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Abstract

Compressive sensing (CS) has attracted significant attention in parameter estimation tasks, where para-

metric dictionaries (PDs) collect signal observations for a sampling of the parameter space and yield sparse

representations for signals of interest when the sampling is dense. While this sampling also leads to high

dictionary coherence, one can leverage structured sparsity models to prevent highly coherent dictionary

elements from appearing simultaneously in the recovered signal. However, the resulting approaches depend

heavily on the careful setting of the maximum allowable coherence; furthermore, their guarantees are not

concerned with general parameter estimation performance. We propose the use of earth mover’s distance

(EMD), as applied to a pair of true and estimated PD coefficient vectors, to measure the parameter estima-

tion error. We formally analyze the connection between the EMD and the parameter estimation error and

show that the EMD provides a better-suited metric for parameter estimation performance than the Euclidean

distance. Additionally, we analyze the previously described relationship between K-median clustering and

EMD-optimal sparse approximation and leverage it to develop improved PD-based parameter estimation

algorithms. Finally, our numerical experiments verify our theoretical results and show that the proposed

compressive parameter estimation algorithms have similar performance as the state-of-the-art algorithms

while featuring simpler implementation and broader applicability.

Keywords: compressive sensing; parameter estimation; parametric dictionary; earth mover’s distance;

K-median clustering

1. Introduction

Compressive sensing (CS) simultaneously acquires and compresses signals via random projections, and

recovers a signal if it is sparse or if there exists a basis or dictionary in which it can be expressed sparsely [3–5].

IEarly versions of this work appeared at Proceedings of SPIE Wavelets and Sparsity XV, August 2013 [1] and 2016 Annual
Conference on Information Science and Systems[2]
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Recently, the application of CS has been extended from signal recovery to parameter estimation through the

design of parametric dictionaries (PDs) that contain signal observations for a sampling set of the parameter

space [6–17]. The resulting connection between parameter estimation and sparse signal recovery has made

it possible for compressive parameter estimation to be implemented via standard CS recovery algorithms,

where the PD coefficients obtained from recovery algorithms can be interpreted by matching the locations of

the nonzero coefficients with the parameter estimates. This CS approach has been previously formulated for

many landmark compressive parameter estimation problems, including localization and bearing estimation

[6–11], time delay estimation [12, 13], and frequency estimation (also known as line spectral estimation when

the frequencies lie in a one-dimensional space) [14–18].

Unfortunately, only in the contrived case when the unknown parameters are all contained in the sampling

set of the parameter space can the PD-based parameter estimation be perfect. In frequency estimation, the

mismatch between the unknown frequencies and the discretized frequency samples results in loss of spar-

sity due to spectral leakage, therefore reducing recovery performance [19]. Additionally, the guarantees of

bounded error between the true and the estimated PD coefficient vectors, measured via the Euclidean dis-

tance in almost all existing methods, have very limited impact on the performance of compressive parameter

estimation given that the Euclidean distance does not relate to the parameter estimation error. In contrast,

the earth mover’s distance (EMD) [20–22] is a very attractive option due to the fact that the EMD of two

sparse PD coefficient vectors is indicative of the parameter estimation error when the elements of the PD are

sorted in increasing order of the values of the corresponding parameters.

1.1. Prior Work

The relevant literature includes several approaches that rely on convex optimization to avoid parameter

discretization issues. Recently, total variation norm minimization has been proposed to estimate frequency-

sparse signals from observations whose spectrum is confined within some set of low frequencies, a setup that

is now known as the super-resolution problem [23]. This algorithm allows for accurate frequency estimation

when the unknown frequencies are sufficiently separated, even under additive noise [24]. Inspired by this

approach, when the frequencies are well separated, atomic norm minimization has been developed to estimate

frequency-sparse signals with line spectra from samples obtained at random times [25, 26]. An extension to

two-dimensional frequency estimation is available in [27]. Another method uses matrix completion to recover

signals with arbitrary frequencies from random samples when a separation condition is met [28]. The main

result is that the sparse recovery problem can be solved via low-rank matrix completion of a matrix possessing

Hankel structure derived from the sparse signal. Similar performance guarantees have been established as
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well for signal recovery from linear measurements [29]. The main drawback of optimization methods is

that the performance is highly dependent on convex optimization solvers, which usually can be very time-

consuming. Additionally, such methods are hard to extend to other parameter estimation problems such as

time delay estimation.

For PD-based parameter estimation, a dense sampling of the parameter space is needed to improve the

estimation resolution [7]. However, increasing the sampling density introduces highly coherent elements

in the PDs, which might affect the performance and complexity of sparse recovery algorithms. Previous

approaches to address the resulting coherence issues utilized a coherence-inhibiting structured sparse ap-

proximation where the resulting nonzero entries of the reconstructed coefficient vector correspond to the

PD elements that have sufficiently low coherence [7, 16, 18]. Based on structured sparse recovery, an auxil-

iary interpolation has been proposed as an additional step to break through the limitation of discretization

and improve the estimation performance [13, 17]. Those approaches need a careful setting of the value of

the maximum allowable coherence among the chosen PD elements in the sparse representation. Setting the

maximum allowable coherence to be too large restricts the minimum separation between any two parame-

ters that can be observed simultaneously in a signal, and can potentially exclude a large class of observable

signals from consideration.

EMD has been proposed as an alternative measure for sparse recovery [22]. Instead of performing

constrained EMD minimization directly, a pyramid transform that connects a sparse model and a tree-sparse

model allows for the implementation of sparse recovery with error measured by EMD using a constrained

`1-norm minimization problem. However, the special requirements of the measurement matrix limit the use

of such EMD-optimal sparse recovery in many practical applications.

1.2. Contribution

In this paper, we proposed a new PD-based method for compressive parameter estimation that replaces

the hard thresholding operator, a widely used sparse approximation operator in sparse recovery algorithms to

solve the sparse approximation problem under Euclidean distance, with K-median clustering, a novel sparse

approximation operator that returns the optimal sparse approximation vector in terms of the EMD [21, 22].

Our main contributions can be detailed as follows. First, we show theoretically that the EMD between the

sparse PD coefficient vectors provides an upper bound for the parameter estimation error, motivating the

use of algorithms minimizing the EMD between coefficient vectors to achieve small parameter estimation

error. Second, we formulate theorems that provide performance guarantees for parameter estimation with

our proposed clustering methods; these guarantees are based on the correlation between PD elements. Third,
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we analyze the effect of the decay of the correlation between PD elements on the performance of our proposed

method, and elaborate on our guarantees when CS compression and signal noise are involved. Finally, we

introduce and analyze the joint use of thresholding and clustering methods to address performance loss

resulting from compression and noise. Although this paper focuses on one-dimensional parameters, our

work can be easily extended to multidimensional parameter estimation by using K-median clustering for

multidimensional spaces.

One of the essential advantages of our proposed algorithm is that it can be applied to arbitrary sparsity-

based parameter estimation problems. As shown in the sequel, existing greedy algorithms require an ad-

ditional parameter to prevent highly coherent PD elements from appearing in the signal representation

simultaneously and estimate the correct parameters. As shown in our prior work, such algorithms are very

sensitive to the chosen value of the additional parameter: an improper value of the additional parameter

is significantly harmful to the estimation performance [1]. However, to the best of our knowledge, there is

no guarantee that existing greedy algorithms with a specific parameter value will have good performance

for parameter estimation under suitable conditions. Furthermore, we do not know of a procedure to set

the parameter values so that the existing algorithms will have good performance under the given conditions

except for a grid search that chooses the one that performs best experimentally. In contrast, our proposed

method does not rely on additional parameters in the most amenable cases. In the presence of a slowly

decaying correlation function, compression, or signal noise, where it is more difficult for our proposed algo-

rithm to obtain accurate estimates, our theoretical analysis provides guidelines to choose a proper value of

the threshold level and guarantees that the proposed algorithm will have small estimation error. In terms

of broad applicability, our proposed method can be used for time delay estimation, frequency estimation

and other sparsity-based parameter estimation problems; additionally, the observation model is arbitrary as

well, with example applications using subsampled signals or randomly projected measurements. This is in

contrast with existing approaches that obtain state-of-the-art performance, which are specialized to a single

problem and observation model.

1.3. Organization

This paper is organized as follows. In Section 2, we provide a summary of compressive parameter

estimation and the issues in existing work and introduce some important background for the proposed

algorithm. In Section 3, we present and analyze the use of EMD and clustering methods for PD-based

parameter estimation; furthermore, we formulate and analyze an algorithm for EMD-optimal sparse recovery

that employs K-median clustering. In Section 4, we present numerical simulations that verify our results
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for the clustering method in the example applications of time delay estimation and frequency estimation.

Finally, we provide a discussion and conclusions in Section 5.

2. Background

2.1. One-Dimensional Parameter Estimation

One-dimensional parameter estimation problems are usually defined in terms of a parametric signal class,

which is defined via a mapping ψ : Θ → X from the parameter space Θ ⊂ R to the signal space X ⊂ CN .

The signal observed in a parameter estimation problem contains K unknown parametric components x =∑K
i=1 ciψ(θi), and the goal is to obtain estimates of the parameters θ̂i from the signal x. For example,

in time delay estimation, the parameter θi = τi refers to the time delay and the parametric signal ψ(θi)

corresponds to a known waveform g(t) with time delay τi, i.e.,

ψ(θi) = [g(−τi), g(T − τi), . . . , g((N − 1)T − τi)]T , (1)

when T represents the sampling period. Similarly, in line spectral estimation the parameter θi = fi is the

frequency and the parametric signal corresponds to the complex exponential of the frequency fi, i.e.,

ψ(θi) = e(fi) =
[
1, ej2πfi

1
N , . . . , ej2πfi

N−1
N

]T
. (2)

Due to the demands in storage, communication, and computation, for large-scale signal processing it is

often desirable to work with a lower-dimensional observation y rather than the signal x itself. The most

common observations y = xS contain only the signal samples at random times S ⊂ {1, 2, . . . , N} with

|S| = M . Alternatively, the observations y = Φx can also be obtained by compressing the signal with a

dimension-reducing measurement matrix Φ ∈ RM×N .

Although we are not aware of convex optimization approaches for generic time delay estimation, it is

possible to transform a time delay estimation problem into a frequency estimation problem when the signal

observations are linear measurements of the signal [30, 31], which can then itself be solved using convex

optimization [25–29]. Assume that G is a diagonal matrix whose diagonal entries are the discrete Fourier

transform coefficients of the waveform samples g = [g(0), g(T ), . . . , g((N − 1)T )]T . Then X, the discrete

Fourier transform of x, has the sparsity structure as X = Gx′, where x′ =
∑K
i=1 cie(τi) is a frequency-sparse
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signal. Thus, the linear measurements can be expressed as

y = Φx = ΦF−1X = ΦFHGx′. (3)

Therefore, the time delay estimation of x becomes the frequency estimation of x′ with the new measurement

matrix Φ′ = ΦFHG. In summary, to estimate the time delay indirectly via frequency estimation, the

observations are required to be the linear measurements of the signals, and the diagonal matrix G should

have nonzero diagonal entries so that the new measurements matrix Φ′ satisfies the properties required by

sparse recovery algorithms. We will see that obtaining such G is difficult in practice in Section 4.

2.2. Parametric Dictionaries

The parameter estimation methods based on PDs model the estimation problem in a generic form and

can be used both in frequency estimation and time delay estimation directly. One can obtain a PD as a

collection of samples from the parametric signal space

Ψ =
[
ψ
(
θ̄1

)
, ψ
(
θ̄2

)
, . . . , ψ

(
θ̄L
)]
⊆ ψ(Θ), (4)

which corresponds to a set of samples from the parameter space Θ̄ =
{
θ̄1, θ̄2, . . . , θ̄L

}
⊆ Θ. In this way, the

signal can be expressed as a linear combination of the PD elements x = Ψc when all the unknown parameters

are contained in the sampling set of the parameter space, i.e., θi ∈ Θ̄ for each i = 1, . . . ,K. Therefore,

finding the unknown parameters reduces to finding the PD elements appearing in the signal representation

or, equivalently, finding the nonzero entries or support of the sparse PD coefficient vector c for which we

indeed have y = ΦΨc. The search for the vector c can be performed using CS recovery.

PD-based compressive parameter estimation can be perfect only if the parameter sample set Θ̄ is dense

and large enough to contain all of the unknown parameters {θ1, θ2, . . . , θK}. If this stringent case is not met

for some unknown parameter θk, a denser sampling of the parameter space decreases the difference between

the unknown parameter θk and the nearest parameter sample θ̄l, so that we can better approximate the

parametric signal ψ(θk) with the parametric signal ψ
(
θ̄l
)
. However, highly dense sampling increases the

similarity between adjacent PD elements and, by extension, the PD coherence [32], corresponding to the

maximum normalized inner product of PD elements:

µ(Ψ) = max
1≤i6=j≤L

∣∣〈ψ(θ̄i), ψ(θ̄j)〉
∣∣∥∥ψ(θ̄i)

∥∥
2

∥∥ψ(θ̄j)
∥∥

2

. (5)
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Additionally, denser sampling increases the difficulty of distinguishing between PD elements and severely

hampers the performance of compressive parameter estimation [33, 34]. Prior work addressed such issues

by using a coherence-inhibiting structured sparse approximation, where the resulting K nonzero entries of

the coefficient vector correspond to PD elements that have sufficiently low coherence. This approach is

known as band exclusion [7, 13, 16–18] and inhibits the highly coherent PD elements from appearing in

signal representation simultaneously. Choosing a adequate value for the maximum allowed coherence ν that

defines the restriction on the choice of PD elements is essential to successful performance: setting its value

too large results in the selection of coherent PD elements, while setting its value too small tightens up

requirements on the minimum separation of the parameters. Unfortunately, a guideline for the chosen of ν

has not been fully established.

Another issue is that existing CS recovery algorithms commonly used in this setting can only guarantee

stable recovery of the sparse PD coefficient vectors when the error is measured by the `2 norm; in other

words, we can only predict that the estimated coefficient vector will be close to the true coefficient vector

in Euclidean distance. Such a guarantee is linked to the core hard thresholding operator, which returns

the optimal sparse approximation to the input vector with respect to the `2 norm. However, the guarantee

provides control on the performance of parameter estimation only in the most demanding case of exact

recovery, i.e., when the parameter estimation is perfect. Otherwise, such a recovery guarantee is meaningless

for parameter estimation since the `2 norm cannot precisely measure the difference between the supports of

the sparse PD coefficient vectors. For an illustrative example, consider a simple frequency estimation problem

where the PD collects complex sinusoids at frequencies {f1, f2, . . . , fL} and there is only one unknown

frequency fi (i ∈ {1, 2, . . . , L}). In other words, the coefficient vector is c = ei, where ei denotes the

canonical vector that is equal to 1 at its ith entries and 0 elsewhere. Although two estimated coefficient

vectors ĉ1 = ej and ĉ2 = ek (j, k ∈ {1, 2, . . . , L} and j 6= k) have the same `2 distance to the true coefficient

vector c, the frequency estimate fj from ĉ1 and fk from ĉ2 have unequal estimation error |fi − fj | and

|fi − fk|, respectively.

Alternatively, the earth mover’s distance (EMD) has recently been used in CS to measure the distance

between coefficient vectors in terms of the similarity between their supports [21, 22]. In particular, the

EMD between two vectors with the same `1 norm optimizes the work of the flow (i.e., the amount of the

flow and the distance of flow) applied to one vector in order to obtain the other vector. In our illustrative

example, if the values of the frequency samples of the PD increase monotonically, the EMDs between the

true coefficient vector c and the estimated coefficient vectors ĉ1 and ĉ2 are proportional to the frequency
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errors |fi − fj | and |fi − fk|, respectively. Based on the fact that the work of the flow between any two

entries of a PD coefficient vector is proportional to the distance between the two corresponding parameters,

it follows that the EMD between pairs of PD coefficient vectors efficiently measures the corresponding error

of parameter estimation. We elaborate our study of this property in Section 3.1.

2.3. K-Median Clustering

Cluster analysis partitions a set of data points based on the similarity information between each pair of

points, which is usually expressed in terms of a distance [35, 36]. Clustering is the task of partitioning a set

of points into different groups in such a way that the points in the same group, which is called a cluster, are

more similar to each other than to those in other groups. The greater the similarity within a group is and

the greater that the difference among groups is, the better or more distinct the clustering is.

The goal of clustering L points {p1, p2, . . . , pL} associated with positive weights w1, w2, . . . , wL and

pairwise distances d(pi, pj) into K clusters is to find the K centroids {q1, q2, . . . , qK} of the clusters such

that each cluster contains all points that are closer to their centroid than to other centroids:

Ci = {pl : d(pl, qi) ≤ d(pl, qj), i 6= j}. (6)

One can define a clustering cost as a weighted sum of the distances between each point and their corre-

sponding centroid:

J =

K∑
i=1

∑
pj∈Ci

wjd(qi, pj). (7)

Different choices of pairwise distances d(pi, pj) can result in different procedures to obtain the centroid

assignments that minimize the cost J [36]. If the squared Euclidean distance is used, i.e., d(pi, pj) =

‖pi − pj‖22, then each cluster’s centroid will be the weighted mean of its elements, and so the clustering is

called K-means clustering. If the Manhattan distance is used, i.e., d(pi, pj) = ‖pi− pj‖1, then each cluster’s

centroid will be the weighted median of its elements, and so the clustering is called K-median clustering.

In the special case where pi ∈ R, i.e., all the points are along a line, and the absolute value is used as a

distance, i.e., d(pi, pj) = |pi − pj |, the cost J is equal to

J =

K∑
i=1

∑
pj∈Ci

wj |qi − pj |. (8)

Therefore, one can solve for the centroids by setting the subgradient of the measure function (8) with respect
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to each centroid to zero; the result is

∑
pj∈Ci

wjsign(qi − pj) = 0, (9)

for i = 1, . . . ,K, where sign(x) returns the sign of x. Equation (9) illustrates that the resulting centroids

are the weighted medians of the elements in each cluster, and implies that the points on the two sides of the

centroids have maximally balanced weight. That is, for each i = 1, . . . ,K,

∑
j:pj∈Ci,pj≤qi

wj ≥
∑

j:pj∈Ci,pj>qi

wj ,

∑
j:pj∈Ci,pj<qi

wj ≤
∑

j:pj∈Ci,pj≥qi

wj .

(10)

The main difference between K-median clustering and the more predominant K-means clustering is that

the former minimizes a sum of pairwise Manhattan distances, while the latter minimizes a sum of squared

Euclidean distances. This difference makes the K-median clustering more robust to noise and outliers since

the mean of a cluster deviates from the center of the cluster when outliers are present, while the median

stays close to the center and is less impacted by the outliers. As shown in the experiments of Section 4,

K-median clustering performs better than K-means clustering in parameter estimation.

2.4. Earth Mover’s Distance

The earth mover’s distance (EMD) between two vectors (c, ĉ) relies on the notion of mass assigned to

each entry of the involved vectors, with the mass of each entry being equal to its magnitude. The goal of

EMD is to compute the lowest transfer of mass among the entries of the first vector needed in order to match

the entries of the second vector. We assume that the vectors c and ĉ are two K-sparse vectors with supports

S = {s1, s2, . . . , sK} and Ŝ = {ŝ1, ŝ2, . . . , ŝK}, respectively. EMD (c, ĉ) represents the distance between the

two vectors by finding the minimum sum of mass flows fi,j from entry csi to entry ĉŝj multiplied by the

distance di,j = |si − ŝj | that can be applied to the first vector c to yield the second vector ĉ.1 This is a

1The standard definition of EMD assumes that the two vectors have the same `1 norm. Nonetheless, one can add additional
entries on both vectors to account for the norm mismatch [37]. More specifically, we denote these additional entries as
cN+1 and ĉN+1, i.e., both are at the end of the vectors. Their magnitudes are cN+1 = cmin + max

{
0, ‖ĉ‖1 − ‖c‖1

}
and

ĉN+1 = cmin + max
{

0, ‖c‖1 − ‖ĉ‖1
}

, where cmin is the minimum magnitude among all nonzero entries of c and ĉ, and the flow
distance between the new entries is dN+1,N+1 = 0. Furthermore, the flow distance between all other entries and the new ones
are di,N+1 = dN+1,j = N for both vectors so that the propagation of mass to these new nodes is discouraged and limited to
the mismatch; note that the flow between the two new entries is fN+1,N+1 = cmin.
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typical linear programming problem that can be written as

EMD (c, ĉ) = min
f

∑
i,j

fi,jdi,j

such that

K∑
j=1

fi,j = |ci| , i = 1, 2, . . . ,K,

K∑
i=1

fi,j = |ĉj | , j = 1, 2, . . . ,K,

fi,j ≥ 0, i, j = 1, 2, . . .K.

(11)

3. Clustering Methods for Parameter Estimation

In this section, we present our approach for parameter estimation based on K-median clustering. We

begin by studying the relationship between the EMD of PD coefficient vectors and the error of parameter

estimation in order to justify the use of EMD in parameter estimation. Next, we show that the K-median

clustering can be used as EMD-optimal sparse approximation to replace the hard thresholding operator in

standard CS recovery algorithms. Afterward, we provide a theoretical performance analysis that features

an upper bound on the parameter estimation error relying on the correlation function of the PD elements.

Finally, we analyze the effect of compression and noise on the performance of the proposed algorithm and

describe the use of thresholding to mitigate the performance reduction.

3.1. Estimation Errors

We wish to obtain parameter estimates that minimize the total estimation error, i.e., the sum of

the absolute differences
∣∣∣θk − θ̂k∣∣∣ between each unknown parameter θk and the corresponding estimated

parameter θ̂k. Computing the estimation error between a set of K one-dimensional true parameters

θ = {θ1, θ2, . . . , θK} ⊂ R and a set of K one-dimensional estimates θ̂ =
{
θ̂1, θ̂2, . . . , θ̂K

}
⊂ R involves

an assignment problem that minimizes the cost of assigning each true parameter to a parameter estimate.

The resulting parameter estimation error can be obtained by solving the following linear program, which is

10



a relaxation of the formal integer program optimization [38, Corollary 19.2a]:

PEE(θ, θ̂) = min
g

∑
i,j

gi,jti,j

such that

K∑
j=1

gi,j = 1, i = 1, 2, . . . ,K;

K∑
i=1

gi,j = 1, j = 1, 2, . . . ,K;

gi,j ≥ 0, i, j = 1, 2, . . . ,K,

(12)

where ti,j =
∣∣∣θi − θ̂j∣∣∣. The minimizer g for the optimization above encodes the matching (between the true

parameter values and their estimates) that minimizes the total parameter estimation error,

When the sampling interval of the parameter space that generates by PD is constant and equal to ∆

(so that θ̄i = ∆ · (i− 1) + θ1, where i denotes the index for the corresponding PD element ψ(θ̄i)), it is easy

to see that for a pair of true and estimated coefficient vectors and the corresponding true and estimated

parameter values, the computations of the parameter estimation error (12) and the EMD (11) are a match

under the transformation tij = ∆ ·dij . This straightforward comparison demonstrates the close relationship

between the EMD and parameter estimation error (PEE), which is formally stated in the following theorem

and proven in Appendix A.

Theorem 1. Assume that ∆ is the sampling interval of the parameter space that generates the PD used

for parameter estimation. If c and ĉ are two K-sparse PD coefficient vectors with supports corresponding to

two sets of parameters θ and θ̂, then the EMD between the two coefficient vectors provides an upper bound

to the parameter estimation error between the two sets of parameters:

PEE(θ, θ̂) ≤ ∆

cmin
EMD(c, ĉ), (13)

where cmin is the smallest component magnitude among the nonzero entries of c and ĉ.

Theorem 1 clearly shows that the EMD between sparse PD coefficient vectors provides an upper bound

of the parameter estimation error for the corresponding parameters, with a scaling factor proportional to

the PD parameter sampling rate ∆. For a particular estimation problem where the PD sampling interval

is fixed, Theorem 1 gives the intuition that, though minimizing the EMD of PD coefficient vectors doesn’t

always minimize the parameter estimation error, it does minimize its upper bound in (13) and is likely
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to return a smaller estimation error than non-EMD based approaches, for which no parameter estimation

performance guarantee exists. Thus, finding an EMD-optimal sparse approximation algorithm is the next

important step for the proposed parameter estimation method.

It is worth noting from the proof of Theorem 1 that the relationship between EMD and parameter

estimation error is met with equality when cmin = cmax, i.e., all component magnitudes have the same

values. If the dynamic range of component magnitudes is defined as

r = max
i6=j

|ci|
|cj |

, (14)

then r reflects how close to equality (13) can be. The dynamic range of component magnitudes is an

important condition in parameter estimation, as we will show in the sequel.

3.2. EMD-Optimal Sparse Approximation

As we have just shown, EMD-optimal sparse approximation plays a crucial role in our proposed com-

pressive parameter estimation approach to enable small estimation error. In a similar way that the hard

thresholding operator return the best sparse approximation vector in terms of Euclidean distance, we present

an EMD-optimal sparse approximation that will return a sparse approximation vector ĉ ∈ C that is optimal

(among all sparse vectors) in terms of the EMD (ĉ, v) for any input vector v ∈ C. This approach makes

it possible to integrate EMD into a CS framework and to formulate a new compressive parameter estima-

tion algorithm by replacing the hard thresholding operation by the new EMD-optimal sparse approximation.

Assume that I = {1, 2, . . . , L} and S = {s1, s2, . . . , sK} is a K-element subset of I. Consider the problem

of finding the K-sparse vector ĉ with fixed support S that has the smallest EMD to an arbitrary vector

v. The minimum flow work defined in the EMD is achieved if and only if the flow is active between each

entry of the vector v and its nearest (in terms of index) nonzero entry si of the vector ĉ. In other words,

the nonzero entries of ĉ partition the entries of v into K different groups. Denote by Vi the set of the entry

indices of v that are matched to the nonzero entry si of ĉ; this set can be written as

Vi = {l ∈ I : |l − si| ≤ |l − sj |, sj 6= si, sj ∈ S}. (15)

The EMD defined in (11) can then be written as

EMD(v, ĉ) =

K∑
i=1

∑
j∈Vi

|vj ||j − si|. (16)
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It is important to note that (16) has the same formula as (8), which is the objective function used in K-

median clustering. Thus, one can pose a K-median clustering problem to minimize the value of (16) over all

possible supports S. To that end, define L points in a one-dimensional space with weights |v1|, |v2|, . . . , |vL|

and locations 1, 2, . . . , L, respectively. It is easy to see that if we denote the set of centroid positions obtained

by performing K-median clustering for this problem as S, then the set S corresponds to the support of the

K-sparse signal that is closest to the vector v when measured with the EMD. One can then simply compute

the sets in (15) and define the EMD-optimal K-sparse approximation ĉ to the vector v as ĉsi =
∑
j∈Vi vj

for si ∈ S, with all other entries equal to zero.

3.3. Correlation Function in PD-based Parameter Estimation

We follow the convention of greedy algorithms for sparse approximation and CS, where a proxy of the

coefficient vector is obtained via the correlation of the observations with the PD elements, i.e., v = ΨHx,

where ΨH denotes the Hermitian (conjugate transpose) of Ψ. The resulting proxy vector v can be expressed

as a linear combination of shifted correlation functions. The magnitudes of the components of this linear

combination will be proportional to the magnitudes of the corresponding entries of the sparse coefficient

vector c.

The correlation value between the PD elements corresponding to parameters θ1 and θ2 is defined as

λ(ω) = λ(θ2 − θ1) = |〈ψ(θ2), ψ(θ1)〉| =
∣∣ψH(θ1)ψ(θ2)

∣∣ , (17)

where ω = θ1 − θ2 measures the difference between parameters, and we assume for simplicity that the

correlation depends only on the parameter difference ω. In many parameter estimation problems, such as

frequency estimation and time delay estimation, the correlation function has bounded variation such that the

cumulative correlation function, defined as Λ(θ) =
∑
ω∈Θ̄:ω≤θ λ(ω), is bounded. The cumulative correlation

function is a nondecreasing function with infimum Λ(−∞) = 0 and supremum Λ(∞) =
∑
ω∈Θ̄ λ(ω).

As shown in Figure 1, the correlation function λ(ω) achieves its maximum when the parameter difference

ω = 0 and decreases as |ω| increases, finally vanishing when |ω| → ∞. In words, the larger the parameter

difference is, the smaller the similarity of the corresponding PD elements is. Due to the even nature of the

correlation function, i.e., λ(ω) = λ(−ω), the cumulative correlation function is rotationally symmetric, i.e.,

Λ(θ)+Λ(−θ) = 2Λ(0) = Λ(∞), as shown in Figure 1. Both figures also indicate that the correlation function

for time delay estimation decays much faster than that for frequency estimation, which is indicative of the

increased difficulty for frequency estimation with respect to time delay estimation, as shown in the sequel.
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Figure 1: Examples of correlation in PD constructions. (Left) Correlation function |λ(ω)| and (right) normalized
cumulative correlation function Λ(ω)/Λ(∞) as a function of the discretized parameter ω/∆ for time delay estimation
(TDE) and frequency estimation (FE).

For convenience of analysis, we assume that the correlation function is real and nonnegative, while noting

that the experimental results match our theory even when the assumption does not hold. When the signal

is measured directly without CS compression (i.e., the measurement matrix is the identity or Φ = I) in a

noiseless setting, the observations exactly match the sparse signal and can be written as

y = x =

K∑
i=1

ciψ (θi) . (18)

Therefore, the proxy entries v[j] = ψ
(
θ̄j
)H

x correspond to inner products between the observation vector

y and the PD elements ψ
(
θ̄j
)

corresponding to the sampled parameters θ̄j ∈ Θ̄. Thus, the proxy vector can

be expressed as a linear combination of shifted correlation functions. For j = 1, 2, · · · , L, the jth entry of

the proxy vector is equal to

v[j] = ψ(θ̄j)
Hx =

K∑
i=1

ciψ
(
θ̄j
)H

ψ (θi) =

K∑
i=1

ciλ
(
θ̄j − θi

)
. (19)

It is easy to see that the proxy vector will feature local maxima at the indices for the sampled parameters in

the PD that are closest to the true parameter. Thus, the goal of the parameter estimation finally reduces to

the search of local maxima in the proxy vector over all parameter samples represented in the PD, which often

is addressed via the sparse approximation operator on the proxy, e.g., via the hard thresholding operator or

EMD-optimal sparse approximation.

When the correlation function has fast decay (usually the case when the coherence of the PD is very

small), it is possible to find the local maxima of the proxy via the hard thresholding operator, as used in

standard greedy algorithms for sparse signal recovery. However, when the correlation function decays slowly
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Algorithm 1 EMD-Optimal Sparse Parameter Estimator θ̂ = C(v, Θ̄,K)

Input: PD proxy vector v, set of parameter samples Θ̄, target sparsity K
Output: parameter estimates θ̂, sampled indices S

1: Initialize: set L = |Θ̄|, choose S as a random K-element subset of {1, . . . , L}
2: repeat
3: gi = arg minj=1,...,K |i− sj | for each i = 1, . . . , L {label parameter samples}
4: sj = median{(i, |vi|) : gi = j} for each j = 1, . . . ,K {update cluster medians}
5: θ̂ = Θ̄S {find parameter estimates}
6: until S does not change or maximum number of iterations is reached

(usually the case when the PD elements are highly coherent), the thresholding operator will unavoidably

focus its search around the peak of the proxy with the largest magnitude, unless additional approaches like

band exclusion are implemented. In contrast, EMD-optimal sparse approximation identifies the local maxima

of the proxy directly by exploiting the fact that these local maxima correspond to the K-median clustering

centroids, when certain conditions (to be defined in Theorem 2 in the next subsection) are met. Thus, we can

propose an EMD-optimal sparse approximation algorithm, shown as Algorithm 1, which leverages a standard

iterative, Lloyd-style K-median clustering algorithm [35] and obtains the optimal sparse approximation of

the proxy in the EMD sense. This algorithm will repeatedly assign each entry of the proxy vector to the

cluster whose median is closest to the entry and then update each median by finding the weighted median

of the cluster using the balance property (10). At the end, the parameter estimates corresponding to the

centroids are returned.

3.4. Performance Analysis

There are some conditions that the signal x should satisfy to minimize the estimation error when using

Algorithm 1.

• Minimum Parameter Separation: If two parameters θi and θj are too close to each other, the similarity

of ψ(θi) and ψ(θj) makes it difficult to distinguish them. Therefore, our first condition considers the

minimum separation distance:

ζ = min
i6=j
|θi − θj |. (20)

• Parameter Range: It is often convenient to restrict the feasible parameters and sampled parameters

in a small range, i.e, Θ̄ is bounded. Any parameter observed should be sufficiently far away from the

bounds of the parameter range. According to (10), which implies a balance of the proxy v around the

local maxima when using a clustering method, there will be a bias in the estimation due to the missed

portion of the symmetric correlation function λ when the unknown parameter is too close to the bound
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of the parameter range. Therefore, the condition should also consider the minimum off-bound distance

ε, formally written as

ε = min
1≤i≤K

{
min

(
θi −min

(
Θ̄
)
,max

(
Θ̄
)
− θi

)}
. (21)

• Dynamic Range: If the magnitudes of some components in the signal are too small, they may be

dwarfed by larger components and ignored by the greedy algorithms. Thus, we need to pose an

additional condition on the dynamic range of the component magnitudes as defined in (14).

With these conditions, we can formulate the following theorem that guarantees the performance of our

clustering-based method for parameter estimation.

Theorem 2. Assume that the sampling interval of the parameter space ∆→ 0, and that the signal x given

in (18) involving K parameters θ1, θ2, . . . , θK has a dynamic range of the component magnitudes as defined

in (14). For any allowed error σ > 0, if the minimum separation distance (20) satisfies

ζ ≥ 2Λ−1

(
2Λ(0)

(
1− Λ(σ)/Λ(0)− 1

(2K − 2)r + 1

))
+ 2σ, (22)

and the minimum off-bound distance (21) satisfies

ε ≥ Λ−1

(
2Λ(0)

(
1− Λ(σ)/Λ(0)− 1

2Kr

))
, (23)

then the estimates θ̂1, θ̂2, . . . , θ̂K returned from Algorithm 1 have estimation error PEE
(
θ, θ̂
)
≤ Kσ.

The full proof of Theorem 2 is provided in Appendix B. Theorem 2 provides a guarantee on the parameter

estimation error obtained from K-median clustering of the proxy v for the PD coefficients. Theorem 2 also

provides a connection between the conditions described earlier and the performance of PD-based parameter

estimation, providing a guide for the design and evaluation of PDs that can achieve the required estimation

error for practical problems. For example, in time delay estimation problems, instead of increasing the

minimum separation distance required for recovery, one can try to design a transmitted waveform that

improves the other conditions cited above (such as one that increases the rate of decay of the cumulative

correlation functions, as will be discussed in the sequel) to achieve small estimation error.

Theorem 2 also makes explicit the linear relationship between the normalized cumulative correlation for

the minimum separation distance Λ(ζ/2)/Λ(∞) and the normalized cumulative correlation for the maximum

observed error Λ(σ)/Λ(0), which can be obtained by applying Λ(·) on both sides of (22) while ignoring the
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small term σ. Additionally, the required minimum separation distance will be dependent on the specific

parameter estimation problem, even when the maximum allowed error is kept constant. This illustrates the

wide difference in performances in parameter estimation, e.g., between time delay estimation and frequency

estimation: the minimum separation distance required by time delay estimation is much smaller than that

of frequency estimation due to the contrasting rates of decay of the function Λ, as shown in Figure 1.

Once more, we emphasize that although Theorem 2 is derived for the case of a nonnegative real correlation

function and is asymptotic on the parameter sampling interval ∆, our numerical simulations in the sequel

show that the predicted relationship between ζ and σ are observed in practical problems of modest sizes.

3.5. Effect of Compression

The addition of CS and measurement noise make the estimation problem more difficult, since in both of

these cases there is a decrease in the rate of decay of the cumulative correlation function Λ, as shown in the

sequel. When the measurement matrix Φ is used to obtain the observed measurements y from the signal x

such that y = Φx =
∑K
i=1 ciΦψ(θi), the proxy becomes

v[j] = 〈ΦHy, ψ(θ̄j)〉 = 〈y,Φψ(θ̄j)〉 =

K∑
i=1

ci〈Φψ(θi),Φψ(θ̄j)〉. (24)

Only if ΦHΦ = I can (24) be identical to (19). We define the compressed correlation function as

λΦ (ω) = λΦ(θ1 − θ2) = 〈Φψ(θ2),Φψ(θ1)〉 = ψH(θ1)ΦHΦψ(θ2). (25)

The proxy can again be expressed as the linear combination of shifted copies of the redefined correlation

function (25):

v[j] = v
(
θ̄j
)

=

K∑
i=1

ciλΦ

(
θ̄j − θi

)
. (26)

Although in general we will have λ 6= λΦ, we can use the preservation property of inner products through

random projections [39]. That is, when Φ has independent and identically distributed (i.i.d.) Gaussian

random entries and sufficiently many rows, there exists a constant δ > 0 such that for all pairs (θi, θj) of

interest we have

(1− δ)λ(θi − θj) ≤ λΦ(θi − θj) ≤ (1 + δ)λ(θi − θj). (27)

The parameter δ decays as the compression rate κ = M/N increases, and the manifolds λ(·) we consider

here are known to be amenable to large amounts of compression [40]. Such a relationship indicates that the
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compression can affect the correlation function and, by extension, the performance of clustering methods

for compressive parameter estimation.

3.6. Quantifying the Role of Correlation Decay

We choose to focus on simple bounds for the correlation function λ to analyze its role in the performance

of EMD and PD-based parameter estimation. Similarly to [41], we use bounding functions to measure and

control the decay rate of the correlation function λ. We approximate the correlation function λΦ(ω) with an

exponential function λ̄(ω) = exp (−a |ω|) that provides an upper bound of the actual correlation function,

i.e., λΦ(ω) ≤ λ̄(ω). The performance obtained from the exponential function approximation λ̄(·) provides an

upper bound of the performance from the real correlation function λ(·). In the exponential function, a is the

parameter that controls the decay rate: the larger a is, the faster that the correlation function decays. The

decay rate of the compressed correlation function (25) will be smaller than that of the original correlation

function (17). We assume that λ (ω) = exp (−a |ω|) and that a bound λΦ (ω) ≤ exp (−b |ω|) exists; in this

case, b < a due to the fact that (27) provides us with the following upper bound:

λΦ (ω) ≤ (1 + δ)λ (ω) ≤ (1 + δ) exp (−a |ω|) ≤ exp

(
−
(
a− ln(1 + δ)

|ω|

)
|ω|
)
, (28)

where ln(1+ δ)/ |ω| > 0 when δ > 0. This shows that CS reduces the decay speed of the correlation function

and increases the necessary minimum separation distance and minimum off-bound distance to guarantee the

preservation of parameter estimation performance. This dependence is also manifested in the experimental

results of Section 4 when the correlation function does not follow an exact exponential decay.

We observe in practice that the issues with slow-decaying correlation functions arise whenever the sum

of the copies of the correlation functions far from their peaks becomes comparable to the peak of any given

copy. Thus, one can use operators such as thresholding functions to remove this effect from appearing in

Algorithm 1. We can write a hard-thresholded version of the proxy from (26) as

vt(θi) =

 v(θi) |v(θi)| > t,

0 v(θi)| ≤ t,
(29)

where t is the value of the thresholding. The following theorem is proven in Appendix C and focuses on

the minimum separation ζ by assuming that ε is sufficiently large. The theorem demonstrates that the

thresholding operator reduces the required minimum separation distance for accurate estimation.
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Theorem 3. Under the setup of Theorem 2, assume that the correlation function defined in (25) is given by

λΦ (ω) = exp (−a|ω|). For any allowed error σ > 0, when the minimum off-bound distance ε is large enough,

if the dynamic range given in (14) is equal to r, the threshold given in (29) satisfies rcmin exp(−aσ) ≤ t ≤

cmin, and the minimum separation distance given in (20) satisfies

ζ ≥ 1

a
ln

(√
8r2

t2/ (rcmin)
2 − exp(−2aσ)

+ 1

)
(30)

where cmin is the minimum component magnitude, then the estimates θ̂1, θ̂2, . . . , θ̂K returned from performing

Algorithm 1 on the thresholded proxy vt in (29) have estimation error PEE
(
θ, θ̂
)
≤ Kσ.

Theorem 3 extends Theorem 2 by including the use of thresholding as a tool to combat the slow decay of

the correlation function, due to an ill-posed estimation problem or the use of CS. One can also instinctively

see that the presence of noise in the measurements will also slow the decay of the correlation function, which

according to the theorem will require larger minimum separation or careful thresholding. In practice, the

decay coefficient a can usually be obtained by finding the minimum value such that the exponential function

exp (−a|ω|) provides a tight upper bound for the correlation function λ(ω).

Perhaps the most important application of Theorem 3 focuses on the choice of threshold t for the

particular problem of interest, which can improve the performance of the clustering method in compressive

parameter estimation. To deal with the problems of slow decay or large dynamic range, one can try to

increase the threshold value on the proxy rather than increasing the minimum separation to improve the

estimation performance. Again, although Theorem 3 is based on an approximation of the actual compressive

parameter estimation problem setup, our numerical results in the sequel show its validation in practical

settings for time delay estimation and frequency estimation.

It is worth noting the similarities between our analysis above and that performed in [41]. Both analyses

rely on the assumption that the cumulative correlation function is symmetric, nondecreasing and variation-

bounded. Additionally, both analyses use an upper bound of the correlation function to simplify the analysis.

Furthermore, both analyses derive the requirement that the separation between any two parameters needs

to be large enough. The main difference between the analyses is that the guarantees of [41] are focused on

exact parameter estimation, while our analysis considers the quality of parameter approximation when the

problem setup does not provide exact estimation.
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4. Numerical Experiments

In order to test the performance of the clustering parameter estimation method on different problems,

we present a number of numerical simulations involving time delay estimation and frequency estimation.2

Before detailing our experimental setups, we define the parametric signals and the PDs involved in these

two example applications.

The parametric signal model for time delay estimation uses a chirp signal g(t) = exp
(
j2π

(
fc + fa

t
T

)
t
)
p(t),

where

p(t) =


√

2

3Tfs

(
1 + cos

(
2π

t

T

))
, t ∈ [0, T ],

0, otherwise.

. (31)

The length of the chirp and the chirp’s starting frequency are fixed to be T = 1 µs and fc = 1 MHz across

all experiments. The chirp’s frequency sweep fa will have different values in different experiments. The

sampling frequency of the chirp signal is fs = 1
Ts

, and N samples are taken for each signal. The delay

parameter space range goes from θmin = 0 to θmax = NTs. The PD for time delay estimation contains all

chirp signals corresponding to the parameter space sampled at a resolution of ∆, e.g.,

Ψ = [ψ(0), ψ(∆), . . . , ψ(θmax)], (32)

with entries

ψ(θ)[n] = g(nTs − θ), n = 0, 1, . . . , N − 1. (33)

For frequency estimation, the parametric signals are the N -dimensional complex exponentials with entries

ψ(θ)[n] =
exp

(
j2πθ nN

)
√
N

, n = 0, 1, . . . , N − 1. (34)

The parameter space range goes from θmin = 0 to θmax = N Hz. As before, the PD for frequency estimation

is described in (32) with sampling interval ∆. In both time delay estimation and frequency estimation, the

number of unknown parameters is set to K = 4.

2Additional experiments are available in an early version of this manuscript [42].
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4.1. Theorem Validation

In the first experiment, we illustrate the relationship between the minimum separation distance and

the maximum allowable error described in Theorem 2. We measure the performance for each minimum

separation distance ζ by the maximum estimation error σ over 1000 signals with randomly chosen parameter

values that are spaced by at least ζ. For time delay estimation, fa = 20 MHz, fs = 50 MHz, N = 500, and

∆ = 0.001 µs so that the PD contains observations for 10001 parameter samples, and we let the minimum

separation ζ ∈ [0.07 µs, 0.1 µs]. For frequency estimation, N = 500 and ∆ = 0.05 Hz, so that the PD contains

observations for 10001 parameter samples, and we let the minimum separation ζ ∈ [35 Hz, 75 Hz].

Figure 2 shows the normalized cumulative correlation for the maximum error Λ(σ)/Λ(0) as a function

of the normalized cumulative correlation for the minimum separation distance Λ(ζ/2)/Λ(∞) for both time

delay estimation and frequency estimation. The figure also shows the relationship between the minimum

separation ζ and the maximum error σ without the use of the cumulative correlation function for both

example cases. The approximately linear relationship between Λ(ζ)/Λ(∞) and Λ(σ)/Λ(0) for both the time

delay estimation and frequency estimation cases numerically verifies the result of Theorem 2. The difference

between the performance results, as well as the relationship between ζ and σ, validates the conclusion that

frequency estimation requires a significantly larger minimum separation than time delay estimation. We

also see from Figure 2 that it is impossible to get an arbitrarily small estimation error even if the minimum

separation keeps increasing, as the estimation error cannot be smaller than the parameter sampling step

∆ (as observed in the figure). In fact, the figure shows that the relationship between Λ(ζ/2)/Λ(∞) and

Λ(σ)/Λ(0) ends its linearity exactly when the error approach the parameter sampling resolution ∆ for both

application examples. To achieve precision above the resolution ∆, the use of additional methods such as

interpolation is needed [43]. Nonetheless, though the function Λ(·) varies in different parameter estimation

problems, we consistently obtain a linear relationship between the minimum separation distance and the

parameter estimation error for several parameter estimation problems by employing the function Λ(·).

In the second experiment, we illustrate the application of Theorem 3 in the time delay estimation problem.

While the values of all other parameters are kept the same as in the first experiment, we set ∆ = 0.002 µs

and vary the chirp frequency sweep fa between 2 Hz and 20 Hz to generate different rates of decay of the

correlation function. For each chirp frequency sweep, we obtain the decay parameter a as the smallest

value that enables the exponential function exp (−a|ω|) to bound the correlation function λ (ω). We then

determine the minimum separation ζ for which a maximum estimation error σ = 0.04 µs is obtained for

Algorithm 1 over 1000 randomly drawn signals having the given minimum separation ζ. The first result
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Figure 2: Performance results for two parameter estimation problems as a function of the parameter separation. Left:
TDE; right: FE. Top: Normalized cumulative correlation function for the maximum estimation error Λ(σ)/Λ(0) as
a function of the normalized cumulative correlation function for the minimum separation Λ(ζ/2)/Λ(∞), showing a
linear dependence. Bottom: Maximum error σ as a function of Minimum separation ζ.

in Figure 3 shows the approximate reciprocal relationship between ζ and a, which is very close to the line

ζ = ln
(√

8/0.2 + 1
)
/a = 2.71/a predicted by Theorem 3, when the threshold level t = 0.2 and dynamic range

r = 1. The second result shows the approximate logarithmic relationship between the minimum separation ζ

and the dynamic range r, when we set the decay parameter a = 8.28 and the threshold t = 0.9. The minimum

separation observed is smaller than the prediction ζ = ln
(√

8r2/0.9 + 1
)
/8.28 = ln

(
3.1r2 + 1

)
/8.28 given by

Theorem 3, which is likely explained by the difference between the correlation function and its exponential

upper bound. The third result in Figure 3 shows that required threshold for accuracy estimation when

a = 12.67 and r = 1 is slightly less than the value t = exp (−12.67 · 0.04) = 0.60 predicted by the theorem.

The results presented above can be interpreted as a numerical corroboration of Theorem 3.

4.2. Performance Comparison

Our following experiments test the performance of clustering methods in compressive parameter esti-

mation for different settings. We incorporate K-median clustering into subspace pursuit, a standard sparse

recovery algorithm introduced in [44], by replacing each instance of the hard thresholding operator in sub-

space pursuit with an instance of Algorithm 1. The resulting clustering subspace pursuit (CSP) is shown
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Figure 3: Performance results for time delay estimation. The plots show the minimum separation necessary for
accurate estimation as a function of (left) decay coefficient a, (middle) dynamic range r, and (right) threshold value
t. Blue solid curves denote experimental results, while red dashed curves denote the bounds given by Theorem 3.

Algorithm 2 Clustering Subspace Pursuit (CSP)

Input: measurement vector y, measurement matrix Φ, sparsity K, set of sampled parameters Θ̄, threshold
t

Output: estimated signal x̂, estimated parameter values θ̂
1: Initialize: x̂ = 0, S = ∅, generate PD Ψ from Θ̄.
2: repeat
3: yr = y − Φx̂ {Compute residual}
4: v = (ΦΨ)Hyr {Obtain proxy from residual}
5: v(|v| ≤ t) = 0 {Threshold proxy}
6: S = S ∪ C(v, Θ̄,K) {Augment parameter estimates from proxy}
7: c = (ΦΨS)+y {Obtain proxy on parameter estimates}
8: S = C(c, Θ̄S ,K) {Refine parameter estimates}
9: x̂ = ΨScS {Assemble signal estimate}

10: θ̂ = Θ̄S {Assemble parameter estimates}
11: until a convergence criterion is met

in Algorithm 2, where C refers to Algorithm 1 and M+ denotes the Moore-Penrose pseudoinverse of M .

Similarly to the band-exclusion subspace pursuit (BSP) used in [13, 16, 17], CSP repeatedly computes

the proxy for the coefficient vectors from the measurement residual and then obtains the indices of the

potential parameter estimates from the thresholded proxy using Algorithm 1. A second clustering refines

the estimation after the potential estimates are merged with the previous estimates in order to maintain a

final set of K estimates at the end of each iteration. CSP can also be armed with polar interpolation to

significantly improve the estimation precision in a manner similar to band-excluded interpolating subspace

pursuit (BISP) [1, 43]; we call the resulting algorithm clustering interpolating subspace pursuit (CISP).

Again, in Algorithm 2, we use the K-median clustering rather than K-means clustering because the

criteria of K-median clustering to minimize Manhattan distance matches the definition of EMD and is more

robust to the presence of outliers, which can be caused by a slowly decaying correlation function, compression,

or noise. Figure 4 shows the average time delay estimation error of two versions of Algorithm 2: one that
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Figure 4: Average time delay estimation error of Algorithm 2 with K-median clustering and K-means clustering.

uses K-median clustering and another one that uses K-means clustering. It is clear that K-means clustering

is not able to obtain the same estimation quality as K-median clustering.

Besides BSP and CSP, we also evaluate the performance on approximate message passing with MUSIC

(AMP) [45, 46] and low-rank Hankel matrix reconstruction (HMR) [29] to estimate time delays or frequencies

from the linear measurements. For estimation from subsampled observations, we also consider algorithms

such as atomic soft thresholding (AST) for atomic norm minimization [25–27, 41] and enhanced matrix

completion (EMC) [28]. All convex optimization methods (AST, EMC, HMR) are implemented using the

CVX package [47], and the output time-domain signals are then input to the root MUSIC algorithm for line

spectral estimation. For time delay estimation, these algorithms are modified according to (3) to perform

indirect time delay estimation. In the following experiments, the signal length is set for both applications

to N = 101 due to the computational burden of the optimization-based methods. Table 1 illustrates the

difference between the algorithms considered in these experiments.

Time Delay Estimation: Our first experiment tests the estimation performance of the algorithms

listed in this section on 1000 independent randomly-generated time delay estimation problems. The chirp

signal has frequency sweep fa = 4 MHz and sampling frequency fs = 10 MHz. Thus, the duration of

the whole chirp signal is NTs = 10.1 µs. The K = 4 unknown time delays are generated randomly such

that the minimum separation ζ = 0.05 µs. The parametric dictionary used for CSP, CISP, BSP and BISP

contains the signal observations for the sampling set with sampling step ∆ = 0.01 µs. The threshold value

for CSP and CISP is set to t = 0 (i.e., no thresholding takes place). The maximum allowed coherence for

BSP and BISP is chosen as µ = 0.01, which was found to give the best estimation performance over a grid

search. Figure 5 shows the average estimation error as a function of the compression rate κ = M/N when

noiseless linear measurements and subsampled signals are observed. The linear measurements are obtained

24



Table 1: Comparison of algorithms for sparsity-based parameter estimation

Algorithm
Estimation
Problem

Observation
Model

Performance
Conditions

Guarantee

AST [25–27, 41]
line spectrum esti-
mation

subsampled
signals

minimum separa-
tion, fast decay in
correlation function

exact parameter
estimation

BSP/BISP
[13, 16, 17]

arbitrary, with op-
tional interpolation

arbitrary
maximum allowed
coherence

exact signal re-
covery

EMC [28]
line spectrum esti-
mation

subsampled
signals

minimum separa-
tion

exact signal re-
covery

HMR [29]

line spectrum esti-
mation, NMR spec-
troscopy estimation

linear mea-
surements

Gaussian measure-
ment matrix

exact signal re-
covery

AMP [45, 46]

arbitrary with sta-
tistical estimation
from noisy observa-
tions

linear mea-
surements

Gaussian measure-
ment matrix, suffi-
cient denoiser per-
formance

recovery predic-
tion via state
evolution

CSP/CISP
arbitrary, with op-
tional interpolation

arbitrary
minimum separa-
tion, fast decay in
correlation function

approximated
parameter
estimation

via a measurement matrix with entries drawn i.i.d. from the standard Gaussian distribution. The results

indicate that CSP can estimate the time delays with error below the sampling step δ when κ ≥ 0.3 for both

types of observations, which matches the performance of its band-exclusion counterparts. However, while

BSP requires setting the maximum allowed coherence µ carefully via grid search, CSP can achieve similar

performance without relying on thresholding. Due to the limitation of discretization, both CSP and BSP

perform worse than HMR, which uses convex optimization to estimate off-grid time delays precisely. Armed

with polar interpolation, both BISP and CISP can easily reach accurate estimation. We believe that the

performance of HMR can increase with the use of more precise convex optimization solvers; however, this

would also increase the estimation complexity. The poor performance of AMP is likely due to the fact that

the measurement matrix derived from (3) does not allow for the signal estimate to be modeled statistically

as the true signal with additive white Gaussian noise [45]. Additionally, AST and EMC cannot estimate the

time delay from subsampled signals since the process of changing the time delay estimation to frequency

estimation is possible only for linear measurements.

When the duration of the chirp signal is decreased, the Gram matrix G in (3) converges towards a scaled

identity matrix. Thus, the measurement matrix for the resulting frequency estimation problem more closely

matches that of the original delay estimation problem. Figure 6 presents the average estimation error for
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Figure 5: Performance for the time delay estimation problem, as measured by the average parameter error, when
(left) linear measurements and (right) subsampled signals are observed.
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Figure 6: Performance for the impulse delay estimation problem, as measured by the average parameter error, when
(left) linear measurements and (right) subsampled signals are observed.

an impulse delay estimation as the function of the compression rate κ. The good performance of AMP in

estimation from linear measurements demonstrates that the necessary properties of measurement matrix

remain. It is easy to see that when the observations correspond to a subsampled signal, it will be very

difficult to estimate the impulse time delays.

Frequency Estimation: In our next experiment, we repeat the first experiment on frequency estimation

with 1000 independent randomly drawn signals. The K = 4 unknown frequencies have minimum separation

ζ = 0.1Hz. The parametric dictionary used for CSP, CISP, BSP and BISP contains the signal observations

for the sampling set with sampling step ∆ = 0.1Hz. The threshold value for CSP and CISP and the maximum

allowed coherence for BSP and BISP are required to be t = 0.4 and µ = 0.1 to have good performance,

according to Theorem 3 and a grid search, respectively.

Similarly as in the first experiment, Figure 7 shows the average estimation error as a function of the

compression rate and the SNR. The conclusion is similar: armed with polar interpolation, CISP achieves

accurate estimation when compression is high enough and CISP shows similar noise robustness as other
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Figure 7: Performance of compressive parameter estimation for the frequency estimation, as measured by the average
parameter error, as a function of (top) the CS compression rate κ = M/N with noiseless measurements and (bottom)
the measurement SNR with κ = 0.4, under (left) linear measurements and (right) subsampled observations.

algorithms; we found that the trends shown in the figure extend to SNRs of at least 90 dB. Though CSP

needs the thresholding value to estimate the frequencies correctly, we can always choose a proper value

according to Theorem 3.

In the last experiment, we apply our proposed clustering-based algorithm for compressive parameter

estimation with a real-world signal. The lynx signal has N = 114 samples and is used to test the performance

of line spectral estimation algorithms in [48]. It is well approximated by a sum of complex sinusoids with

small minimum separation distance and large dynamic range among the component magnitudes. We increase

the size of the signal by a factor of 10 using interpolation and obtain CS measurements of the resulting signal

with a random matrix for various compression rates under several levels of measurement noise. The maximum

allowed coherence in BISP is set to ν = 0.2 after a grid search to optimize the algorithm’s performance, while

the threshold level in CISP is set to t = 0. Figure 8 shows the average relative estimation error between the

estimates from CISP and BISP and those obtained from root MUSIC (a line spectral estimation algorithm

with high accuracy [48]) when applied to the full length signal. The results show that CISP without

thresholding has closer performance to root MUSIC than the best configuration of BISP.
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Figure 8: Performance of compressive parameter estimation algorithm for the real FE problem. Dash-dot, dashed,
dotted lines represent the average relative estimation errors when SNR = 10, 30, 50 dB, and lines with circle and
cross are errors of CISP and BISP.

5. Discussion and Conclusions

In this paper, we have introduced and analyzed the relationship between the EMD applied to PD coef-

ficient vectors and the parameter estimation error obtained from sparse approximation methods applied to

the PD representation. We also leveraged the relationship between EMD-based sparse approximation and

K-median clustering algorithms in the design of new compressive parameter estimation algorithms. Based on

the relationship between the EMD and the parameter estimation error, we have analytically shown that the

EMD between PD coefficient vectors provides an upper bound of the parameter estimation error obtained

from methods that use PDs and EMD. Furthermore, we leveraged the connection between EMD-sparse

approximation and K-median clustering, to formulate new algorithms that employ sparse approximation in

terms of the EMD; we then derived three theoretical results that provide performance guarantees for EMD-

based parameter estimation under certain requirements for the signals observed, in contrast to existing work

that does not provide such guarantees. Our experimental results show the validation of our analysis in

several practical settings, and provides methods to control the effect of coherence, compression, and noise

in the performance of compressive parameter estimation.

In our new compressive parameter estimation algorithms, we use K-median clustering rather than the

more predominant K-means clustering to obtain the sparse approximation or the local maxima of the proxy.

The main difference between K-median clustering and K-means clustering is that their criteria in (7) are

different: the former uses the Manhattan distance and the latter uses the squared Euclidean distance. This

difference makes K-median clustering more robust to noise and outliers and prevents K-means clustering

from being able to return the EMD-optimal sparse approximation in general.

Our experiments have shown that our clustering-based algorithms for compressive parameter estima-
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tion can achieve the same performance as those based on band exclusion. Though both methods use

additional parameters to improve the performance, the clustering method is preferable as it does not need

to rely on parameter tuning under a noiseless setting and for simpler problems, while the band exclusion is

highly dependent on the allowed coherence in all cases. The threshold level is needed only in cases where

the estimation problem is particularly ill-posed, CS has been heavily used, measurement noise is present, or

in other cases where the correlation function decays slowly. As shown in Figure 5, the clustering method

without thresholding has the same performance as the band-exclusion method with optimally tuned maxi-

mum coherence. Interested readers can refer to [1], where we have further studied the different sensitivities

of these two methods on the additional parameters.

The results we obtained show the very different performance level of convex optimization-based methods

on time delay estimation and frequency estimation, which is due to the fact that all convex methods can not

be applied on time delay estimation directly. In contrast, the advantage of PD-based parameter estimation

is that it can be utilized on almost all parameter estimation problems, as they only require that a PD can

be obtained to yield sparse representation for the relevant signals. Additionally, the convex methods depend

on convex optimization solver to recover signals, which have high computation cost. In the second part

of numerical experiments, we have to set the length of the signal to be a small value otherwise the CVX

package is not able to solve the proposed optimization problem. Instead, the essential part to the PD-based

parameter estimation is the sparse approximation operator used in the algorithm, which usually can be much

simpler. Furthermore, as shown in Table 1, the observation model of PD-based parameter estimation can

be arbitrary: the observations can be the linear measured or subsampled signals, while existing approaches

focus on a single observation model.
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Appendix A. Proof of Theorem 1

Assume that the vectors c and ĉ have the same `1 norm, so that the standard definition of the EMD

applies. Let f∗ =
[
f∗1,1, f

∗
1,2, . . . , f

∗
1,K , f

∗
2,1, . . . , f

∗
K,K

]T
be the vector that solves the optimization problem

(11), g∗ be the similarly-defined binary vector that solves the optimization problem (12), and z = f∗−cming
∗

is a flow residual. Similarly, let d and t be the similarly-defined vectors collecting all ground distances di,j
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and ti,j . Then from (12) and (11), we have

EMD (c, ĉ) = dT f∗ = dT (cming
∗ + z) =

cmin

∆
tT g∗ + dT z =

cmin

∆
PEE

(
θ, θ̂
)

+ dT z. (A.1)

Note that the first term in (A.1) is the value of the objective function in the optimization problem (11) when

all entries of both c and ĉ have magnitude cmin, i.e., when z = 0. The second term dT z corresponds to the

contribution to the objective function due to magnitudes that are larger than cmin. We show now that this

second term is nonnegative.

When the magnitude of the entry of c corresponds to θ̂i increases from its baseline value of cmin to ci, at

least one of the outgoing flows fi,j have to increase. This implies that the corresponding flow f∗i,j ≥ cming
∗
i,j ,

i.e., the residual zi,j = f∗i,j − cming
∗
i,j ≥ 0. Thus, the entries r are all nonnegative, and dT r ≥ 0. Then one

can rewrite (A.1) as EMD(c, ĉ) ≥ cmin

∆ PEE
(
θ, θ̂
)

.

To end, we consider the case when ‖c‖1 6= ‖ĉ‖1, where we have to add additional entries to the vec-

tors: cN+1 = cmin + max {0, ‖ĉ‖1 − ‖c‖1} and ĉN+1 = cmin + max {0, ‖c‖1 − ‖ĉ‖1}. The additional esti-

mated parameters due to those additional entries are both θm since the indices of the additional entries

are the same. The resulting K + 1-sparse vectors with additional entries are c∗ = [c1, c2, . . . , cN , cN+1]

and ĉ∗ = [ĉ1, ĉ2, . . . , ĉN , ĉN+1]; these two new vectors have matching `1 norms, ‖c∗‖1 = ‖ĉ∗‖1, and

the resulting estimated parameters are θ∗ = [θ1, θ2, . . . , θK , θm] and θ̂∗ =
[
θ̂1, θ̂2, . . . , θ̂K , θm

]
, where θm

is an (arbitrary) parameter value assigned to the newly added N + 1-index entry. Therefore, we get

PEE
(
θ, θ̂
)

= PEE
(
θ∗, θ̂∗

)
, due to a match between the added parameter values θm in θ∗ and in θ̂∗.

Next, we consider the effect of the mismatch of the `1 norms of the vectors c and ĉ in the computation

of EMD (c, ĉ) and EMD (c∗, ĉ∗). We can see that EMD (c, ĉ) ≥ EMD (c∗, ĉ∗): when we compute EMD (c, ĉ),

the `1 norm mismatch penalty in the objective function of (11) – as defined in Footnote 1 and involving

the flows fi,N+1 and fN+1,j from/to the entries cN+1, ĉN+1 to/from any cj , ĉj – is no less than the actual

contribution of the flows from/to the new entries c∗N+1, ĉ
∗
N+1 to/from the existing entries c∗j , ĉ

∗
j in computing

EMD (c∗, ĉ∗), as those distances di,N+1 and dN+1,j are all less than or equal to N . Putting this together

with the equivalence in PEE and Theorem 1 when applied to vectors with matching `1 norms,we obtain

that cmin

∆ PEE
(
θ, θ̂
)

= cmin

∆ PEE
(
θ∗, θ̂∗

)
≤ EMD (c∗, ĉ∗) ≤ EMD (c, ĉ).
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Appendix B. Proof of Theorem 2

As the sampling step of the parameter ∆→ 0, the proxy defined as (19) becomes a continuous function

such that

v(ω) =

K∑
i=1

ciλ(ω − θi), (B.1)

for all ω ∈ Θ̄. Additionally, the balanced weight properties around the cluster centroid θ̂i, as defined in (10),

reduces in the asymptotic case to

∫
p∈Cj ,p≤θ̂i

w(p)dp =

∫
p∈Cj ,p≥θ̂j

w(p)dp, (B.2)

where p is the position function and w is the weight function. Furthermore, the cumulative correlation

function converges to

Λ(θ) =

∫ θ

−∞
λ(ω)dω. (B.3)

Without loss of generality, if θmin = min
(
Θ̄
)

and θmax = max
(
Θ̄
)
, assume that parameter values are

sorted so that

θmin + ε ≤ θ1 < θ2 < · · · < θK ≤ θmax − ε. (B.4)

When the entries of the proxy v are clustered into K groups according to the centroids θ̂1, θ̂2, . . . , θ̂K ,

as shown in Algorithm 1, the point
(
θ̂i + θ̂i+1

)
/2 is the upper bound for ith cluster and the lower bound

for (i + 1)th cluster, since that value/location has the same distance to the two centroids around it. We

will show how large the minimum separation ζ and minimum off-bound distance ε need to be such that the

maximum estimation error is σ, i.e. maxk

∣∣∣θ̂k − θk∣∣∣ ≤ σ.

We first consider the kth cluster with centroid θ̂k, where k = 2, 3, . . . ,K − 1. The k th cluster includes

the parameter range
[(
θ̂k−1 + θ̂k

)
/2,
(
θ̂k + θ̂k+1

)
/2
]
. According to the weight balance property (B.2),

we need for the proxy function in (B.1) to have the same sum over the range
[(
θ̂k−1 + θ̂k

)
/2, θ̂k

]
and
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[
θ̂k,
(
θ̂k + θ̂k+1

)
/2
]
, i.e.,

∫ θ̂k

θ̂k−1+θ̂k
2

v(ω) dω =

∫ θ̂k+θ̂k+1
2

θ̂k

v(ω) dω,

2

∫ θ̂k

−∞
v(ω) dω =

∫ θ̂k−1+θ̂k
2

−∞
v(ω) dω +

∫ θ̂k+θ̂k+1
2

−∞
v(ω) dω,

2

K∑
i=1

ciΛ
(
θ̂k − θi

)
=

K∑
i=1

ciΛ

(
θ̂k−1 + θ̂k

2
− θi

)
+

K∑
i=1

ciΛ

(
θ̂k + θ̂k+1

2
− θi

)
,

2ckΛ
(
θ̂k − θk

)
=

K∑
i=1

ciΛ

(
θ̂k−1 + θ̂k

2
− θi

)
+

K∑
i=1

ciΛ

(
θ̂k + θ̂k+1

2
− θi

)
− 2

∑
i6=k

ciΛ
(
θ̂k − θi

)
. (B.5)

Since θ̂k − θk ∈ {−σ, σ} and θk+1− θk ≥ ζ, for k = 2, 3, · · · ,K − 1, we obtain a lower bound of the term

on the left hand side of (B.5) by repeatedly using the fact that Λ(ω) is nondecreasing:

K∑
i=1

ciΛ

(
θ̂k−1 + θ̂k

2
− θi

)
+

K∑
i=1

ciΛ

(
θ̂k + θ̂k+1

2
− θi

)
− 2

∑
i 6=k

ciΛ
(
θ̂k − θi

)

=

k−1∑
i=1

ciΛ

(
θ̂k−1 + θ̂k

2
− θk−1

)
+

K∑
i=k

ciΛ

(
θ̂k−1 + θ̂k

2
− θK

)
+

k∑
i=1

ciΛ

(
θ̂k + θ̂k+1

2
− θk

)

+

K∑
i=k+1

ciΛ

(
θ̂k + θ̂k+1

2
− θK

)
− 2

k−1∑
i=1

ciΛ
(
θ̂k − θ1

)
− 2

K∑
i=k+1

ciΛ
(
θ̂k − θk+1

)

≥
k−1∑
i=1

ciΛ

(
θ̂k−1 − θk−1 + θ̂k − θk + θk − θk−1

2

)
+

K∑
i=k

ciΛ (−∞)

+

k∑
i=1

ciΛ

(
θ̂k − θk + θ̂k+1 − θk+1 + θk+1 − θk

2

)
+

K∑
i=k+1

ciΛ (−∞)− 2

k−1∑
i=1

ciΛ (∞)

− 2

K∑
i=k+1

ciΛ
(
θ̂k − θk + θk − θk+1

)

≥
k−1∑
i=1

ciΛ

(
ζ

2
− σ

)
+

k∑
i=1

ciΛ

(
ζ

2
− σ

)
− 2

k−1∑
i=1

ciΛ (∞)− 2

K∑
i=k+1

ciΛ

(
−ζ

2
+ σ

)

≥
k−1∑
i=1

ciΛ

(
ζ

2
− σ

)
+

k∑
i=1

ciΛ

(
ζ

2
− σ

)
− 2

k−1∑
i=1

ciΛ (∞)− 2

K∑
i=k+1

ci

(
Λ(∞)− Λ

(
ζ

2
− σ

))
≥− 2

∑
i 6=k

ci
ck
ck

(
Λ (∞)− Λ

(
ζ

2
− σ

))
+ ckΛ

(
ζ

2
− σ

)

≥− 2(K − 1)rck

(
Λ (∞)− Λ

(
ζ

2
− σ

))
+ ckΛ

(
ζ

2
− σ

)
≥ (2(K − 1)r + 1) ckΛ

(
ζ

2
− σ

)
− 2(K − 1)rckΛ(∞). (B.6)
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So the lower bound of the term on the left hand side of (B.5) is

2Λ
(
θ̂k − θk

)
≥ (2(K − 1)r + 1) Λ

(
ζ

2
− σ

)
− 2(K − 1)rΛ(∞). (B.7)

Similarly, one can obtain the following upper bound of term on the left hand side of (B.5):

2Λ
(
θ̂k − θk

)
≤ (2(K − 1)r + 2) Λ(∞)− (2(K − 1)r + 1) Λ

(
ζ

2
− σ

)
. (B.8)

Thus, if ζ satisfies

Λ

(
ζ

2
− σ

)
≥ Λ(∞)

(
1− Λ(σ)/Λ(0)− 1

2(K − 1)r + 1

)
, (B.9)

then the estimation error satisfies

2Λ
(
θ̂k − θk

)
≥ (2(K − 1)r + 1) Λ

(
ζ

2
− σ

)
− 2(K − 1)rΛ(∞)

≥ (2(K − 1)r + 1) Λ(∞)− 2Λ(σ) + Λ(∞)− 2(K − 1)rΛ(∞)

≥ 2Λ(∞)− 2Λ(σ) ≥ 2Λ(−σ), (B.10)

and

2Λ
(
θ̂k − θk

)
≤ (2(K − 1)r + 2) Λ(∞)− (2(K − 1)r + 1) Λ

(
ζ

2
− σ

)
≤ (2(K − 1)r + 2) Λ(∞)− (2(K − 1)r + 1) Λ(∞) + 2Λ(σ)− Λ(∞)

≥ 2Λ(σ), (B.11)

which implies −σ ≤ θ̂k − θk ≤ σ for k = 2, 3, · · · ,K − 1.

Next, we consider the first cluster with centroid θ̂1, which includes the parameter range
[
θmin,

(
θ̂1 + θ̂2

)
/2
]
.
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From the weight balance property, we have

∫ θ̂1

θmin

v(ω) dω =

∫ θ̂1+θ̂2
2

θ̂1

v(ω) dω,

2

∫ θ̂1

−∞
v(ω) dω =

∫ θmin

−∞
v(ω) dω +

∫ θ̂1+θ̂2
2

−∞
v(ω) dω,

2

K∑
i=1

ciΛ
(
θ̂1 − θi

)
=

K∑
i=1

ciΛ (θmin − θi) +

K∑
i=1

ciΛ

(
θ̂1 + θ̂2

2
− θi

)
,

2c1Λ
(
θ̂1 − θ1

)
=

K∑
i=1

ciΛ (θmin − θi) +

K∑
i=1

ciΛ

(
θ̂1 + θ̂2

2
− θi

)
− 2

K∑
i=2

ciΛ
(
θ̂1 − θi

)
. (B.12)

If ε satisfies

Λ(ε) ≥ Λ(∞)

(
1− Λ(σ)/Λ(0)− 1

2Kr

)
, (B.13)

then we have the following result from (B.12) by using the relationship (B.9):

2Λ
(
θ̂1 − θ1

)
=

K∑
i=1

ci
c1

Λ (θmin − θi) +

K∑
i=1

ci
c1

Λ

(
θ̂1 + θ̂2

2
− θi

)
− 2

K∑
i=2

ci
c1

Λ
(
θ̂1 − θi

)
≤

K∑
i=1

ci
c1

Λ (θmin − θ1) + Λ

(
θ̂1 + θ̂2

2
− θ1

)
+

K∑
i=2

ci
c1

Λ

(
θ̂1 + θ̂2

2
− θ2

)
− 2

K∑
i=2

ci
c1

Λ
(
θ̂1 − θK

)
≤ KrΛ(−ε) + Λ(∞) + (K − 1)rΛ

(
−ζ

2
+ σ

)
≤ Kr (Λ(∞)− Λ(ε)) + Λ(∞) + (K − 1)r

(
Λ(∞)− Λ

(
ζ

2
− σ

))
≤ Kr2Λ(σ)− Λ(∞)

2Kr
+ Λ(∞) + (K − 1)r

2Λ(σ)− Λ(∞)

2(K − 1)r + 1

≤ 2Λ(σ) (B.14)

It can be similarly shown for the last cluster centroid that 2Λ
(
θ̂K − θK

)
≥ 2Λ(−σ).

In summary, when the minimum separation ζ and off-bound distance ε satisfy equation (B.9) and (B.13),

respectively, all estimates satisfy
∣∣∣θ̂k − θk∣∣∣ ≤ σ, k = 1, 2, . . . ,K, and hence PEE

(
θ̂, θ
)
≤ Kσ
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Appendix C. Proof of Theorem 3

When the redefined correlation function is λΦ(ω) = exp (−a|ω|), the proxy function given in (26) is

v(ω) =

K∑
i=1

ci exp (−a |ω − θi|) . (C.1)

Without loss of generality, we assume that parameter values are sorted so that θ1 < θ2 < · · · < θK and all

component magnitudes are no smaller than 1. We also assume that the minimum off-bound distance ε is

sufficiently large and can be ignored during the proof.

We denote by [lj , uj ] the parameter range around each θj will be preserved after thresholding with level

t. We have l1 < θ1 < u1 < · · · < θj−1 < uj−1 < lj < θj < uj < · · · < θK . Due to the important fact that

the preserved parameter range is small when the threshold level is large, as t increase, uj decrease (i.e., the

upper bound decrease) and lj increase (i.e., the lower bound increase). So the proxy at ω = uj has value

equal to the threshold, i.e.,

t

cj
=
ν (uj)

cj
=

K∑
i=1

ci
cj

exp (−a |uj − θi|) ,

t

cj
=

j−1∑
i=1

ci
cj

exp (−a (uj − θi)) + exp (−a(uj − θj)) +

K∑
i=j+1

ci
cj

exp (−a (θi − uj)) ,

t

cj
= exp (−a (uj − θj))

j−1∑
i=1

ci
cj

exp (−a (θj − θi)) + exp (−a (uj − θj)) ,

+ exp(−a(θj − uj))
K∑

i=j+1

ci
cj

exp (−a(θi − θj)) ,

Tj = Aj
1

Uj
+

1

Uj
+BjUj , (C.2)

where Uj = exp(a(uj − θj)) > 1,

0 ≤Aj =

j−1∑
i=1

ci
cj

exp (−a (θj − θi)) ≤ r
j−1∑
i=1

exp (−a (j − i) ζ) ≤ r1− exp (−aζj)
1− exp (−aζ)

≤ r

exp (aζ)− 1
, (C.3)

0 ≤Bj =

K∑
i=j+1

ci
cj

exp (−a (θi − θj)) ≤ r
K−j∑
i=1

exp (−a (j − i) ζ) ≤ r1− exp (−aζ(K − j + 1))

1− exp (−aζ)

≤ r

exp (aζ)− 1
, (C.4)
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and Tj = t/cj . One solution of the quadratic equation (C.2) is

Uj =
Tj −

√
T 2
j − 4(1 +Aj)Bj

2Bj
. (C.5)

In solution (C.5), Uj decreases as Tj increases. The alternative solution is omitted due to the fact that Uj

will increase as Tj increases, which implies that uj will increase as t decreases. Similarly,

t

cj
=
ν(lj)

cj
=

K∑
i=1

exp (−a |lj − θi|) ,

t

cj
=

j−1∑
i=1

ci
cj

exp (−a (lj − θi)) + exp (−a (θj − lj)) +

K∑
i=j+1

ci
cj

exp (−a (θi − lj)) ,

t

cj
= exp (−a (lj − θj))

j−1∑
i=1

ci
cj

exp (−a (θj − θi)) + exp (−a (θj − lj)) ,

+ exp (−a (θj − lj))
K∑

i=j+1

ci
cj

exp (−a (θi − θj)) ,

Tj = AjLj +
1

Lj
+Bj

1

Lj
, (C.6)

where Lj = exp (a (θj − lj)) > 1. The corresponding solution is

Lj =
Tj −

√
T 2
j − 4Aj(1 +Bj)

2Aj
. (C.7)

In order to have real values for solutions (C.5) and (C.7), Tj (and therefore t) should be sufficiently large.

Since

max ((1 +Aj)Bj , Aj (1 +Bj)) ≤
(

1 +
r

exp (aζ)− 1

)
r

exp (aζ)− 1
≤ 2r2

(exp (aζ)− 1)
2 , (C.8)

if

T 2
j =

(
t

cj

)2

≥
(

t

cmax

)2

≥ 8r2

(exp (aζ)− 1)
2 , (C.9)

then both (C.5) and (C.7) are real valued.

Let θ̂j ∈ [lj , uj ] be the estimated parameter for θj . Asymptotically, when the sampling step of the
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parameter space ∆ goes to zero, the balance weight properties (B.2) implies

∫ θ̂j

lj

K∑
i=1

ci exp (−a |ω − θi|) dω =

∫ uj

θ̂j

K∑
i=1

ci exp (−a |ω − θi|) dω. (C.10)

When θ̂j ≤ θj , the left hand side of (C.10) is

a

cj

∫ θ̂j

lj

K∑
i=1

ci exp (−a |ω − θi|) dω

=a

j−1∑
i=1

ci
cj

∫ θ̂j

lj

exp (−a (ω − θi)) dω + a

∫ θ̂j

lj

exp (−a (θj − ω)) dω + a

K∑
i=j+1

ci
cj

∫ θ̂j

lj

exp (−a (θi − ω)) dω

=aAj

∫ θ̂j

lj

exp (−a (ω − θj)) dω + a

∫ θ̂j

lj

exp (−a (θj − ω)) dω + aBj

∫ θ̂j

lj

exp (−a (θj − ω)) dω

=Aj (Lj − Ej) + (Bj + 1)

(
1

Ej
− 1

Lj

)
=−AjEj +Bj

1

Ej
+

1

Ej
+AjLj −

1

Lj
−Bj

1

Lj
, (C.11)

where Ej = 1/λ(θ̂j − θj) = exp
(
a
∣∣∣θ̂j − θj∣∣∣) = exp

(
a
(
θj − θ̂j

))
≥ 1, and the right hand side of (C.10) is

a

cj

∫ uj

θ̂j

K∑
i=1

ci exp (−a |ω − θi|) dω

=a

j−1∑
i=1

ci
cj

∫ uj

θ̂j

exp (−a (ω − θi)) dω + a

∫ uj

θ̂j

exp (−a |ω − θj |) dω + a

K∑
i=j+1

ci
cj

∫ uj

θ̂j

exp (−a (θi − ω)) dω

=a

j−1∑
i=1

ci
cj

∫ uj

θ̂j

exp (−a (ω − θi)) dω + a

∫ θj

θ̂j

exp (−a (θj − ω)) dω

+ a

∫ uj

θj

exp (−a (ω − θj)) dω + a

K∑
i=j+1

ci
cj

∫ uj

θ̂j

exp (−a (θi − ω)) dω

=Aj

(
Ej −

1

Uj

)
+ 1− 1

Ej
+ 1− 1

Uj
+Bj

(
Uj −

1

Ej

)
=AjEj −Bj

1

Ej
+ 2− 1

Ej
−A 1

Uj
− 1

Uj
+BjUj . (C.12)

After plugging (C.11) and (C.12) into (C.10) and moving all terms with Lj or Uj to the right side and
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moving other terms to the left side, we obtain

2AjEj − 2Bj
1

Ej
+ 2− 2

Ej

=AjLj −
1

Lj
−Bj

1

Lj
+Aj

1

Uj
+

1

Uj
−BjUj

=AjLj +AjLj − Tj + Tj −BjUj −BjUj

=2AjLj − 2BjUj .

=
(
Tj −

√
T 2
j − 4Aj(1 +Bj)

)
−
(
Tj −

√
T 2
j − 4(1 +Aj)Bj

)
=
√
T 2
j − 4(1 +Aj)Bj −

√
T 2
j − 4Aj(1 +Bj)

=

(
T 2
j − 4(1 +Aj)Bj

)
−
(
T 2
j − 4Aj(1 +Bj)

)√
T 2
j − 4Aj(1 +Bj) +

√
T 2
j − 4(1 +Aj)Bj

=
4 (Aj −Bj)√

T 2
j − 4Aj(1 +Bj) +

√
T 2
j − 4(1 +Aj)Bj

, (C.13)

where the second equality results from (C.2) and (C.6).

One can show a similar result when θj > θ̂j and Ej = exp
(
a
∣∣∣θj − θ̂j∣∣∣) = exp

(
a
(
θj − θ̂j

))
, so (C.10)

can be written as

Aj −Bj
Sj

=


AjEj −Bj

1

Ej
+ 1− 1

Ej
if θj ≤ θ̂j

Aj
1

Ej
−BjEj − 1 +

1

Ej
if θj > θ̂j

, (C.14)

where

Sj =
1

2

(√
T 2
j − 4Aj(1 +Bj) +

√
T 2
j − 4(1 +Aj)Bj

)
≤ Tj ≤

t

cmin
≤ 1 ≤ Ej , (C.15)

and

Sj =
1

2

(√
T 2
j − 4Aj(1 +Bj) +

√
T 2
j − 4(1 +Aj)Bj

)
≥

√(
t

rcmin

)
− 8

(
r

exp (aζ)− 1

)2

(C.16)

using (C.8).

When θj ≤ θ̂j ,

(Aj −Bj)/Sj = AjEj −Bj/Ej + 1− 1/Ej ≥ (Aj −Bj)/Ej , (C.17)
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So Aj ≥ Bj due to the fact that Sj ≤ Ej . If

Sj ≥

√(
t

rcmin

)
− 8

(
r

exp (aζ)− 1

)2

≥ exp(−aσ) ≥ 0, (C.18)

which can be rewritten as

ζ ≥ 1

a
ln

(√
8r2

t2/ (rcmin)
2 − exp(−2aσ)

+ 1

)
, (C.19)

the condition (C.9) satisfies, so the solutions (C.5) and (C.7) are both real valued. Additionally, we have

AjEj−Bj
1

Ej
+1− 1

Ej
=
Aj −Bj
Sj

≤ (Aj −Bj) exp(aσ) ≤ Aj exp(aσ)−Bj exp(−aσ)+1−exp(−aσ). (C.20)

This implies that Ej ≤ exp (aσ) and hence 0 ≤ θ̂j − θj ≤ σ. Similarly, when θj > θ̂j , Aj ≤ Bj and

−σ ≤ θ̂j − θj ≤ 0.

Finally, the condition for ζ to be real valued is t ≥ rcmin exp(−aσ), which can be obtained from (C.19).

References

References

[1] D. Mo, M. F. Duarte, Compressive parameter estimation with earth mover’s distance via k-median clustering, in: Proc.

SPIE Wavelets and Sparsity XV, Vol. 8858, San Diego, CA, 2013.

[2] D. Mo, M. F. Duarte, Compressive line spectrum estimation with clustering and interpolation, in: 2016 Annual Conference

on Information Science and Systems (CISS), 2016, pp. 572 – 577.

[3] R. G. Baraniuk, Compressive sensing, IEEE Signal Proc. Mag. 24 (4) (2007) 118–121.

[4] E. J. Candés, Compressive sampling, in: Proc. Int. Congr. Math. (ICM), Vol. 3, Madrid, Spain, 2006, pp. 1433–1452.

[5] D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52 (4) (2006) 1289–1306.

[6] V. Cevher, A. C. Gurbuz, J. H. McClellan, R. Chellappa, Compressive wireless arrays for bearing estimation, in: IEEE

Int. Conf. Acoustics, Speech and Signal Proc. (ICASSP), Las Vegas, NV, 2008, pp. 2497–2500.

[7] M. F. Duarte, Localization and bearing estimation via structured sparsity models, in: IEEE Stat. Signal Proc. Workshop

(SSP), Ann Arbor, MI, 2012, pp. 333–336.

[8] M. A. Herman, T. Strohmer, High resolution radar via compressed sensing, IEEE Trans. Inf. Theory 57 (6) (2009) 2275–

2284.

[9] H. J. Rad, G. Leus, Sparsity-aware tdoa localization of multiple sources, IEEE Trans. Signal Proc. 61 (19) (2013) 4021–

4025.

[10] S. Sen, G. Tang, A. Nehorai, Multiobjective optimization of ofdm radar waveform for target detection, IEEE Trans. Inf.

Theory 59 (2) (2011) 639–652.
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