(c)
e [1] = (x[1] + x[2])/2 and x

(c)
o [1] = (x[2] − x[1])/2,

namely the even signal is the semi-sum of the input samples and the odd signal

is their semi-difference, we can write the decomposition step as:

y =
1

2
·D2 · x with D2 =

 1 1

−1 1

 (6)

By iterating this operation, for an input x with L = 2m samples, the output is:

y =
1

2m
·D2m · x with D2p =

 DpF Dp

−DpF Dp

 (7)

where F is the flipping matrix. The order of the leaves in y reflects what is

produced by Eq. (6). It is obtained by writing the index in binary form and

considering the successive binary figures as 0 for the even node and 1 for the odd

node. Comparing the matrix D2m with the Walsh matrix of the same order,290

with the rows taken in sequential order, we find that the former can be obtained

from W2m through the following process:

• Write the row number of W2m and D2m in binary form, using m bits;

• Associate each row index of W2m with the bit-reversed row index of D2m ;

• Change the sign of the bottom half of D2m .295

This is true for every m = log2 L. An alternative way of stating this fact is to

say the rows of D2m are a permutation of the rows of W2m . Exactly like the

rows of W2m , the rows of D2m are linearly independent.

Setting L as a power of 2 guarantees that in every step of the decomposition

the length of the resulting sequences is always even. For even sequences, the300

15
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left-right separation always applies (see also Eq. (10) in Section 6). However, if

the original sequence length is even but not a power of 2, or odd altogether, it

is unavoidable that some nodes in the tree have odd length.

In particular, let us say that a particular node (even the starting signal) has

odd length L. In that case, the decomposition tree is slightly unbalanced, since305

the even sequence is longer than the odd sequence by 1 sample. For example,

if L = 3, the even sequence is of length 2, and can be further decomposed into

two second-level leaves of length 1, whereas the odd sequence corresponds to a

first-level leaf of length 1. Therefore, for a general value of L the decomposition

tree is only approximately balanced since the penultimate level nodes may be310

leaves or length-2 nodes, and furthermore its nodes at some other level may be

sequences of different lengths by 1 sample.

Since the children nodes have approximately half the samples of the parent

node, the number of levels of the decomposition tree is dlog2(L)e, and as men-

tioned above is exactly equal to log2(L) = m in case L = 2m. The expected315

number of levels is just an upper bound, as it has been hinted above, since

setting a threshold B to the energy of a node may affect the depth of the tree.

5. Simulation Results

In this Section we describe a series of experiments meant to show how we pro-

pose to use the decomposition tree, exploiting the information carried by the320

constructed hierarchy.

The experiments have been carried out on a variety of 1-D digital signals

obtained from various media. In particular, we have used a random set of rows

from 4 standard images (Lena, Cameraman, Mandrill and Tiffany), in 512×512

format; various audio tracks consisting of (a) modern pop songs, (b) hip-hop325

beats and (c) vocal sound effects, sampled at CD quality (44.1kHz, 16 bits per

sample); a selection of ECG signals taken from the PhysioNet database [7];

and seismic data from the IRIS database [9]. We have also used a number of

texture patterns taken from [4], some clearly symmetric and some not quite so,

16
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as a testbed to exemplify different scenarios. To fairly compare these data, we330

have taken uniformly sized data windows having the same length of the images’

rows, N = 512; in the case of audio, these windows were randomly picked at

least 5s apart. The rationale behind such a diversified testbed is to analyze

the decomposition tree for signals exhibiting diverse characteristics in terms of

evolution in time/space.335

First, let us show how compact is the representation obtained with the de-

composition tree. Figure 4 depicts the performance for the proposed method

versus that of a couple of basic transforms, the DCT and the DFT. The results

are given in aggregate form, that is averaging the performance across the songs,

ECG and image rows data categories (note that in the symmetric textures case340

the proposed method is clearly favored). The comparison has been done as

follows: first, compute the whole decomposition tree (which is log2 N levels

deep) and then sort the N leaves of the last level according to their decreasing

magnitude. Then, discard a given percentage T of the least significant leaves

and compute the ratio of the energy of the reconstructed signal and that of the345

0.7 0.75 0.8 0.85 0.9 0.95 0.99
0.7

0.75

0.8

0.85

0.9

0.95

1

Sym. Decomp.
DCT
FFT

Figure 4: Comparison between the representation compactness of the proposed

technique and those of the basic DCT and DFT transforms. The x-axis rep-

resents the percentage of discarded coefficients, T . The y-axis represents the

energy ratio of the reconstructed signal w.r.t. the energy of the original se-

quence.
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original signal. The same is performed for the other transforms, where instead

of the leaves we discarded the least significant frequency coefficients in terms of

their magnitude.

As Figure 4 shows, the compactness of the representation given by the leaves

of the decomposition tree is slightly worse than that of the DCT or the DFT.350

Recall that when the decomposition tree has been constructed for all levels,

the reached decomposition produces the Walsh-Hadamard transform, which is

known not to be a decorrelating transform for the considered data.

However, the hierarchy in the decomposition tree can help to discover if some

sort of hidden, inner sparsity is present in the original signal. To clarify, let us355

construct the following simple example as shown in Figure 5. Figure 5a depicts

a purely even signal with a very obvious spike added at n = 400. If a frequency

based representation is employed, e.g. DCT, such spike would be spread among

all frequencies. Using instead the proposed decomposition scheme, this spike

will likewise be spread among the leaves. In Figure 5b we have depicted the360

magnitude of the leaves at the bottom level of the tree, indexed in the same

fashion as in Eq. (7), where the spread of the spike appears in the right subtree

(which is the decomposition of the odd signal in the first level). However,

intermediate-level nodes can actually, at some point, sparsely identify such a

spike. In this example, this occurs in the first level of the decomposition. In fact,365

in Figure 5d the node representing the odd signal after the first decomposition

has actually just a single non-zero sample.

It is therefore clear that, during the decomposition process, it is possible

to detect if a node exhibits good sparsity by employing appropriate sparsity

measures, e.g. the Gini index [8]. In such cases, the decomposition of a node can370

be avoided when the Gini index is greater than a prefixed threshold, effectively

pruning the subtree to greatly increase the representation sparsity. This is also

true if the sparsity properties of the symmetries within the original signal are

not immediately visible as the one presented in Figure 5. An alternative strategy

is to compute the Gini index for the entire decomposition tree to identify the375

sparser nodes: in this case, the objective is to make the decomposition sparsity

18
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even more effective, by verifying if any additional decomposition of a moderately

sparse node can yield an even sparser representation at some level in its subtree,

at the price of added complexity.

Instead of directly evaluating the sparsity of the decomposition tree ana-380

lyzing the sparsity in node signals through the Gini index, we propose an al-

ternative approach that is theoretically more connected to the essence of the
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(a) The original sequence x[n], constituted by

a perfectly even signal plus a spike in n = 400.
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-1
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1

(b) The leaves (bottom level, 1-sample nodes)

amplitude, reordered as the rows of DN (see

Eq. (7)).
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(c) The causal part of the even signal xe[n].
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(d) The causal part of the odd signal xo[n],

with just a non-zero sample corresponding to

the spike.

Figure 5: A synthetic signal is used as an example to show how sparsity can be

observed during the iterative even/odd decomposition.
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decomposition. Let us analyze Figure 6 that shows the separated representa-

tion performance of the decomposition tree for different kinds of data (excluding

symmetric textures, where their perfect symmetry usually means that very few385

leaves are non-zero). Evidently the decomposition capacity to well approximate

the data is not uniform, which is indicative that fewer leaves are necessary to

obtain a good reconstructed signal for certain data types with respect to others.

This indicates that there is a variable degree of leaves sparsity among data types,

as more leaves sparsity leads ultimately to a more compact representation. Hav-390

ing fewer leaves carrying more energy is an effect of having a decomposition tree

where just a minority of nodes (and subtrees descending from them) possesses

the most significant part of the original signal energy.

The sparsity of the decomposition tree in this sense ultimately translates

into looking for nodes which are decomposed with a high energy imbalance,395

i.e. they are either highly symmetric or antisymmetric. Measuring how much

sparsity is present in decomposition trees by looking for energy imbalances, and

associating to it a scalar measure, represents a characteristic feature extracted

from the signal. This is the subject of the further experiments that is elaborated

upon in the followings.400
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Figure 6: Approximation strength of the decomposition, disaggregating the

results shown by the black curve in Figure 4. Information along the axes carries

the same meaning as in Figure 4.
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To recap the discussion so far, even if carrying the decomposition to the

end yields the same coefficients (leaves) as the Walsh-Hadamard Transform, as

previously shown, it is still possible to observe the presence of any even and odd

symmetric node at any level of the decomposition. The identification can be

readily performed by e.g. measuring, after the decomposition of a parent node,405

the ratio of the energy of the even part Ee w.r.t. the energy of the parent node E

(or equivalently, that of the odd part Eo w.r.t. E, recall Eq. (5) ): if it is close to

1 or 0, one of the two children nodes is preponderant, while if it is close to 0.5 no

special (anti-)symmetry is present. It can be noted that such symmetric node,

especially in deeper levels, is “buried” in the data, i.e. it is neither immediately410

perceptible by inspection nor it corresponds to a sort of local symmetry. It is

only determined by a particular arrangement existing between signal values at

specific locations relating to the particular level of the decomposition (i.e. which

directly translate into what typically represents a pattern), thus determining the

significance of the proposed measure. This is shown in Figure 7, which depicts415

the decomposition of a third level node into two children nodes (Figure 7a),

where the odd part has the 91.9% of the energy of the parent node. Looking

at the original sequence in Figure 7b, there is no local symmetry similar to the

one in Figure 7a, however a particularly strong energy imbalance shows in the

decomposition of this node.420

To get an instant view of such “sparse nodes” occurrences in the data, we can

draw a picture of the decomposition tree that highlights how the total energy

distributes across the tree as it builds from the root to the leaves in a top-

down fashion (see Figure 8). It is then possible to analyze how the energy of

any node is divided among its two children nodes. The information carried by425

the sparsity of the nodes may in the end suggest different strategies to handle

the decomposition based on the pursued objective. For example, the energy of

the nodes can be used to interrupt the decomposition of nodes having energy

ratio below a certain threshold B w.r.t. that of original sequence, effectively

pruning subtrees which contains too little energy. On the other hand, significant430

energy imbalance, greater than another fixed percentage threshold S, may be
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signaled and determining the presence of a specific symmetry existing in the

decomposition tree, thus expressing a good signature for the patterns present

in the original sequence. In Figure 8 we have highlighted both occurrences.

Recall that each node at a given level is orthogonal to every other node435

of the same level, so the sum of their energies is always equal to that of the

original sequence, and the energies of children nodes always sum up to that of

the parent node. In Figure 8 the decomposition levels are on the y-axis. For

each row (level), there are a number of segments representing each node in the

considered level, ordered from left to right as the rows of Dl (that is even part440

first, recall Section 4). The length of the segment represents the energy of the

considered node w.r.t. the original signal: note how each segment is divided in

two going from a level to the next. When the energy of a parent node goes

mostly to one of the two children nodes (i.e. energy distribution greater than

1 16 32 48 64

-50

50

x
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x
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x
ooeo

(n)

(a) The decomposition of a third level node,

corresponding to the even part of the odd

part of the odd part of the original signal

(xooe[n], black). The odd signal (xooeo[n],

red) carries much more more energy than the

even signal (xooee[n], blue).

1 128 256 384 N=512

-100

-50
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50
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(b) The original sequence x[n].

Figure 7: Part of a decomposition tree of an image row, which depicts how the

presence of a highly symmetric node in lower levels cannot be readily perceived

at the root level.

22



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

6

7

8

(a) Decomposition tree of the low level of

symmetry signal in (b).

1 128 256 384 N=512

-20

-10

0

10

20

(b) A low level of symmetry signal.
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(c) Decomposition tree of the medium level

of symmetry signal in (d).
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(d) A medium level of symmetry signal.
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(e) Decomposition tree of the signal in (f).
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(f) A signal exhibiting a high level of symmetry.

Figure 8: Three different examples of decomposition trees related to signals

with respectively a high, medium and low measured symmetry.

23



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

S), such a child node is displayed in red. Instead when the energy of a node445

is smaller than B (as a percentage of the energy of the original signal), it is

colored in black. The color white is used for all the other cases. In Figure 8,

threshold values are S = 0.9 and B = 0.02.

Accordingly, let us build a measure on the amount of sparsity of the decom-

position tree associated to a given signal. The energy imbalance d found during

the decomposition of a certain node can be individually measured as:

d =

∣∣∣∣ Ee − Eo

2(Ee + Eo)

∣∣∣∣ = max

{
Ee

Ee + Eo
,

Eo

Ee + Eo

}
− 1

2
(8)

The quantity d goes from 0 in the case of perfectly balanced even and odd parts

(indicating absence of node sparsity) to 0.5 in the case of a purely even or odd

node. For example, in the previous example shown in Figure 7, d = 0.419. We

propose to sum this quantity for all the nodes, normalizing the measure of the

nodes in each level by the number of nodes in that level, as in the following

(valid for N equal to a power of 2 as is our case):

D =
2

log2 N

log2 N∑
l=1

1

2l−1

2l−1∑
i=1

dli (9)

There are log2 N levels, each with 2l−1 nodes. In the theoretical case in which

each dli takes the maximum value of 0.5 (each node is a pure even or odd signal),450

D would be equal to 1; if all dli are equal to 0 (no node have any symmetry),

then D = 0. The computation of such a measure is done similarly in the work

by Kovesi [12] and successive publications in the same vein. However, in those

works the objective is to measure the presence of a multi-scale local symmetry

at a given point, where the scale is tied to the filter support. In our case, we455

measure the sparsity of an even/odd decomposition as computed at different

scales, where this time the scale corresponds to a decomposition level, and each

level analyzes the symmetry of different combinations of samples taken from the

original sequence, thus losing the notion of locality on the process.

Further examples of the significance of D are shown in Fig 9. The original460

sequence shown in Fig 9a. is just a short excerpt of a Gaussian distributed white
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noise. Since there is no correlation between the samples, no particular symmetry

is expected between any set of samples as considered for the construction of the

nodes in the decomposition tree, in fact D = 0.29. It is possible to tinker

with its decomposition tree, obviously changing the reconstructed signal in the465

process. The objective is to artificially increase D introducing a limited amount

of changes in the decomposition tree to observe the relation (if any) between the

signals found at the root of the various, slightly modified trees. The procedure

consists in choosing a pair of child nodes and pouring all the energy of one

into the other, effectively trimming the entire subtree of the deleted child node470

and putting the local d to 0.5. The effect on D is more pronounced if this

procedure, that can be repeated at will, is done in lower levels. The results of

this experiment are shown in Fig. 9b-9d.

In Figure 10 we have reported the distribution of the values of D across

different data types in histogram form. Although discerning between them is475

a challenging classification problem (i.e. it is always possible to have an image

row very much like an audio signal and viceversa), more so using just a scalar

feature like D, one can observe how D varies between different data types. We

have also fitted the histogram data using 4 different distributions, including the

Gaussian one, and it can be observed that they fit very well the distribution of480

D values.

We have reported in Table 1 the mean and standard deviation of each dis-

tribution in Figure 10. Even if sometimes the signals cannot be clearly sepa-

rated into different classes even by a human being, on the average the various

data types possess a clearly different behavior in terms of D, suggesting that485

the even/odd symmetry measure translating into energy imbalances present in

the nodes of their decomposition trees is indeed a discriminating feature. In

particular, D distributes more towards higher values for data with on average

smoother behavior and a tendency to self-replicate its time/space signal be-

havior, like ECG signals. In particular, this last property does not necessarily490

translate into the presence of local symmetries or otherwise periodic properties,

instead the even/odd decomposition captures the presence of a possible sym-
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(a) The original noise signal, with D = 0.29.
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(b) The reconstructed signal after deleting a

node in the second level, D = 0.50.
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(c) The reconstructed signal after deleting a

node in the second level and two nodes in the

third level, D = 0.65.
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(d) The reconstructed signal after deleting a

node in the first level, D = 0.78 (of course,

the signal is now globally symmetric).

Figure 9: Effect on D when deleting specific nodes in an example decomposition

tree.

metric relation between combinations of different portions of the original signal

at various scales.

In Figure 11 a pair of additional histograms are provided on two particular495

data types: vocal sound effects and texture patterns. Since such data may to-

tally different waveforms in their class, ranging from quasi-periodic signals to

erratic signals with low correlation akin to noise, a very different value distribu-

tion is observed, indicative of a strong inter-class variance in the decomposition
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(a) Symmetry measure D for image data.
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(b) Symmetry measure D for seismic

data.
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(c) Symmetry measure D for audio data

(pop song).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Value

Pr
ob

ab
ilit

y 
De

ns
ity

Probability Density Function

 

 
empirical
nakagami
normal
gamma
inverse gaussian

(d) Symmetry measure D for audio data

(hip-hop beats).
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(e) Symmetry measure D for ECG data.

Figure 10: Histograms of the symmetry measure computed separately for each

data type.
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(a) Symmetry measure D for audio data.
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(b) Symmetry measure D for audio data

(vocal sound effects).

Figure 11: Additional histograms of the symmetry measure computed for more

data types.

tree sparsity, coherently with the above argument. The mean and variance of500

the histograms for these distributions have been listed in Table 1 as well.

6. Details on the even/odd decomposition of discrete-time signals

Before concluding the paper, some extra details are provided in this section

on how to perform the decomposition step of discrete sequences to allow its

efficient and convenient iterative application.505

To simplify the description, let us first modify some notations with respect to

those we used in Section 4. Even if Eq. (4) is very similar to Eq. (1), to describe

the iterative decomposition of sequences that follows it is simpler to change

how the decomposition itself is performed, by shifting the original sequence

and assuming that x[n] be a strictly causal signal, meaning that n = 1, . . . , L510

(excluding n = 0 from the support greatly simplifies the following discussion).

The even-odd decomposition for a strictly causal signal needs a slight modifi-

cation in its definition, since the decomposition must be now performed around

its midpoint, that does not coincide with the origin n = 0 but it is instead

located at n = L+1
2 . To flip x[n] around the midpoint, the sequence x[L+1−n]
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Data type Mean Std Dev

Image rows 0.4167 0.0521

Seismic data 0.3957 0.0052

Hip-hop beats 0.5513 0.0154

Pop song 0.5061 0.0654

ECG signals 0.5319 0.0816

Vocal sound effects 0.5084 0.0205

Texture patterns 0.5018 0.0687

Table 1: Mean and standard deviation computed on the histograms in Figure 10

and Figure 11.

must be taken for n = 1, . . . , L and Eq. (4) becomes:

xe[n] =
x[n] + x[L + 1− n]

2
; xo[n] =

x[n]− x[L + 1− n]

2
; x[n] = xe[n]+xo[n]

(10)

If L is even, the midpoint n = L+1
2 corresponds to a half-integer point. Mirroring

the sequence around this point is straightforward because the “causal” part goes

from n = L
2 + 1 to n = L while the “anti-causal” part goes (backwards) from

n = L
2 to n = 1. Both even and odd causal parts, x

(c)
e [n] and x

(c)
o [n], have515

therefore L
2 samples and furthermore possess energy Ee/2 and Eo/2 respectively,

for the same orthogonality reasons given in Section 3. Figure 12 illustrates a

simple example of a single decomposition step with L = 8.

However, in the case of L odd, the situation is different. The midpoint n =

L+1
2 around which to perform the decomposition is now an integer point. This is520

analogous to the time-centered case outlined at the start of Section 4, where the

midpoint was n = 0. Applying Eq. (10), it turns out that xe[
L+1
2 ] = x[L+1

2 ] and

xo[L+1
2 ] = 0. So again, the decomposition is unbalanced because the informative

(i.e. causal) part of the odd sequence, x
(c)
o [n], is just L−1

2 samples because of

the discarded one, which is the one corresponding to n = L+1
2 , is always 0. On525

the other hand, the causal part of the even sequence x
(c)
e [n] has a sample more,
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for a total of L+1
2 , and the first one corresponds to the midpoint sample of the

original sequence as stated above. Figure 13 depicts the latter situation using

the case of L = 7.

There is an important detail to note in such a decomposition with L odd.530

To keep Eq. (5) valid, that is to guarantee that the causal parts of the even

and odd sequences carry exactly Ee/2 and Eo/2 energy respectively, the first

sample of the causal part of the even sequence, which is equal to x[L+1
2 ], must be

normalized by
√

2 (so that it carries half of its original energy, compare the first
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(c) Causal odd signal x
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Figure 12: When L is even, the midpoint (M in the left plot) is a half-integer

point and the two sequences have the same length.
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(a) Original sequence x[n].

1 2 3 4

-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) Causal even signal x
(c)
e [n].

1 2 3

-5

-4

-3

-2

-1

0

1

2

3

4

5

(c) Causal odd signal x
(c)
o [n].

Figure 13: When L is odd, the midpoint (M in the left plot) is an integer point

and the causal part of the even sequence starts with the normalized original

central sample. In this case it is longer by one sample with respect to the odd

sequence.
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sample of Figure 13b with the middle one of Figure 13a). It can be seen that535

during the decomposition process it is counted twice when the even sequence is

mirrored around it, so the value is unchanged when divided by 2 and the whole

energy of this sample stays on the even part. However, if we desire that the

energy of the causal part carries half of Ee, the energy of the even component,

as is the case for L odd, the normalization correctly handles this situation. This540

normalization does not change the substance under the decomposition, but must

be kept in mind during the energy computations and the reconstruction process.

Given this difference in the decomposition process in the case of L even or

odd, it follows that the reconstruction process is also different. For L even it

is similar to what happens in the case of continuous time signals: the even and545

odd parts are mirrored (to the left since we retained the causal parts) and then

summed. Instead for L odd the central sample of the reconstructed sequence is

x
(c)
e (1), multiplied by

√
2 to get rid of the normalization, and the other samples

of x
(c)
e [n] are mirrored to the left just like those of x

(c)
o [n] and then added to

obtain the original samples except the central one.550

As an example of why the normalization keeps the energies of the children

nodes balances, consider the sequence x[n] = [2 2 1] with L = 3. The energy

E is 9. To obtain the even child node, x[n] and its flipped version are added,

the result divided by 2 and then the two rightmost samples (thus including

the middle one) are taken as the causal part. For the odd child node, the555

flipped version must be subtracted instead and only the rightmost sample is

kept (the middle one is obviously 0). So, without normalization in this case

xe[n] = [1.5 2 1.5] and x
(c)
e [n] = [2 1.5], whereas xo[n] = [0.5 0 − 0.5] and

x
(c)
o [n] = [−0.5]. Note how the causal children nodes can correctly reconstruct

x[n] using the process described above.560

Now, let us analyze the energies. The energy Eo of xo[n] is 0.5 and the

energy of x
(c)
o [n] is 0.25 which is Eo/2, as expected. However, the energy Ee of

xe[n] is 8.5 but the energy of x
(c)
e [n] is 6.25 which is not Ee/2. That happened

because the central sample has been counted twice during the decomposition

as explained above. To let the energy of x
(c)
e [n] be Ee/2, that sample must be565
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normalized by
√

2, so that the sequence is now x
(c)
e [n] = [

√
2 1.5] with energy

4.25 = Ee/2. Using the normalization allows a simpler, unified implementation

of both the energy imbalance analysis and the reconstruction process.

7. Conclusions

In this paper we proposed the iteration of the even/odd decomposition of a 1-D570

energy signal to construct a decomposition tree, for either the continuous-time

and discrete-time settings, and studied how such tree could be exploited for a va-

riety of signal processing tasks. We limited our scope to limited support signals

to make the recentering operation possible, enabling the iteration of the basic

decomposition to take place. In particular, we pointed out that for continuous-575

time, finite support signals such tree is infinitely deep with ever-shrinking nodes

support, while for discrete-time, finite support signals the decomposition tree is

always finite and that a little care is required in the latter case to simultaneously

not increase the representation support and guarantee correct energy balancing

between children nodes.580

In addition, we proved that for discrete sequences, for representation com-

pactness sake, when the decomposition is complete the performance of the pro-

posed method is equivalent to that of the Walsh-Hadamard Transform. How-

ever, we did show how such a decomposition tree can also be effectively exploited

to detect hidden sparsity in the resulting decomposition tree from the data and585

how their presence is diversified between different signal kinds. In particular

the identification of local symmetries in the decomposition directly represents a

particular arrangement existing between signal values, thus determines an effec-

tive signature to describe signal patterns. Coherently a measure of such sparsity

can be effectively detected during the decomposition process, prompting further590

processing of the signal.

Many extensions to this work are possible. In our present research, we are

addressing the limitations of considering only the even/odd decomposition of

the signal around its midpoint. In fact, by its nature, this transform is able to
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detect and effectively represent symmetries in the data but the computation is595

carried just around the time origin or the midpoint. To overcome this limitation,

the decomposition step at the heart of the transform needs to be generalized.

On the other hand, by combining the latter generalization with the iterative

process described here, it is possible to adapt the framework presented here to

the search for local symmetries, by reducing the scope of the decomposition and600

interpreting the energy imbalance as a direct hint of symmetry presence. Some

preliminary results in this vein have already been presented in [6].

Finally, we based our analysis on the Euclidean norm, i.e. the energy of

the nodes. It is also possible to compute the symmetry-based distances using

the L1 norm of the children nodes, instead of the L2 norm (energy) as we have605

done in the experiments shown here, to speed up the computing of the symmetry

measure D. In this case, the price to pay is the loss of the orthogonality between

the tree nodes, so more complex normalization factors than those of Eq. (9) are

needed. This topic is also matter of undergoing research.
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We the authors thank the reviewers for their valuable observations that 

have helped to pinpoint the essence of the contribution and improve the 

clarity of the presentation. 

 

Note: we refer with Lnnn to line numbers in the original submission. 

 

*** 

 

Response to Reviewer #1 comment No. 1: 

 

For continuous-time signals, there is no theoretical limit to the number 

of levels (L193). The support of a child node is always half that of its 

parent, so as the level number increases the support of the nodes at 

higher levels shrinks but never goes to 0. The experiments, on the other 

hand, has been conducted on discrete, finite sequences. In this case, the 

number of levels is always finite (L237). In particular, the number of 

levels is equal to ceil(log2(L)) for a general sequence length L. To 

improve clarity on this matter, we added such facts respectively in 

Section 3 and at the end of Section 4, where we discuss generic sequence 

lengths. 

 

Although we hinted that it is in principle possible to choose to arrest 

the decomposition at any given level, in our experiments we always let 

the decomposition go on until the one-sample leaves are reached, that is 

after log2(512)=9 levels. So, in essence what drives the number of levels 

even across different data types is the length of the considered root 

sequence. We chose L=512 to be consistent with the length of the image 

rows. 

 

The number of obtained levels may be actually lower because the threshold 

B would prevent to further decompose a given subtree, as expounded as 

well in the added paragraph at the end of Section 4. This is why we added 

``(at most)'' in L247. We revised the sentence to be a bit more specific. 

 

*** 

 

Response to Reviewer #1 comment No. 2: 

 

Eq. (8) measures the energy imbalance in a single decomposition step, 

while the sparsity measure of the whole decomposition tree is in Eq. (9). 

The reason why this energy imbalance leads to sparsity measurement in 

tree representations is expounded upon in answer No. 1 to Reviewer #2. 

 

The measure proposed by the reviewer is actually the same as that in Eq. 

(8), except for a factor 2. In fact, if we assume in Eq. (8) that 

E_e>E_o, and recalling that E=E_e+E_o, then d=E_e/E-1/2=(2E_e-E)/2E=(E_e-

E_o)/2E (the case E_e<E_o is analogous). We used our version of Eq. (8) 

because we thought it highlighted that only either one of the even or odd 

symmetries can lead to energy imbalance, although the suggested one (that 

we added in the equation, divided by 2 for consistency) is interesting in 

its own right because it is similar to the reflection coefficient 

definition. It is no surprise, in the end, that the problem of 

determining if a sequence is symmetric is connected to determine the 

amount of reflection experienced by waves in physics. 

 

*** 

 

Response to Reviewer #1 comment No. 3: 

Response to Reviewers



 

As suggested, we performed data fitting of the histograms in Fig. 9 

(Figs. 10 and 11 in the revised version) on both Gaussian and a number of 

other distributions, all of which estimate well the obtained histograms. 

The reason why different data types are associated to different D 

distributions is ultimately the same as the reason why a particular 

decomposition tree is sparser than another, in the sense that (on the 

average) the realizations taken from those different signals more or less 

tend to fit in the sparse decomposition tree model embodied by Eq. (9). 

Please refer also to answers No. 1 and No. 5 to Reviewer #2. 

 

*** 

 

Response to Reviewer #2 comment No. 1: 

 

Sparsity in the iterative even/odd decomposition tree is measured in 

terms of energy imbalance during any single decomposition step. When the 

imbalance is high, the parent signal is strongly (anti-)symmetric and 

therefore one between the even and odd child nodes has much lower energy 

with respect to the other (but possibly not negligible with respect to 

the original signal energy). If the lower energy child node is discarded, 

it is equivalent to put the correspondent subtree to 0, leading naturally 

to a sparser representation of the decomposition tree in terms of 

represented subtrees. As Fig. 5 proves, this is not a matter of 

compactness in the last-level leaves representation (which is the same 

obtained using a WHT as reported in Fig. 4). Instead, taking advantage of 

the iterative decomposition, sparsity can manifest itself in any node of 

any level. The use of the L2 norm to detect sparsity in Eq. (8) for a 

single decomposition step, and by extension of the whole tree through Eq. 

(9), can only approximate the true, L0 norm sparsity as that displayed by 

Fig. 5d (which is obtained starting from a synthetic sequence), but has 

the great advantage of preserving orthogonality during the decomposition, 

thus allowing to precisely control the amount of distortion introduced in 

the reconstructed sequence by discarding any node. 

 

Hence, the next step is to try to identify which characteristics a 

sequence should possess to be associated with a sparse decomposition 

tree, so that we may infer which classes of signals among those 

considered have sparser trees than the others. These characteristics 

should be derived in the time domain, since the decomposition works in 

that domain and it has a non-linear nature. To prove what these 

characteristics are, we included a set of new experiments on N=32 long 

sequences. In these experiments (Fig. 9 in the revised version), 

sequences that are associated to sparse (with sparsity appearing in 

different levels) and non-sparse decomposition tree are reported. These 

new results substantiate the conclusion that we offered in L428. 

Obviously, the conclusions learnt from these experiments may be carried 

on to longer sequences, recalling the iterative nature of the tree. 

 

*** 

 

Response to Reviewer #2 comment No. 2: 

 

As reported from L263 onwards, the recursive even/odd decomposition, when 

considered for L=2^m long sequences and for complete decomposition trees, 

represents an alternative implementation of the fast Walsh-Hadamard 

Transform (WHT). Of course, the WHT is related to the Haar wavelet 

transform (that is the same as the Daubechies wavelet transform 'db1'), 



in that every step of the WHT may be described as the application of the 

Haar wavelet on the intermediate result, keeping in mind that WHT has no 

shifting feature and thus a windowed input sequence has to be considered. 

The inverse process, namely obtaining a wavelet decomposition through the 

application of a WHT-like process, would have to do with modifying the 

decomposition step to actually output approximation and detail signals, 

and that would mean to insert suitable filters in the columns of D2 as 

well as a decimation step; however, all the nice properties in terms of 

conservation of support length would be lost. 

 

*** 

 

Response to Reviewer #2 comment No. 3: 

 

We added Subsection 1.1 that specifies the contributions of the paper 

right from the start. 

 

*** 

 

Response to Reviewer #2 comment No. 4: 

 

We consider the proposed transform as a novel contribution, although 

there are connections with existing processing tools, namely the basic 

even/odd decomposition and the WHT. Such preliminary background is well 

covered in classic signal processing textbooks, e.g. [15], or seminal 

papers, e.g. [14] (refs number in the revised version). We added a few 

more broad spectrum references in the introduction for those fields 

touched upon in the experimental section. 

 

This paper is building on a classic concept like that of orthogonal block 

transforms and then making it "new again" through its original take on 

the the study of sparsity through the iterative generation of 

intermediate results rather than relying on the L0 norm of the 

coefficients in the transformed domain. We clarify our take in the new 

Section 1.1 which lists the paper contributions. 

 

*** 

 

Response to Reviewer #2 comment No. 5: 

 

We added more data types to our experimental section to strengthen the 

argument in Section 5. However, it is not our purpose to propose D as a 

categorization feature: indeed, a scalar feature may incur in many mis-

classification results as its dimensionality is too small. Instead, the 

objective is to prove that the sparsity in decomposition tree is a 

discriminating feature in terms of the temporal evolution of the 

sequence, as the new experiments described in the answer No. 1 also show. 

In this case, the histograms representing the feature distribution show 

how on average different data types may be used to classify the whole 

data subset. 

 

*** 

 

 



 Hierarchical even-odd decomposition of signals able to detect the presence of hidden patterns in 

the data. 

 Measuring an overall energy imbalance distribution in a recursive decomposition of a signal. 

 Stopping a recursive transformation of data to favour sparsity of the tree representation. 

 Discrete versus continuous-time operational implementations of the decomposition. 

*Highlights (for review)
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