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Polynomial Dictionary Learning Algorithms in Sparse
Representations

Jian Guan1, Xuan Wang1,∗, Pengming Feng2, Jing Dong3,
Jonathon Chambers4, Zoe L. Jiang1, Wenwu Wang5

Abstract

Dictionary learning has been extensively studied in sparse representations.

However, existing dictionary learning algorithms are developed mainly for stan-

dard matrices (i.e. matrices with scalar elements), and little attention has been

paid to polynomial matrices, despite their wide use for describing convolutive

signals or for modeling acoustic channels in room and underwater acoustics.

In this paper, we propose a polynomial dictionary learning technique to deal

with signals with time delays. We present two types of polynomial dictionary

learning methods based on the fact that a polynomial matrix can be represent-

ed either as a polynomial of matrices (i.e. the coefficient in the polynomial

corresponding to each time lag is a scalar matrix) or equally as a matrix of

polynomial elements (i.e. each element of the matrix is a polynomial). The first

method allows one to extend any state-of-the-art dictionary learning method to

the polynomial case; and the second method allows one to directly process the

polynomial matrix without having to access its coefficient matrices. A sparse
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coding method is also presented for reconstructing convolutive signals based on

a polynomial dictionary. Simulations are provided to demonstrate the perfor-

mance of the proposed algorithms, e.g. for polynomial signal reconstruction

from noisy measurements.

Keywords: dictionary learning, polynomial matrix, impulse responses, sparse

representation

1. Introduction

Dictionary learning has been widely used in many applications, such as sig-

nal denoising [1, 2], source separation [3, 4, 5, 6], and image super-resolution

[7]. Several algorithms have been proposed for this problem, such as method of

optimal directions (MOD) [8], K-SVD [9], and simultaneous codeword optimiza-5

tion (SimCO) [10], often with a two-stage process alternating between sparse

coding and dictionary update. The sparse coding step aims to find the sparse

coefficient matrix of a signal for a given dictionary using algorithms, such as

matching pursuit (MP) [11], the least absolute shrinkage and selection operator

(LASSO) [12], focal underdetermined system solver (FOCUSS) [13], orthogo-10

nal least squares (OLS) [14, 15, 16], and orthogonal matching pursuit (OMP)

[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. The dictionary update step aims

to revise the dictionary at the current iteration to better fit the training signals

with the sparse coefficient matrix obtained from the previous iteration.

Although the conventional dictionary learning methods have been studied15

extensively, they cannot be applied directly to deal with signals with time de-

lays, such as acoustic impulse responses, and reverberant (convolutive) signals.

Such signals are often described with polynomials or polynomial matrices, and

encountered widely in digital signal processing and communications [29], e.g.

for convolutive mixing [30] and multiple-input multiple-output (MIMO) chan-20

nel modeling [31]. For example, an element of a polynomial matrix can be used

to denote a finite impulse response (FIR) filter, e.g. in a MIMO system [31]

[32].
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In this paper, we present a polynomial dictionary learning technique to deal

with signals with time delays, where two types of polynomial dictionary learn-25

ing methods are proposed based on how a polynomial matrix is represented.

A polynomial matrix can be expressed in terms of the polynomial of matrices

model or the matrix of polynomials model [30] [33]. The first method is proposed

based on the polynomial of matrices model, for which the polynomial dictionary

learning problem can be converted to a conventional dictionary learning problem30

by concatenating the coefficient matrices of the polynomial matrix [34]. This

allows the conventional dictionary learning methods (e.g. K-SVD, MOD, and

SimCO) to be used to solve the polynomial dictionary learning problem. Even

though this method can be used in dictionary learning for signals with time

delays, it cannot be applied directly to the polynomial matrix (i.e. a matrix35

of polynomial elements). The second method, on the other hand, is proposed

based on the matrix of polynomials model, where an idea similar to the conven-

tional MOD algorithm is applied to the polynomial case. It has an advantage

where dictionary learning can be directly performed on the polynomial matrices

without having to first resort to their coefficient matrices as in the polynomial of40

matrices model. In addition, we present a polynomial OMP method by extend-

ing the conventional OMP to the polynomial case as a byproduct to calculate

the representation coefficients for signal reconstruction.

The proposed polynomial dictionary learning technique can be used for mod-

eling acoustic impulse responses, thereby having potential applications in e.g.45

denoising, dereverberation, deconvolution, and channel shortening of acoustic

impulse responses. Each element of the polynomial matrix can be seen as an FIR

filter, and the atoms in the learned dictionary also represent FIR filters. As a

result, the polynomial dictionary, which is learned from a set of acoustic impulse

responses, can provide an overall description of the acoustic environment. In this50

paper, we demonstrate the performance of the proposed polynomial dictionary

learning algorithms for acoustic impulse response modeling and denoising.

The remainder of the paper is organized as follows: Section 2 briefly in-

troduces the background of conventional dictionary learning and polynomial
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matrices; Section 3 presents the proposed polynomial dictionary learning meth-55

ods in detail; Section 4 evaluates the performance of the proposed algorithms,

using simulations and experiments on acoustic impulse response modeling and

denoising; and Section 5 concludes the paper and discusses potential future

work.

2. Background60

2.1. Dictionary Learning

Dictionary learning aims to learn a dictionary with a set of training signals,

so that each training signal can be represented by a small number of atoms

chosen from the dictionary. Typically, this can be modeled as

Y = DX, (1)

where Y ∈ Rn×N is the set of training signals {yi}Ni=1, D ∈ Rn×K ( n ≪ K ) is

the overcomplete dictionary containing K atoms {dj}Kj=1 ∈ Rn, and X ∈ RK×N

is the sparse representation matrix.

To find the dictionary, the following optimization problem is often considered

min
D,X

∥Y −DX∥2F

subject to ∀i, ∥xi∥0 ≤ κ,

(2)

where xi is the ith column of the matrix X, ∥.∥0 denotes the number of nonzero65

entries in the argument, and κ controls the sparsity level, i.e. the maximum

number of the nonzero entries in each column. The Frobenius norm (F-norm)

is defined as ∥M∥F =
√∑

i

∑
j

M2
ij , where Mij is the (i, j)th element of M.

The above optimization problem is usually solved using a two-step iterative

process, alternating between sparse coding and dictionary update. In the sparse70

coding step, given the observation matrix Y and the dictionary matrix D, X

is estimated, subject to the constraint that each column of X is sparse (in the

level of κ). In the dictionary update step, the dictionary matrix D is calculated
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based on the set of training signals {yi}Ni=1 within Y, and the sparse coefficient

matrix X obtained in the previous step. This process is iterated until a pre-75

defined stopping criterion is met. Examples of such algorithms include MOD

[8], K-SVD [9], and SimCO [10]. These algorithms, however, are designed only

for scalar dictionary matrices. They are not directly applicable to polynomial

matrices that are widely used for representing signals with time lags, such as

acoustic impulse response or convolutive signals, as discussed next.80

2.2. Polynomial Matrices

Polynomial matrices have been widely used for describing transfer functions

in MIMO systems [35], e.g. the collection of multiple-path channel impulse

responses from the sources to the sensors. In an acoustic system, the polynomial

matrix can be used to model the acoustic impulse responses, with each element85

of the polynomial matrix representing an FIR filter, which can be a segment of

the impulse responses with relative short time lags.

A polynomial matrix can be represented using either a polynomial of matri-

ces model (a polynomial whose coefficients are matrices), or a matrix of polyno-

mials model (i.e. a matrix whose elements are polynomials). More specifically,

for a p× q polynomial matrix A(z), we have

A(z) =
L−1∑
ℓ=0

A(ℓ)z−ℓ

=


a11(z) a12(z) · · · a1q(z)

a21(z)
. . .

...
...

. . .
...

ap1(z) · · · · · · apq(z)

,
(3)

where A(ℓ) ∈ Cp×q is the coefficient matrix of z−ℓ, which denotes the impulse

response at time lag ℓ, and L is the maximum time lag of each polynomial.

Note that, L is set to be a positive integer here, however, the model can be

easily extended for a negative L. In this paper, the polynomial matrix, e.g.,
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A(z), is denoted in italic font to avoid confusion with its coefficient matrix,

e.g., A(ℓ), which we denote in normal font. We can see from (3) that A(z)

can be expressed as a sum of terms with weights z−ℓ and coefficient matrices

A(ℓ), ℓ = 0, . . . , L − 1, or alternatively expressed as a matrix whose elements

are polynomials. The (i, j)th element of A(z), aij(z), can be expressed as

aij(z) =
L−1∑
ℓ=0

aij(ℓ)z
−ℓ, (4)

where the coefficient aij(ℓ) can be seen as the magnitude of the (i, j)th impulse

response at time lag ℓ. The F-norm of A(z) can be defined as follows

∥A(z)∥F =

√√√√ p∑
i=1

q∑
j=1

L−1∑
ℓ=0

|aij(ℓ)|2. (5)

Note that, setting the filters in (3) to be the same length is mainly for the

convenience of modeling and algorithmic implementation. In practice, for the

FIR filters aij(z) that have different lengths, one can set all the elements aij(z)90

to be the same length with zero padding, i.e. setting the coefficients of the

high-order taps of the shorter filters to be zeros.

There are several algorithms that have already been proposed for polyno-

mial matrix decomposition, such as polynomial eigenvalue decomposition [35]

[36] and polynomial singular value decomposition [30, 32, 37]. However, no algo-95

rithms have yet been presented for polynomial matrix decomposition in a sparse

representation context, which is our focus in this paper, as discussed next.

3. Polynomial Dictionary Learning

3.1. Proposed Model

Based on the conventional dictionary learning model (1), we propose a poly-

nomial dictionary learning model [34] as follows

Y (z) = D(z)X, (6)
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where the polynomial matrix Y (z) ∈ Rn×N contains the signals (e.g. acoustic100

impulse responses) to be represented,D(z) ∈ Rn×K is the polynomial dictionary

matrix with polynomial atoms, and X ∈ RK×N is the sparse representation

coefficient matrix of Y (z).

Similar to conventional dictionary learning, the aim here is to find a suitable

polynomial dictionary D(z) for sparse representation of the “signals” denoted

as polynomials Y (z), such as

min
D(z),X

∥Y (z)−D(z)X∥2F

subject to ∀i, ∥xi∥0 ≤ κ,

(7)

3.2. Polynomial Dictionary Learning Based on the Polynomial of Matrices Mod-

el105

In this section, we present a polynomial dictionary learning algorithm based

on the optimization of (7) and using the polynomial of matrices model. To this

end, as in our preliminary work [34], we can convert the polynomial model (6) to

a conventional dictionary learning model [34]. As a result, any state-of-the-art

dictionary learning methods could be used to address the optimization problem110

in (7).

According to equation (3), (6) can be rewritten as

L−1∑
ℓ=0

Y(ℓ)z−ℓ =
L−1∑
ℓ=0

D(ℓ)z−ℓX, (8)

where Y(ℓ) ∈ Rn×N and D(ℓ) ∈ Rn×K are the coefficient matrices of the

polynomial matrices Y (z) and D(z) at lag ℓ, respectively. Y(ℓ) can be seen as

the impulse responses at lag ℓ. For any ℓ ∈ {0, . . . , L− 1}, Y(ℓ) takes the same

linear combination of the atoms in its corresponding D(ℓ), and X is the sparse

representation matrix for all these D(ℓ)s, i.e.

Y(ℓ) = D(ℓ)X, (9)
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which means the coefficient matrices of Y (z) at all the time lags can be rep-

resented as the linear combination of the coefficient matrices of D(z) at their

corresponding lags ℓ with the same sparse representation matrix X. Therefore,

(6) can be further rewritten as

Y = DX, (10)

where Y ∈ RnL×N and D ∈ RnL×K are defined by concatenating the coefficient

matrices of Y (z) and D(z) at all the time lags, respectively, as

Y = [Y(0); . . . ;Y(ℓ); . . . ;Y(L− 1)] , (11)

D = [D(0); . . . ;D(ℓ); . . . ;D(L− 1)] . (12)

As a result, the polynomial dictionary learning model (6) is converted to

the conventional dictionary learning model (10). Therefore, the polynomial

dictionary learning optimization problem (7) can be rewritten as

min
D,X

∥Y −DX∥2F

subject to ∀i, ∥xi∥0 ≤ κ,

(13)

where the new dictionary D is overcomplete, and it can be learned by many

state-of-the-art dictionary learning methods. Usually, an alternating optimiza-

tion strategy is employed to solve (13), by iteratively updating the dictionary

and sparse coefficients. Assuming the dictionary is fixed, the sparse represen-

tation matrix X can be calculated by optimizing the following equation using

methods such as OMP or FOCUSS [13]

min
X

∥Y −DX∥2F

subject to ∀i, ∥xi∥0 ≤ κ,

(14)
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In [34], the K-SVD algorithm is employed to learn the dictionaryD. Here, we

assume dk is the kth column ofD, and xk
T contains its corresponding coefficients

from the kth row of XΩk
, and Ωk is the set of indices indicating which atom

dk should be used for representing Y. Then dk and xk
T can be updated by

optimizing the following cost

min
dk,x

k
T

∥Ek − dkx
k
T ∥2F , (15)

where Ek = YΩk
−

∑
j ̸=k

djXj,Ωk
denotes the error matrix in which the kth

atom is removed, and the optimization of (15) can be seen as a rank-1 matrix

approximation problem, so that SVD can be used for the decomposition of Ek

to minimize (15). The extended K-SVD algorithm for polynomial dictionary115

learning is given in Algorithm 1.

Algorithm 1 Extended K-SVD

Input: Signal matrix Y (z), sparsity κ, the number of iterations In
Output: D and X
Polynomial Matrix Conversion:

Convert Y (z) =
L−1∑
ℓ=0

Y(ℓ)z−ℓ to a scalar matrix Y, using (11).

Initialization: D(0) = Y(:, 1 : K).
Iterations:
for n = 1, . . . , In
Sparse Coding:
Calculate sparse representations by using conventional OMP to solve (14).

Dictionary Update:
for k = 1, · · · ,K

Define the set of indices Ωk by finding the relevant elements in Y which
use atom dk.
Calculate Ek = YΩk

−
∑
j ̸=k

djXj,Ωk
.

Update the dictionary atom and its corresponding sparse representa-
tion coefficient by using the SVD decomposition to minimize (15), as
(dk,x

k
T ) = SVD(Ek).

end for
end for

Alternatively, D can also be learned by using other methods such as MOD

[8]. Assuming X(n) is the sparse representation matrix obtained at the nth iter-
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ation, the dictionary can then be obtained by solving the following optimization

problem

D(n+1) = argmin
D

∥Y −DX(n)∥2F , (16)

where (16) can be seen as a least-squares problem, therefore the dictionary can

be updated in terms of MOD as

D(n+1) = YX(n)T (X(n)X(n)T )
−1

. (17)

The dictionary D can be obtained when the algorithm converges. The extended

MOD algorithm is summarized in Algorithm 2.

Algorithm 2 Extended MOD

Input: signal matrix Y (z), sparsity κ, number of iterations In
Output: D and X
Polynomial Matrix Conversion:

Convert Y (z) =
L−1∑
ℓ=0

Y(ℓ)z−ℓ to scalar matrix Y, using (11).

Initialization: D(0) = Y(:, 1 : K).
Iterations:
for n = 1, . . . , In
Sparse Coding:
Calculate sparse representations by using conventional OMP to solve (14).

Polynomial Dictionary Update:
Update the polynomial dictionary by solving (16), using (17).

end for

Finally, D(z) can be obtained from D with a reverse operation of (12), and

Y can be reconstructed using X obtained by applying the OMP algorithm, as

Ŷ =
[
Ŷ(0); . . . ; Ŷ(ℓ); . . . ; Ŷ(L− 1)

]
, (18)

where Ŷ(ℓ) is the coefficient matrix of the reconstructed polynomial matrix

Ŷ (z) at lag ℓ, where ℓ ∈ {0, . . . , L− 1}. With a reverse operation to equation120

(11), we can obtain the coefficient matrix Ŷ(ℓ) of the reconstructed polynomial

matrix Ŷ (z) at each time lag ℓ. Finally, Ŷ (z) can be obtained by employing

(3) and (18).
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Note that, D can also be learned by using other state-of-the-art dictionary

learning methods based on our proposed model (10). In this paper, both K-125

SVD and MOD are extended to the polynomial case, hence they are here named

extended K-SVD and extended MOD, respectively.

3.3. Polynomial Dictionary Learning Based on the Matrix of Polynomials Model

In this section, we present another polynomial dictionary learning method

by directly operating on D(z) and Y (z) based on the matrix of polynomials130

model. This (partially) avoids the process for converting the polynomial model

to a conventional model.

To demonstrate the concept, we employ the same strategy as that in the

conventional MOD algorithm. GivenX(n) obtained at the nth iteration, and the

“signal” Y (z), where X(n) is calculated by using the same method as in Section

3.2, then D(z) can be updated by optimizing the following cost function,

D(z)
(n+1)

= argmin
D(z)

∥Y (z)−D(z)X(n)∥2F . (19)

Similar to (16), (19) can be solved by extending (17) to the polynomial case,

leading to

D(z)
(n+1)

= Y (z)X(n)T (X(n)X(n)T )
−1

. (20)

With (20), the polynomial dictionary is updated directly rather than op-

erating on the polynomial coefficient matrices as in the methods described in

Section 3.2. According to (19) and (20), the proposed polynomial MOD (P-135

MOD) algorithm is summarized in Algorithm 3.

The dictionary learned by the PMOD algorithm will be compared with the

extended MOD in Section 4.

3.4. Polynomial Sparse Representation

In this section, we aim to find the sparse representation X of polynomial140

matrix Y (z) modeled signals, given the polynomial dictionary D(z), based on

the polynomial dictionary learning model (6). Here, D(z) can be obtained by

11



Algorithm 3 Polynomial MOD

Input: signal matrix Y (z), sparsity κ, the number of iterations In
Output: D(z) and X
Initialization: D(z)(0) = Y (z)(:, 1 : K).
Iterations:
for n = 1, . . . , In
Sparse Coding:
Calculate sparse representations by using conventional OMP to solve (14).
Polynomial Dictionary Update:
Update the polynomial dictionary by solving (19), using (20).

end for

using the proposed methods in Section 3.2 or 3.3. As a byproduct, we propose

a polynomial sparse representation method by extending the OMP algorithm

to the polynomial case.145

Assuming y(z) is an arbitrary polynomial “signal” from the set of polynomial

signals Y (z), the sparse representation of y(z) can be calculated by optimizing

the following cost function

min
x

∥y(z)−D(z)x∥2F

subject to ∥x∥0 ≤ κ.

(21)

Similar to the discussions in Sections 3.2 and 3.3, in order to optimize (21),

we can convert the polynomial sparse representation problem (21) to the con-

ventional sparse coding problem by concatenating the coefficient matrices of

Y (z) and D(z) respectively. Therefore, (21) can be converted to

min
x

∥y −Dx∥22

subject to ∥x∥0 ≤ κ,

(22)

where y denotes the vector obtained by concatenating all the coefficients of y(z)

at all lags

y = [y(0); . . . ;y(ℓ); . . . ;y(L− 1)] . (23)

Many sparse coding algorithms can be used to optimize (22), such as the OM-
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P algorithm. The OMP algorithm employs a greedy strategy to calculate the

sparse coefficients by iteratively estimating the κ-nonzero coefficients to ap-

proximate the signal. For each iteration, the residual between the signal and its

approximation is updated, where the approximation is calculated by selecting150

the best-matched atoms from the dictionary which can maximally reduce the

ℓ2-norm residual error between the signal and its approximation. When the er-

ror is reduced to below a specified threshold, the optimal sparse representation

is obtained.

However, it is not trivial to find the match between the signal and the atoms155

in the polynomial case, as this involves the similarity measures between two

polynomial vectors/matrices. In the conventional OMP algorithm, the similari-

ty between the atom and the current residual is measured by their inner product,

where the atom has the maximum inner product with the current residual be-

ing selected as the best-matched atom. This is not directly applicable for the160

polynomial case. Here we use the F-norm as the similarity measure between the

polynomial residual and polynomial atoms, i.e. by calculating their distance

using the F-norm. For each iteration, we select the polynomial atom (i.e. the

column in the polynomial dictionary), which has the smallest F-norm error with

the polynomial residual, as the best-matched dictionary atom.165

Suppose dk0(z) is the k0th column of the polynomial dictionary D(z), which

is the best-matched polynomial atom at the current iteration j, then dk0(z) can

be calculated as

dk0(z) = argmin
dk(z)

∥dk(z)− r(z)
(j−1)∥2F , k = 1, . . . ,K, (24)

where dk(z) is the kth column of D(z), r(z)
(j−1)

is the residual r(z) at the

(j − 1)th iteration, and r(z) is initialized by the signal y(z). The provisional

13



solution x can then be obtained by optimizing the following cost

x(j) = argmin
x

∥y(z)−D(z)S(j)x∥2F

subject to ∥x∥0 ≤ κ,

(25)

where D(z)S(j) contains the best-matched atoms indexed by the set S(j). The

formulation (25) can be seen as a polynomial least-squares problem, as the

coefficient matrices of y(z) at all different lags should have the same linear

combination of the coefficient matrices of D(z)S(j) at their corresponding lags.

According to (11), and (12), we can obtain the solution to (25) as

x(j) = (DT
S(j)DS(j))

−1
DT

S(j)y, (26)

where DS(j) and y are constructed by concatenating the coefficient matrices of

DS(j) and y(z) at all lags, respectively. Then, at the jth iteration, the residual

r(z) is updated as

r(j)(z) = y(z)−D(z)S(j)x(j). (27)

The proposed polynomial OMP (POMP) algorithm is given in Algorithm 4.

Algorithm 4 Polynomial OMP

Input: signal y(z), dictionary D(z), sparsity κ
Output: xopt

Initialization: residual r(z)(0) = y(z), solution x = 0, solution support
S0 = ∅, ϵ = 10−6.
Iteration:
for j = 1, . . . , κ

Best-Matching Atom Selection:
Optimize k0 = argmin

k
∥dk(z)− r(z)(j−1)∥2F , by calculating the F-norm er-

ror ∥dk(z)− r(z)(j−1)∥2F , where dk(z) ∈ D(z), k = 1, · · · ,K.
Update Support Set: S(j) = S(j−1)

∪
{k0}.

Update Provisional Solution: Calculate x(j) by solving (25), using (26).

Update Residual: r(z)(j) = y(z)−DS(j)(z)x(j).

Stopping Criteria: If ∥r(z)(j)∥2F ≤ ϵ, then xopt = x(j), and break, else
continue.

end for
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3.5. Computational Complexity

In this section, we analyse the computational complexity of the proposed

algorithms. For the polynomial dictionary learning methods, i.e. extended K-

SVD, extended MOD and PMOD, the computational complexities involved in

the sparse coding stage in each iteration are dominated by the calculation of170

DX, which are the same, i.e. O(nLKN). In the dictionary update stage, how-

ever, the computational complexity of the extended K-SVD is dominated by the

calculation of Ek, which is O(nLKN) for each Ek, and overall at O(nLK2N).

For the extended MOD and PMOD, the complexity is dominated by YXT and

Y (z)XT , as shown in (17) and (20), which require O(nLNK) and O(nNK)175

respectively, with pre-computed XXT .

For the POMP algorithm, although the selection of the best-matching atom

is different from that in the conventional OMP method, it requires the same

number of iterations for atom selection. For each “signal” y(z), the computa-

tional complexity is dominated by the calculation of DTy with pre-computed180

DTD as shown in (26), which requires O(nLK), and for a set of “signals” Y (z),

the computational complexity is O(nLKN).

3.6. Recoverability and RIP Property

The restricted isometry property (RIP) of sparse recovery algorithms (e.g.

the OMP and OLS algorithms) has been studied in the compressed sensing (CS)185

literature [38, 39, 40, 21, 24, 41, 22, 26, 42, 28, 25, 27, 23, 16], and the dictionary

learning context [43, 44, 45, 46, 47]. For example, in [40, 41, 26], sufficient

conditions required by the OMP method were established for the exact κ-sparse

signal recovery in the noiseless case or the exact support set recovery in the

noise case, if the sensing matrix satisfies the RIP. The incoherence property has190

also been studied, for example, in [44] for dictionary learning, and in [39] for

compressed sensing.
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The proposed dictionary learning methods are the extensions of the con-

ventional K-SVD and MOD methods to the polynomial case. Although the

conventional K-SVD and MOD have been successfully used in real application-195

s, these methods lack theoretical guarantees. In other words, the dictionaries

learned by these methods cannot guarantee to satisfy the RIP [38, 39] and in-

coherence property, and theoretical results of these methods have not yet been

fully justified [43, 44, 45]. This is because both the K-SVD and MOD methods

used an alternating minimization strategy to learn the dictionary in two steps,200

namely, sparse coding and dictionary update, by fixing one and updating the

other. By using this strategy, the dictionary needs to be initialized, however, the

initial guesses may be far from the true dictionary, which leads to the difficulty

for providing provable guarantees for these algorithms [44]. In real applications,

there is no ground truth dictionary, which makes it is even harder to provide205

such guarantees in practice. In addition, the algorithms may converge to a

coherent dictionary, which can lead to unstable estimation for sparse recovery

[43, 44].

The extended K-SVD and extended MOD algorithms are based on the poly-

nomial of matrices model, where we converted the polynomial dictionary learn-210

ing problem to a conventional dictionary learning problem. Thus, similar to

conventional K-SVD and MOD methods, the polynomial dictionaries obtained

by using the extended K-SVD and extended MOD may not satisfy the RIP or

incoherency property. The PMOD algorithm is based on the matrix of polyno-

mials model, which is an extension of the MOD method. The PMOD method215

used the same strategy and stopping criterion as the MOD method to train

the dictionary, where the polynomial dictionary is initialized with the “polyno-

mial signals” (i.e. acoustic signals modeled with a polynomial matrix), which

may also be far away from the true dictionary, and the dictionary obtained

after convergence may not be incoherent. It is reasonable to deduce that the220

PMOD method may not be able to guarantee the RIP or incoherency property.

However, further efforts are required to provide more precise theoretical results.

The proposed POMP is an extension of the conventional OMP to the poly-
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nomial case, and in the extreme scenario where no time delay (i.e. zero time

lags) is involved, the proposed POMP degenerates to the conventional OMP225

(except the measure of similarity between the residual and the atoms in the dic-

tionary). Therefore, the existing theoretical results established for conventional

OMP in the literature could be extended to the polynomial case. However, it

is not trivial to extend these theoretical results when multiple time lags are in-

volved and extra attention need to be given to several important issues, such as230

the definition of the RIP property and incoherence measures in the polynomial

setting. These are interesting future research directions that are beyond the

scope of our current work.

4. Experiments and Resluts

In this section, we evaluate the performance of the proposed methods using235

both synthetic and real data. We use a polynomial matrix to model signals with

time lags, and therefore the polynomial dictionaries are learned from training

data consisting of signals with time lags. The learned polynomial dictionaries

are used to recover the noisy signals. The experiments are first conducted

on synthetic polynomial matrices to show how the proposed methods work on240

polynomial matrices, where the polynomial matrices are generated randomly,

and each element of the polynomial matrices can be assumed as an FIR model

represented by polynomials. Then, the proposed methods are evaluated for

acoustic impulse responses denoising, where the polynomial matrices are used

to model acoustic impulse responses (generated by a room image model, and245

recorded in real rooms). In both cases, white Gaussian noise with zero mean

and unit variance is added to the data.

4.1. Experimental Setup and Data Generation

4.1.1. Synthetically Generated Polynomial Matrices

First, we show experiments on synthetically generated data as follows. We250

generate a random scalar matrix D with uniformly distributed entries, which is
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then used as the coefficient matrix for the polynomial matrix D(z), where each

column of D is normalized to unity norm. The size of D generated is 50× 100.

Then, Y is generated by the linear combination of different columns in D.

Finally, the polynomial matrices Y (z) and D(z) are generated by splitting their255

coefficient matrices according to equations (11) and (12). Here, the training data

we generated are 10× 2000 polynomial matrices with 5 time lags.

4.1.2. Simulated and Real Acoustic Impulse Responses

The second type of data tested contains acoustic impulse responses, de-

scribed by polynomial matrices. Two types of acoustic impulse responses are260

tested, respectively, those generanted by a room image model [48], and the real

acoustic impulse responses taken from [49].

By using the image model, the acoustic impulse responses are generated in

a 20 × 20 × 3 m3 room (a simulated large hall). The reverberation time is

set to be 900 ms, and the sampling frequency is 16 kHz, so that the number265

of time lags for each impulse response is 14400. We generated 1000 acoustic

impulse responses as the training set. Polynomial matrices are used to model

the acoustic impulse response signals. Each acoustic impulse response is split

into several segments with the same length, thereby each segment can be seen

as an FIR filter which is modeled by a polynomial with a certain number of lags.270

Note that, once the length of each polynomial (FIR) is given, the number of

polynomials can be calculated according to the number of acoustic signals and

the length of each acoustic signal. These polynomial elements can be used to

construct a polynomial matrix, whose dimensions are determined according to

the length of the signals and the number of time lags specified in each polynomial275

element.

For the real data, we take 840 real impulse responses from the database [49]

as the training signals, where the length of each impulse response is 192000

samples. Each element of the polynomial matrix is designed to have 40 lags.

Hence, each impulse response signal can be modeled by 4800 polynomial el-280

ements. Therefore, the acoustic signals in the training set are designed as a
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20× 201600 polynomial matrix with 40 lags for each element.

4.1.3. Parameter Selection

Assuming the dimension of the polynomial dictionary D(z) is n×K with L

lags, D(z) needs to be overcomplete, that is n ≪ K. Moreover, as the proposed285

dictionary learning model (6) can be expressed as the polynomial of matrices

model (10), which means the new dictionary D ∈ RnL×K also needs to be

overcomplete, which is nL ≪ K.

As in conventional dictionary learning methods [1, 9, 50], it is difficult to find

theoretically optimal parameters, therefore the parameters used in our polyno-290

mial algorithms were set empirically, according to extensive experimental tests.

We also carried out some experiments to understand the impact of some im-

portant parameters on the performance of the proposed methods, such as the

iteration numbers and sparsity in the polynomial dictionary learning process. In

the denoising application, we also evaluated the performance of the algorithms295

for modeling the acoustic impulses using polynomial matrices with different lags,

and the polynomial dictionaries with different sizes, which will be discussed in

detail later.

4.1.4. Performance Metrics

The reconstruction error between the original polynomial matrix Y (z) and

the reconstructed polynomial matrix Ŷ (z) is used as the performance metric,

which is defined as

Rerr =
∥Y (z)− Ŷ (z)∥

2

F

∥Y (z)∥2F
. (28)

4.2. Experimental Results and Analysis300

The proposed methods are tested on different noise levels, different spar-

sity levels, different sizes of dictionaries, and different time lags used in the

polynomial dictionaries.
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4.2.1. Experiments on Synthetically Generated Data

First, we test the convergence of the proposed polynomial dictionary learn-305

ing methods during the dictionary training procedure. The proposed extended

K-SVD, extended MOD and PMOD algorithms are used to train the dictionar-

ies. The size of the dictionaries is set to be identical, which is 10 × 100 with 5

time lags. Different levels of sparsity are tested (i.e. 3, 5, and 7). The sparse

representation coefficients for the reconstruction are found by using the conven-310

tional OMP algorithm. In total, 50 realizations are carried out, and for each

realization, 200 iterations are tested. The reconstruction errors are calculated

at each iteration.
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Figure 1: Reconstruction error changes with the iteration number of the proposed methods
during the training process for different levels of sparsity.

Figure 1 shows the average reconstruction errors changing at each iteration.

From Figure 1, we can see that both methods can converge within 200 iterations,315

and the extended K-SVD achieves more accurate polynomial matrix reconstruc-

tion results than the extended MOD and PMOD for all levels of sparsity tested.

Note that, the PMOD algorithm gives nearly the same average reconstruction
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accuracy as the extended MOD at each iteration during the dictionary training

process. This is reasonable, as both the PMOD and the extended MOD use the320

same method to calculate the sparse coefficients in the sparse coding stage, al-

though the PMOD operates on the polynomial matrix dictionary directly in the

dictionary update stage. Also note that, the proposed methods converge with

less iterations when using a lower level of sparsity, this is because less sparse

representation coefficients need to be found in the sparse coding stage.325

Then, we perform another experiment to evaluate the performance of the

proposed methods for recovering a signal (i.e. polynomial matrix) corrupted

by noise at different levels. In this case, white Gaussian noise of zero mean

and variance chosen to achieve different signal-to-noise ratios (SNRs) is added

to the coefficient matrices of the polynomial matrix Y (z). Note that both the330

size of the input data Y (z) and the dictionary are the same as those in the

previous experiments. The numbers of iteration is set to be the same, as 200.

Here, the proposed extended K-SVD, extended MOD, and PMOD algorithms

are used to learn the dictionaries, and these dictionaries are applied to recover

the polynomial matrix from the noise corrupted version. For the extended K-335

SVD and extended MOD, the OMP algorithm is used to calculate the sparse

representation coefficients in the sparse coding stage. For the PMOD algorithm,

both the OMP and the POMP algorithms are used and their performance is

compared. The PMOD and POMP combination is denoted as PMOD + POMP.

For each method, one dictionary is learned from the clean “signal” Y (z), and340

20 realizations are carried out for the signal recovery by using OMP and POMP

accordingly, where different levels of sparsity are tested (i.e. 3, 5, and 7) for

training the dictionaries and sparsely representing the polynomial matrix.

Table 1 shows the results of the proposed methods for the noise corrupted

polynomial matrix reconstruction. We can see that the extended K-SVD ap-345

proach can obtain the best recovery accuracy for all levels of sparsity tested, and

the extended MOD is slightly better than the PMOD method. POMP perform-

s the worst for recovering the polynomial matrix with the dictionary learned

by PMOD. It can be observed that, for the extended K-SVD, better recovery
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Table 1: Performance comparison in terms of the reconstruction error (×10−2) for polynomial
matrix reconstruction at different levels of noise, where different levels of sparsity are tested
for denoising the noise corrupted polynomial matrix.

Sparsity
Noise level (dB)

5 10 15 20 25 30

Extended K-SVD

3 16.76 10.29 5.36 2.78 1.47 0.79

5 23.97 15.59 8.77 4.91 2.83 1.76

7 28.42 18.88 10.83 6.17 3.73 2.53

Extended MOD

3 20.33 15.42 12.65 11.78 11.53 11.46

5 25.29 17.26 11.26 8.49 7.49 7.16

7 29.34 19.76 11.97 7.79 5.93 5.27

PMOD

3 21.25 16.57 14.01 13.22 13.00 12.94

5 25.29 17.26 11.26 8.49 7.49 7.16

7 29.34 19.76 11.97 7.79 5.93 5.27

PMOD + POMP

3 65.60 64.11 63.29 62.99 62.90 62.86

5 62.96 60.58 59.22 58.71 58.55 58.49

7 62.51 59.57 57.89 57.26 57.04 56.96

accuracy can be achieved with a lower level of sparsity enforced in reconstruc-350

tion; whereas for PMOD + POMP, increasing the sparsity tends to give smaller

reconstruction errors. For the extended MOD and PMOD, the reconstruction

error is increased with the increase in the level of sparsity, for noise in the range

of 5 dB to 10 dB. In contrast, the reconstruction error becomes smaller with

the increase of the sparsity level for noise in the range of 20 dB to 30 dB. In355

comparison, the extended K-SVD method combined with OMP tends to give

better accuracy for the reconstruction of noise corrupted polynomial matrix,

when using a lower level of sparsity. However, for other methods tested, the

denoising performance varies with the change of sparsity and noise level, and

there is no clear trend on which sparsity level used will give absolutely better360

performance than other sparsity levels. Therefore, we only choose one sparsity

in our following experiments, where the sparsity for both training dictionaries

and reconstructing signal is set as 3. As observed from Figure 1, all the proposed

methods converge approximately after 80 iterations for dictionary training when

22



the sparsity is set as 3, so that we set the maximum iteration number to be 80365

in the following experiments.

4.2.2. Experiments on Acoustic Impulse Responses

As the aim of our proposed methods is to process signals with time delays,

we test the proposed methods for acoustic signal denoising, where the polynomi-

al matrix is employed to model the acoustic impulse responses. The dictionaries370

learned by the proposed methods are used for the reconstruction of noise cor-

rupted acoustic signals. In our experiments, the acoustic signals are modeled by

polynomial matrices with different time lags, and dictionaries of different size

are trained.

First, we conduct experiments on impulse response signals generated by375

a room image model [48] as mentioned in Section 4.1.2. 1000 clean impulse

responses are used as the training set, and the noisy test signal is generated

by adding noise to the clean acoustic impulse response. As the length of each

impulse response is 14400, the test signal can be split into 720 segments, with

the length of each segment as 20, so that the test signal can be modeled as a380

10 × 72 polynomial matrix with 20 lags. In the same way, the training signals

can be modeled by a 10 × 72000 polynomial matrix with 20 lags. The size of

the polynomial dictionaries is designed as 10 × 240, 10 × 320, and 10 × 400,

respectively. The proposed methods are used to recover the noise corrupted

impulse response, where different levels of noise are tested. For each method,385

one dictionary is learned from the clean training signals modeled polynomial

matrix, and 20 realizations are carried out for recovering the noise corrupted

signal at each noise level.

Table 2 shows the average reconstruction error of the proposed methods for

the acoustic signal denoising at different noise levels. From the table, we can390

see that the proposed methods achieve similar results by using different size of

training dictionaries, for low SNR levels (e.g., -10 dB and 0 dB). Dictionaries of

smaller size offer better signal reconstruction performance, in contrast, those of

larger size tend to give higher recovery accuracy for higher SNR levels (e.g., 10
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Table 2: Performance comparison in terms of reconstruction error (×10−2) for room image
impulse responses denoising at different noise levels, where dictionaries of different size are
tested.

Dictionary size
Noise level (dB)

-10 0 10 20 30

Extended K-SVD

10× 240 237.55 36.47 17.34 17.20 17.19

10× 320 244.76 37.03 16.67 16.53 16.52

10× 400 249.71 37.19 15.62 15.45 15.43

Extended MOD

10× 240 237.18 36.25 17.33 17.20 17.18

10× 320 243.82 36.55 16.13 15.99 15.98

10× 400 249.40 36.98 15.43 15.27 15.26

PMOD

10× 240 237.18 36.25 17.33 17.20 17.18

10× 320 243.82 36.55 16.13 15.99 15.98

10× 400 248.92 37.05 15.23 15.07 15.05

PMOD + POMP

10× 240 215.74 36.64 22.03 21.93 21.92

10× 320 223.30 38.24 23.10 23.01 23.00

10× 400 228.63 37.26 20.27 20.16 20.15

dB, 20 dB, and 30 dB).395

The extended MOD and PMOD give almost the same average reconstruc-

tion error in the case when the size of dictionaries is 10 × 240 and 10 × 320,

whereas the average reconstruction errors are different when the size of dictio-

naries is 10 × 400, and the PMOD performs better in this case. The reason

why the performance is different when the dictionaries had size 10× 400 is that400

the learned dictionaries have redundant atoms, which lead to multiple sparse

representations for the signal reconstruction. When the size of the dictionary

is larger than a certain number, some learned atoms may become redundant.

The extended MOD can get slightly better recovery accuracy than the extended

K-SVD. Interestingly, although the PMOD + POMP performs worse than the405

other three methods when the noise is added over ranges from 0 dB to 30 dB,

it gives the best recovery accuracy when the SNR ratio is lower than 0 dB. It is

especially worth noting that the performance of PMOD + POMP for acoustic

signal denoising is better than that for denoising the polynomial matrices gen-

erated randomly in our last experiment, while the reconstruction error is similar410
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to those obtained by the other three methods.

An illustration of the polynomial matrix modeled acoustic impulse response

denoising is given in Figure 2, where a 2×2 polynomial sub-matrix is randomly

selected from the polynomial matrix and used to model the entire test acoustic

room impulse response. Each element can be seen as a polynomial modeled FIR415

filter with 20 lags, which is a segment from the test acoustic signal. Figure 2

shows the clean FIRs in the subplot (a), the corresponding noise added FIRs in

(b) (5 dB noise), the recovered FIRs by the extended K-SVD, extended MOD,

PMOD, and PMOD+POMP methods in the subplots (c), (d), (e), and (f),

respectively. The size of the polynomial dictionaries used is the same, which is420

10× 320 with 20 lags. We can see from Figure 2 that all the proposed methods

can recover the noise corrupted FIRs in a certain level. Figure 3 shows an

example of the entire acoustic impulse response denoising by using the proposed

extended K-SVD method. We can see that the proposed method can recover

the noise corrupted signal very well.425

Then, another experiment is carried out by using polynomial matrices with

different lags to model the acoustic impulse responses. In order to find out how

the impulse responses modeled polynomial matrix influences the performance

of the proposed methods, the lags of the polynomial matrices used to model the

acoustic impulse responses are set to be as 10, 20, and 30, respectively, so that430

the same 1000 training impulse responses as used in the previous experiment

can be modeled as 10 × 144000 with 10 time lags, 10 × 72000 with 20 lags,

and 10× 48000 with 30 lags polynomial matrices, respectively. The size of the

dictionaries in training is set to be 10×400 with 10, 20, and 30 lags, respectively.

As the previous experiments have shown that the extended MOD and PMOD435

methods can obtain nearly the same performance during the dictionary training

process for acoustic impulse response denoising, here, we only compare the

performance of the extended K-SVD, PMOD and PMOD + POMP. For each

time lag tested, one dictionary is trained by each method, and 20 realizations

are carried out for each noise level. The average reconstruction errors are given440

in Table 3.
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Figure 2: Illustration of the proposed methods for acoustic impulse response denoising, where
a polynomial matrix is used to model the test room impulse response, a sub-matrix with four
polynomials is randomly selected from the polynomial matrices, where each polynomial is an
FIR filter denoting a segment of the test room impulse response. (a) Clean FIRs; (b) Noisy
FIRs; (c) Denoised FIRs by the extended K-SVD; (d) Denoised FIRs by the extended MOD;
(e) Denoised FIRs by PMOD; (f) Denoised FIRs by PMOD + POMP.
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Figure 3: An example of room image impulse response signal denoising, where the extended
K-SVD is used. (a) The clean acoustic signal; (b) The noisy acoustic signal; and (c) The
reconstructed acoustic signal.

From Table 3, we can see that when applying the proposed methods, the

acoustic signals modeled by polynomial matrices of greater time lags tend to

give better recovery accuracy, for relatively lower SNR levels (i.e. -10 and 0 dB)

for both cases. The best denoising result can be obtained by using the PMOD445

+ POMP method. In contrast, the extended K-SVD and PMOD techniques can

get better performance at higher SNR levels (i.e. 20, and 30 dB) for acoustic

signals modeled by polynomial matrices with 10 lags, and the PMOD has the

best denoising performance in this case.

In the above experiments, the polynomial dictionaries are all learned from450

clean signals. Here, we carry out additional experiments to evaluate the perfor-

mance of the proposed methods for learning polynomial dictionaries from noise

corrupted data. To this end, we add white Gaussian noise at different SNR

levels (e.g. 10 dB, 20 dB, and 30 dB) to the same 1000 clean impulse responses
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Table 3: Performance comparison in terms of the reconstruction error (×10−2) for room image
impulse responses denoising at different noise levels, where acoustic signals are modeled by
polynomial matrices with different lags.

Lags
Noise level (dB)

-10 0 10 20 30

Extended K-SVD

10 353.41 50.06 15.30 14.84 14.83

20 248.46 37.22 15.70 15.54 15.53

30 204.23 31.61 15.27 15.18 15.17

PMOD

10 352.48 50.05 15.09 14.64 14.63

20 248.91 37.19 15.47 15.31 15.34

30 203.51 31.30 15.20 15.11 15.10

PMOD + POMP

10 324.93 48.21 19.26 18.94 18.93

20 228.27 37.40 20.43 20.32 20.34

30 186.11 30.05 16.25 16.18 16.16

used in the previous experiment. The polynomial matrix (containing the train-455

ing signals) and the polynomial dictionary are obtained in a similar way to the

case where the training signals are clean. More specifically, the noisy training

signals are modeled by a 10 × 48000 polynomial matrix with 30 lags, and the

size of the dictionaries is 10 × 400 with 30 lags. The test signals are the same

as those in the previous experiment. We run 20 realizations in which we train460

a dictionary for each noise level. The performance comparison of the extended

K-SVD, PMOD, and PMOD+POMP methods is given in Table 4. As compared

with the results in Table 3, we can see that the extended K-SVD and PMOD

algorithms perform slightly better when using noise corrupted training signals,

whereas the PMOD+POMP method performs worse than in the noise free case.465

This shows that the extended K-SVD and PMOD methods have better noise

robustness as compared with the PMOD+POMP method. This is probably be-

cause the POMP uses the F-norm distance as the measurement for the selection

of best-matching atoms, and the F-norm distance may not be as reliable as the

inner product for similarity measure between the residual and the atoms for470

atom selection.
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Table 4: Performance comparison in terms of the reconstruction error (×10−2) for room image
impulse responses denoising at different noise levels, where the dictionaries are learned from
training signals with different noise levels, and the size of the dictionaries is 10× 400 with 30
lags.

Training signal

noise level(dB)

Test signal noise level (dB)

-10 0 10 20 30

Extended K-SVD

10 203.32 31.16 15.09 15.00 14.98

20 202.63 31.16 15.12 15.03 15.01

30 203.10 31.28 15.16 15.06 15.05

PMOD

10 203.00 31.39 14.94 14.84 14.83

20 202.57 31.23 15.01 14.92 14.90

30 202.61 31.16 14.85 14.75 14.74

PMOD + POMP

10 188.26 33.89 21.78 21.71 21.70

20 186.82 33.27 20.83 20.76 20.75

30 186.44 32.92 20.56 20.49 20.48

4.2.3. Experiments on Real Acoustic Impulse Responses

Finally, an experiment is carried out for real acoustic impulse response signal

denoising. The POMP method is used to recover the noisy real acoustic impulse

response, where the polynomial dictionary is learned by the PMOD. Here, the475

OMP is also used to reconstruct the impulse responses for comparison purpose.

The test signal is corrupted by 5 dB noise.

As mentioned in Section 4.1.2, 840 real impulse responses are used as the

training signals, which are modeled by a 20×201600 polynomial matrix with 40

lags. The size of dictionary is set to be 20× 1200 with 40 lags. Figure 4 shows480

the clean signal in the subplot (a), its corresponding noisy signal in the subplot

(b), and the reconstructed signals by OMP and POMP methods in the subplots

(c) and (d), respectively. It can be observed that both reconstructed signals

are similar to the clean test signal. The experiments show that our proposed

methods can obtain fairly good performance for denoising real acoustic signals.485

5. Conclusions

We introduced a polynomial dictionary learning technique to deal with sig-

nals with time lags, where the polynomial matrix was employed to model the
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Figure 4: Denoising of noisy real acoustic impulse response signal. (a) The clean acoustic
signal; (b) The noisy acoustic signal (c) The reconstructed acoustic signal by the PMOD; (d)
The reconstructed acoustic signal by PMOD + POMP

signals. This provided a way for learning a dictionary for signals with time

lags, such as acoustic impulse responses. Two types of polynomial dictionary490

learning methods were proposed based respectively on the polynomial of matri-

ces model and the matrices of polynomial model. By using the polynomial of

matrices model based dictionary learning method, any conventional dictionary

learning methods can be used to represent the signals with time lags; where-

as the matrices of polynomial dictionary learning model provided a potential495

way to deal with the polynomial dictionary matrix directly without having to

explicitly access the polynomial coefficient matrices, where the sparse coeffi-
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cient matrix was still a scalar matrix, rather than a polynomial matrix. As a

byproduct, a polynomial OMP algorithm was also proposed. The experiments

show that our proposed methods can be used to model signals with time lags,500

such as acoustic impulse responses, and to reconstruct such signals from noise

corrupted samples. Moreover, the experiments also show that we can obtain

better performance by carefully designing the polynomial matrix and choosing

the size of dictionary according to the tasks at hand.
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