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Abstract—In this work, we extend the sparse iterative

covariance-based estimator (SPICE), by generalizing the

formulation to allow for different norm constraints on the

signal and noise parameters in the covariance model. For a

given norm, the resulting extended SPICE method enjoys

the same benefits as the regular SPICE method, including

being hyper-parameter free, although the choice of norms

are shown to govern the sparsity in the resulting solution.

Furthermore, we show that solving the extended SPICE

method is equivalent to solving a penalized regression

problem, which provides an alternative interpretation of

the proposed method and a deeper insight on the differ-

ences in sparsity between the extended and the original

SPICE formulation. We examine the performance of the

method for different choices of norms, and compare the

results to the original SPICE method, showing the benefits

of using the extended formulation. We also provide two

ways of solving the extended SPICE method; one grid-

based method, for which an efficient implementation is

given, and a gridless method for the sinusoidal case, which

results in a semi-definite programming problem.

I. INTRODUCTION

Many problems in signal processing may be well de-

scribed using a linear model, such that

y = Bx+ e (1)

where y ∈ CN is a vector of measurements, B a matrix

of regressors, x the parameter vector, and e denotes an

additive (complex-valued) noise term, typically assumed

to have zero mean and covariance matrix Σ. This model

occurs in a wide range of applications, such as in, e.g.,

audio and speech processing [1,2] and spectroscopy [3]–

[7].

Historically, there have been two main principles

available for solving these kinds of problems: parametric

and non-parametric methods. The latter approach does

not rely on any a-priori information about the signal,

including assumptions on the model structure or order,
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and such techniques are therefore more robust to un-

certainties in such model assumptions than the former.

However, this robustness comes with the downside that

the non-parametric methods are, in general, not able to

yield as good performance as the parametric approaches,

which typically in turn are less robust [8]. Recently,

notable efforts have been made to combine these two

approaches, developing so-called semi-parametric ap-

proaches, which typically only make some weak model

structure assumptions, such that assuming that the so-

lution is sparse, although restrain from making any

stronger model order assumptions. This implies that

although the dictionary, B ∈ CN×M , is formed using

M ≫ N signal candidates, only a few of these can-

didates are assumed present in the signal. The problem

is thus transformed into finding the subset of these M
candidates best approximating the measured signal y.

Many sparse methods do this by enforcing sparsity on the

vector x, creating a trade-off between the model fit and

the level of sparsity. In [9], this was done by introducing

the LASSO optimization problem

minimize
x

1

2
||y−Bx||22 + µ||x||1 (2)

where the first term penalizes the ℓ2-norm distance

between the model and the signal, and the second term

enforces sparsity upon the vector x, with µ being a

user parameter that governs the trade-off between the

two terms. Recently, many other sparse methods have

been proposed (see, e.g., [10]–[15] and the references

therein). One potential drawback of these methods is the

requirement of selecting the user parameter, which is

often a non-trivial task. Sometimes there are physical

aspects that may aid in the choice of this parameter,

whereas, in other, some kind of rule of thumb on how to

choose it may be found [16]. Other ideas include solving

the problem for all different values of the parameter

[15,17], or to use some iterative process for aiding in the

choice [10,18,19]. Another common way is to use cross-

validation to find a suitable regularization parameter (see,

e.g., [15]).

In [20], a novel approach to form a sparse solution

was proposed based on a covariance fitting criteria, and

was shown to overcome the drawback of selecting the

http://arxiv.org/abs/1609.03479v2
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user parameter (see also [21]–[25]). The minimization

criteria that was proposed was

minimize
p̃≥0

∣

∣

∣

∣

∣

∣
R1/2(p̃) (R(p̃)− yy∗)

∣

∣

∣

∣

∣

∣

2

F
(3)

where || · ||F denotes the Frobenius norm, (·)∗ the

conjugate transpose, and where

R(p̃) = APA∗ (4)

A =
[

B I
]

(5)

p =
[

p1 . . . pM
]T

(6)

σ =
[

σ1 . . . σN
]T

(7)

p̃ =
[

pT σT
]T

(8)

P = diag (p̃) (9)

with I denoting the N × N identity matrix, (·)T the

transpose, σk the noise standard deviation for sample k,

and diag(z) the diagonal matrix with the vector z along

its diagonal, and zeros elsewhere. It was further shown

that solving (3) is equivalent with solving [20]

minimize
p̃≥0

y∗R−1(p̃)y + ||W̃p̃||1 (10)

where

W̃ = diag
([

w1 . . . wM+N

])

(11)

wk = ||ak||22/||y||22, for k = 1, . . . , N +M (12)

with ak denoting the kth column of A. By comparing

(2) and (10), it is clear that both problems minimize a

signal fitting criteria, where the former more explicitly

minimizes the distance between the model and the data,

whereas the latter measures the distance through the

inverse of the (model) covariance matrix. Furthermore,

both problems include the ℓ1 norm, with the first one

penalizing the parameters corresponding to the different

candidates in the dictionary B, whereas the second,

the so-called SPICE formulation, penalizes both the

parameters corresponding to B and the parameters cor-

responding to the noise.

In this paper, we generalize the SPICE approach to

allow for different penalties on p and σ, as given in

(6) and (7), respectively, for two different cases; the first

being when all σk are equal, and the second when all

σk are allowed to differ. In the first case, we show that

the choice of norm for the noise parameters corresponds

to different choices of the regularizing parameter, µ, and

the regularization norm, for a generalized form of the

(weighted) square-root LASSO. In the case when all σk
are allowed to be different, the choices of norms are

similarly shown to affect the sparsity level. This results in

the fact that even if the different SPICE formulations are

hyper-parameter free, one may interpret the choices of

norms as the equivalence of selecting hyper-parameters

dictating the sparseness of the solution, and that the

original SPICE version is equivalent to one particular

choice of norms. We also provide an efficient grid-based

implementation of the proposed method, which, indi-

rectly, allows for solving (weighted) square-root LASSO

problems for a wide choice of regularizing parame-

ters. Additionally, we state a semi-positive programming

(SDP) problem that allows for solving the proposed

SPICE extension, for the sinusoidal case, without the

use of a grid search.

II. THE {r, q}-SPICE FORMULATION

It is worth noting that the second term in (10) penalizes

the magnitude of each pj and σk, thus promoting a sparse

solution with only a few of the terms in p̃ being non-

zero. However, since the penalty does not distinguish

between setting the different terms to zero, one may

expect that some of the σk may be forced to be zero as

a part of the minimization. If one is interested in finding

a sparse solution from the columns of the dictionary

B (in the same sense as in (2)), setting some of the

noise parameters σk to zero makes little sense. Another

intuition is given if one interprets (10) to require that R

should be invertible. Assuming this, setting σk to zero is

problematic as the resulting covariance matrix, R, loses

rank, unless some of the pj are non-zero. Similar conclu-

sions were stated in [26], where a gridless formulation of

SPICE where derived. It was shown that for the gridless

version of SPICE, R had full rank with probability

one, which in turn made the method overestimate the

model order. Consequently, setting many σk to zero will

force the resulting p to be less sparse, thus increasing

the estimated model order. Thus, in the original SPICE

formulation, σk and pj are competing for the sparseness

allowed in the solution of (10).

Alternatively, one could proceed to treat the σk terms

different from the rest of the pj terms. A naive way of

doing this could be to omit σk from the cost function

of (10), but this would result in all the pj terms being

set to zeros as σk may then take on any value which

will make R full rank, and will thus make the pj
terms redundant. Clearly, the σk terms must instead be

penalized to produce a meaningful solution to (1). This

may be done in different ways, for instance using

minimize
p≥0, σ≥0

y∗R−1y + ||Wp||r + ||Wσσ||q (13)
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Algorithm 1 The {r, q}-SPICE estimator with r = 1

1: Initiate p
(0)
k = |b∗

ky|2/||bk||4, for k = 1, . . . ,M ,

σ
(0)
k = |yk|, for k = 1, . . . , N , and set i = 1

2: while the termination criteria is not fulfilled do

3: Let R(i) = AP(i)A∗

4: Form λ from (43)

5: Update p
(i)
k from (41), for each k = 1, . . . ,M

6: Update σ
(i)
k from (42), for each k = 1, . . . , N

7: Set i = i+ 1
8: end while

where r, q ≥ 1, such that

||Wp||r =
[

M
∑

k=1

wr
kp

r
k

]1/r

(14)

||Wσσ||q =
[

N
∑

k=1

wq
M+kσ

q
k

]1/q

(15)

W = diag
([

w1 . . . wM

])

(16)

Wσ = diag
([

wM+1 . . . wM+N

])

(17)

Thus, setting r = 1 and q = 1 yields the original SPICE

formulation. Note that more general regularization func-

tions could also be used, but in this paper, we confine

our attention to the {r, q}-norm case, which we hereafter

term the {r, q}-SPICE formulation. It should be noted

that using an approach reminiscent of the one presented

in [27], it is possible to also consider the case when all

0 < r, q < 1 resulting in a concave penalty term. Herein

we restricted our attention to the case where r ≥ 1 and

q ≥ 1.

III. LINKING {R,Q}-SPICE TO PENALIZED

REGRESSION

To demonstrate the effects of introducing the r- and the

q-norm to SPICE, we follow the derivation in [23,24],

and proceed to examine the connection between {r, q}-

SPICE and a penalized regression problem such as

the LASSO expression in (2). In order to do so, we

distinguish between two cases, namely the case when

each σk is allowed to have a distinct value, and the case

when all σk are equal. First, we recall a lemma that will

be helpful for the following derivation (see also [24]).

Lemma 1. Let

P̃ = diag
([

p1 . . . pM
])

(18)

and

Σ = diag
([

σ1 . . . σN
])

(19)
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Fig. 1. The resulting estimates of p̃ and σ from the SPICE and the

q-SPICE estimator (q=2). Note that q-SPICE is sparser in p̃, whereas

SPICE is sparser in σ. In this example r is set to r = 1.

Then,

y∗R−1y = minimize
x

(y −Bx)∗Σ−1(y −Bx)

+

M
∑

k=1

|xk|2/pk (20)

with the minimum occurring at

x̂ = ΣB∗R−1y (21)

A. Varying noise variance

Using Lemma 1, one may rewrite (13) as

minimize
x,p,σ

N
∑

k=1

|yk − b∗
kx|2/σk +

M
∑

k=1

|xk|2/pk

+

(

M
∑

k=1

wr
kp

r
k

)1/r

+

(

N
∑

k=1

wq
M+kσ

q
k

)1/q

(22)

Solving (22) for pj yields

pj = w
− r

r+1

k |xk|
2

r+1 ||W1/2x||
r−1

r+1

2r

r+1

(23)

Differentiating the function to be minimized in (22) with

respect to σk and setting it to zero yields

−|yk − b∗
kx|2

σ2
k

+
wq
M+kσ

q−1
k

||Wσσ||q−1
q

= 0 (24)

Summing over k on both sides and simplifying, one

arrives at

||Wσσ||q = ||W1/2
σ r|| 2q

q+1

(25)
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Algorithm 2 The {r, q}-SPICE estimator for equal σk
with r = 1.

1: Initiate p
(0)
k = |b∗

ky|2/||bk||4, for k = 1, . . . ,M ,

σ(0) =
√

1
N−1

∑N
k=1 (yk − ȳ)2 , for k = 1, . . . , N ,

and set i = 1
2: while the termination criteria is not fulfilled do

3: Let R(i) = AP(i)A∗

4: Form λ from (48)

5: Update p
(i)
k from (46), for each k = 1, . . . ,M

6: Update σ
(i)
k from (47), for each k = 1, . . . , N

7: Set i = i+ 1
8: end while

Inserting (25) into (24) yields

σk = w
− q

q+1

M+k |rk|
2

q+1

∣

∣

∣

∣

∣

∣
W1/2

σ r

∣

∣

∣

∣

∣

∣

q−1

q+1

2q

q+1

(26)

Finally, inserting (23) and (26) into (22) yields

minimize
x

∣

∣

∣

∣

∣

∣
W1/2

σ (y −Bx)
∣

∣

∣

∣

∣

∣

2q

q+1

+
∣

∣

∣

∣

∣

∣
W1/2x

∣

∣

∣

∣

∣

∣

2r

r+1

(27)

From the resulting expression, it may be noted that

using q = 1 yields the least absolute deviations (LAD)

estimate, whereas using q = ∞ yields the (unscaled)

square-root LASSO. The implications of this is discussed

further below.

Clearly, regardless of the choice of q, the correspond-

ing problem in (13) will still be scale invariant. To see

this, we follow [24] and scale each pk and σk with a

constant c and do the same for the cost function in (13),

defining

g(p,σ) , cy∗ (AcPA∗)−1
y

+ c

[

M
∑

k=1

wr
kc

rprk

]1/r

+ c

[

N+M
∑

k=M+1

wq
kc

qpqk

]1/q

= y∗ (APA∗)−1
y + c2

[

M
∑

k=1

wr
kp

r
k

]1/r

+

c2

[

N+M
∑

k=M+1

wq
kp

q
k

]1/q

(28)

Defining the cost function in (13) as f(p,σ), we may

use Lemma 2 in [24] to conclude that if

{p̂, σ̂} = arg min
p,σ

g(p,σ) (29)

and

{ˆ̄p, ˆ̄σ} = arg min
p̄,σ̄

f(p̄, σ̄) (30)
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Fig. 2. The RMSE of the frequency estimates, as a function of SNR

for {r, q}-SPICE and SPICE.

then

ˆ̄p = cp̂ (31)

where c > 0, which is true in the here examined case as

well. Due to this scale invariance, one may conclude that

the {r, q}-SPICE method is hyper-parameter free in the

same sense as SPICE. Furthermore, it may be noted that

when converting the pk to xk, using (21), any scaling

will disappear.

B. Uniform noise variance

If, similar to [23,24], one instead assumes that all the

noise terms have equal variance, thus treating σk =
σ, ∀k, one arrives at an interesting conclusion: with this

assumption, it has been shown that the SPICE problem is

connected to the (weighted) square-root LASSO problem

[23,24], i.e.,

minimize
x

||y −Bx||2 + µ||W1/2x||1 (32)

where µ = N−1/2 yields the SPICE estimator. Following

the derivation in Section III-A, together with the assump-

tion that all the noise terms have equal variance, yields

µ = N−1/2q for the {r, q}-SPICE formulation, implying

the equivalent formulation

minimize
x

||y −Bx||2 + µ||W1/2x|| 2r

r+1

(33)

Thus, the choice of q corresponds to the weight that

governs the trade-off between the model fitting term and

the regularization of the parameters, and the choice of r
decides which norm will be used in the regularization of

the parameters. Thus, using r = 1 means that increasing

q corresponds to increasing the sparsity in the (weighted)

square-root LASSO; this implies that if the signal at

hand is assumed to be sparse, solving {r, q, }-SPICE
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signal as a function of SNR for {r, q}-SPICE and SPICE.

with q > 1 will yield preferable estimates. Furthermore,

setting r → ∞ yields a ridge regression problem, with q
governing the amount of regularization. We note that it

might be preferable to solve (33) using the {r, q}-SPICE

formulation, rather than solving (33) directly.

IV. EFFICIENT IMPLEMENTATION

As will be argued later, for sparse problems, the most

interesting setting for {r, q}-SPICE is when r = 1, since,

according to (33), this will yield an ℓ1 regularization.

To this end, we will in this section derive an efficient

implementation for this case. In [20], an efficient imple-

mentation of SPICE was introduced. To derive the steps

of this algorithm, it was noted that the original SPICE

minimization in (10) could also be expressed as

minimize
{pk≥0}M

k=1
, {σk≥0}N

k=1

y∗R−1y subject to (34)

Furthermore, it was noted that one could further rewrite

the objective in (34) by considering the optimization

problem

minimize
Q

y∗Q∗P−1Qy subject to Q∗A = I (35)

which has the solution Q0 = PA∗R−1. By defining

β = Qy (36)

one may rewrite (34) as

minimize
{pk≥0}M

k=1
, {σk≥0}N

k=1

M+N
∑

k=1

|βk|2
pk

subject to

M
∑

k=1

wkpk +

N
∑

k=1

wkσk = 1

(37)

The estimates may then be found by iteratively updating

R and solving for pk in (37). For {r, q}-SPICE, with
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Fig. 4. The probability of finding the correct support of the signal as

a function of q and SNR. Here, all the σk are assumed to be equal.

In this example, r = 1.

r = 1, when assuming different values for the σk, the

same update for R may be used, but instead of (37), one

needs to solve

minimize
{pk≥0}M

k=1,{σk≥0}N
k=1

M
∑

k=1

|βk|2
pk

+

N
∑

k=1

|βM+k|2
σk

subject to

M+N
∑

k=1

wkpk +

(

N
∑

k=1

wq
M+kσ

q
k

)1/q

= 1 (38)

From the Karush-Kuhn-Tucker (KKT) conditions [28],

it follows that

− |βk|2
p2k

+ λwk = 0, for k = 1, . . . ,M (39)

− |βM+k|2
σ2
k

+ λσq
kw

q
M+k

(

N
∑

k=1

wq
M+kσ

q−1
k

)1/q

= 0

(40)

where λ denotes the dual variable, for k = 1, . . . ,M , to-

gether with the constraint in (37). Solving these equation

for each pk and σk yields

pk =
|βk|√
wkλ1/2

(41)

σℓ =
|βM+ℓ|

2

q+1 ||W1/2
σ βσ||

q−1

q+1

2q

q+1

w
q

q+1

M+ℓλ
1/2

(42)

λ =
(

||W1/2β||1 + ||W1/2
σ βσ|| 2q

q+1

)2
(43)

for k = 1, . . . ,M and ℓ = 1, . . . , N , where

β =
[

β1 . . . βM
]T

(44)

βσ =
[

βM+1 . . . βM+N

]T
(45)
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Fig. 5. The RMSE of the frequency estimates, as a function of q

and SNR. Here, all the σk are assumed to be equal. In this example,

r = 1.

This allows for the formulation of an efficient implemen-

tation by iteratively forming R from (4), βk from (36),

and pk and σk from (41) and (42), respectively. Since

{1, q}-SPICE allows for a more sparse solution than

the original SPICE, one may speed up the computations

further by removing the zero valued pk when forming

R and βk.

When instead assuming that σk = σ, ∀k, one obtains

the steps

pk =
|βk|√
wkλ1/2

(46)

σ =
||βM ||2

N1/2qλ1/2
(47)

λ =
(

||W1/2β||1 + ||N1/(2q)βσ||2
)2

(48)

for k = 1, . . . ,M . Algorithms 1 and 2 summarize the

{1, q}-SPICE implementations for the two settings, with

ȳ denoting the mean value of the vector y. Similar to

the previous case, since using q > 1 will enforce more

sparsity than q = 1, one may utilize this added sparsity

in the implementation of the algorithm. Since most of

the elements in p will be zero, one may form R−1 by

only considering the columns and rows of A and A∗

corresponding to the non-zero entries in p. Let K̂(i) be

the number of non-zero entries in p(i) at iteration i. Then,

if K̂ < N , one may use the Woodbury matrix identity

to efficiently calculate the inverse of R (see, e.g., [29]).

The termination criterias in Algorithms 1 and 2 can

take on many forms. In this work, we have chosen to

terminate the algorithms when the percentage of change

in p and σ between two consecutive iterations falls

below a certain level, say in the range [10−9, 10−3].

Note that the algorithm described in Algorithm 2

solves a (weighted) square-root LASSO problem, where

the different choices of q corresponds to different levels

of sparsity, i.e., different values of µ in (32). If one is in-

terested in solving a (weighted) square-root LASSO with

µ = µ0, then one may instead solve the {r, q}-SPICE

with q = − 1
2 lnµ0

, as long as q > 1, and with r = 1.

Thus, the algorithm in Algorithm 2 presents an attractive

and efficient way of solving the (weighted) square-root

LASSO problem, for a large range of different µ.

To give an idea of the running time of the proposed

algorithm as compared with a standard SDP solver (see,

e.g., [30,31]), the algorithms were tested on a problem

with M = 10000, N = 1000, and with q = 5, and r = 1,

where the data vector, y, contained 3 sinusoids, using a

standard PC (2.6 Ghz Intel Core i7, 16 GB RAM). The

corresponding run times were roughly 4 seconds for the

Matlab implementation in Algorithm 2 and 4132 seconds

for the SDP Matlab solver1.

V. OFF-GRID SOLUTION

Many forms of estimation problems are solved by evalu-

ating over a grid of the parameters of interest. However,

such a solution may cause concerns when the sought

solution falls outside the grid or may be found in between

grid points. A common solution to this problem is to

increase the grid size to thereby minimize the distance

from the closest grid point to the true parameter value

(see, e.g., [32,33]). However, such a solution might

cause the columns of the extended dictionary to be

highly correlated, thereby decreasing the performance

of the method (we instead refer the interested reader

to other works treating this issue, e.g., [33]–[36] and

the references therein). In [26] and [37], an off-grid

solution to the original SPICE version was presented for

the sinusoidal case. In this section, we similarly pro-

vide one possible version of off-grid estimation for the

proposed {r, q}-SPICE method for a signal containing

superimposed sinusoids. In order to do so, it may initially

be noted that one may separate R into two different

matrices, such that

R = B∗diag (p)B+ diag (σ) , T(u) + diag (σ)
(49)

where T(u) is a Toeplitz matrix with u forming the first

column of T(u). Thus, (13) may be expressed as (see

1Our implementation of {r, q}-SPICE will be made available on

the authors’ web-pages upon publication.
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Fig. 6. The probability of finding the correct support of the signal as

a function of q and SNR. Here, all the σk are assumed to be equal.

Here, r = 1.

also [26,37])

minimize
u,σ,x

||y||22x+ ||diag(T(u))||r + ||Wσσ||q

subject to

[

x y∗

y T(u) + diag (σ)

]

≥ 0

T(u) ≥ 0

T(u)−T(u)∗ = 0

σ ≥ 0 (50)

and under the additional constraint that T(u) is a

Toeplitz matrix. The optimization problem in (50) is

convex, and may be solved using, e.g., a publicly avail-

able SDP solver, such as the one presented in [30,31].

The final off-grid estimates may then be found using the

celebrated Vandermonde decomposition in combination

with, for instance, Prony’s method (see [8,38] for further

details on such an approach).

VI. NUMERICAL EXAMPLES

Using the interpretation provided by the reformulation

in Section III, it is clear that the choice of r will decide

what kind of regularization that will be used. Thus,

choosing r = 1 will yield an ℓ1 norm and letting r → ∞
will result in the ℓ2 norm. In this paper, we consider

sparse problems, and will therefore mainly confine our

attention to the case where r = 1, since this will yield

the most sparse convex regularizer, namely ℓ1.

From the discussion in Section II, one may expect

that SPICE will set some of the elements in σ to zero,

since the sparsity enforcing term in (10) also applies to

these parameters. Figure 1 shows the estimated p and

σ for the SPICE and the {r, q}-SPICE estimators, when
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Fig. 7. The probability of finding the correct support of the signal

as a function of q and SNR. Here, r = 1.
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Fig. 8. The RMSE of the frequency estimates, as a function of q

and SNR. Here, r = 1.

applied to a linear signal formed using (1) with three

non-zero components. As expected, using r = 1, {r, q}-

SPICE offers a sparser p vector as compared to SPICE,

whereas the solution is more sparse in σ for SPICE. As a

result, the sparsity constraints on the σk terms in {r, q}-

SPICE are thus relaxed and are instead subjected to a

bounding of their power in the q-norm, thus allowing

for more sparsity in p.

We will proceed by showing the difference in per-

formance for different values of r and q, to provide an

example on how the different choices of these norms

affect the estimates. We investigate two properties of the

estimators, namely the resulting root-mean-squared error
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Fig. 9. A typical result from q-SPICE for different values of q. Top

left: q = 1, top right q = 1.5, bottom left q = 2, and bottom right

q = 2.5. The red stars indicate the position and size of the true

sinusoids. In this example, r = 1.

(RMSE) of the frequency estimates, defined as

RMSE ,

√

√

√

√

1

P

P
∑

k=1

|θ̂k − θk|2 (51)

where θk is the true frequency of the kth component,

whereas θ̂k is the formed estimate, and the ability

to correctly estimate the model order. The signal was

N = 50 samples long and contained 4 sinusoids with

unit magnitude and random phase. The simulation was

done using 100 Monte-Carlo simulations for each SNR-

level, where the signal-to-noise ratio (SNR) is defined

as

SNR = 10 log10

(

Py

σ2

)

(52)

with Py denoting the power of the true signal. The noise

used was circular white Gaussian noise, and the noise

terms were allowed to differ.

The solution was obtained by solving (50) for all set-

tings except for the original SPICE, where the estimates

were obtained from solving the problem formulated in

[37]. In Figure 2, the resulting RMSEs are shown for

different values of r and q, as a function of the SNR. To

make the figures readable, one respectively two outliers

were removed for SPICE and for the r = 3, q = 2 case

for {r, q}-SPICE at the 5 dB SNR-level. Furthermore,

to remove the noise peaks that appear when using small

values of q, all peaks smaller than 20 % of the largest

found peak were removed. Note, however, that this is not

necessary for the case where q is larger. As is clear from

the figure, the RMSE is decreased as the sparsity level is

increased, with the {r, q}-SPICE versions outperforming

the original SPICE. This is also true for the resulting

model order estimation, which is shown in Figure 3.

As may be expected, when increasing q the sparsity is

increased and the spurious peaks are removed, but as q is

further increased, the true peaks start to disappear. In this

setting, it seems to be beneficial to set the norms around

q = 1.5 and r = 1. From these results, we conclude

that the generalized version of SPICE allows for better

estimation of parameter values, as well as model order.

As was expected, using r > 1 was not beneficial when

confronted with a sparse signal, and we will therefore,

in the succeeding example, restrict our attention to the

case where r = 1, referring to the method as q-SPICE.

However, it should be stressed that for certain situations,

it might be preferable to use r > 1, e.g., in situations

when otherwise considering to use ridge regression; we

will further examine this aspect in future works.

Arguably, the most important property of a sparse

estimator is the ability to return the true support of

the signal, as well as yielding reasonable amplitude

estimates for this support. However, it seems inevitable

that when including a sparsity enforcing penalty, one

also introduced a (downwards) bias on the magnitude

of the amplitudes. Fortunately, this problem is often

easy to overcome by simply re-estimating the amplitudes

using, e.g., least squares, once the true support is known.

Accordingly, we will in this section focus on the methods

ability of finding the true support of the signal. To this

end, 200 Monte-Carlo simulation for each SNR level are

formed. In each simulation, N = 50 samples of a signal

containing three sinusoids, each with unit magnitude,

and phase uniformly drawn from (0, 2π], was created.

The normalized frequencies were uniformly selected, but

were at least 1/2N apart.

The dictionary contained M = 1000 candidate sinu-

soids, selected on a uniform frequency grid from (0, 1].
The estimated support was selected to be the elements

of the vector x that had a corresponding absolute value

of at least 20% of the largest estimated value in x. This

was done to allow for comparison with the less sparse

q-SPICE versions, for cases with small q value (most

notably q = 1). It may be noted that for values of q that

are large, this is not necessary. The support was deemed

correctly estimated if the estimated frequencies were at

most two grid points away from the true frequencies.

Figure 4 shows the results of applying q-SPICE, for

different values of q, assuming that all the σk are the

same, with q = 1 yielding the SPICE estimate. As is

clear from the figure, the results improve with increasing

q values. From the discussion in Section III-B, we note

that this corresponds to increasing the value of µ in

(32), thus increasing the sparsity in the estimates. Thus,
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Fig. 10. The RMSE of the frequency estimates, as defined in (51), as

a function of SNR for the gridless versions of q-SPICE and SPICE,

together with the gridded version of q-SPICE.

one could assume that when further increasing q, the

estimate of the support should decline. In Figure 6, this

behavior can be seen, where now q-SPICE is evaluated

over a range of larger q values. It is also apparent from

the figure that the best value for q is for this signal

somewhere around q = 2, which corresponds to using

µ ≈ 0.38 in (33). Next, we investigate the precision

for different values of q, by using the RMSE of the

frequency estimates. Figure 5 shows the resulting RMSE

of the frequency estimates, for the three largest values

of x. As can be seen in the figure, the RMSE is clearly

improving as q is increased, corresponding to sparser

solutions. For smaller values of q, the results are not

very sparse, and large spurious noise peaks can be found.

To improve readability, seven, two, and three outliers

were removed from the cases q = 1, q = 1.25, and

q = 1.5, respectively. If q is increased too much this

will, of course, make the solution too sparse, thus risking

setting non-noise peaks to zero. This can also be seen

in Figure 6, where for about q = 3, the probability of

retrieving the true support of the signal starts to decline,

and at q > 3.5, the solution is too sparse.

We proceed by considering the case when the σk
parameters are allowed to take on different values, using

the same set-up as above. Figures 7 and 8 show the

probability of estimating the correct support of the signal

and the RMSE of the three largest frequency estimates,

respectively. Again, in the interest of readability, three

outliers were removed from q = 1, six outliers from

q = 1.25, and three outliers for q = 1.5. As previously

noted, it is clear from the figures that q governs the

sparsity enforced on the solution. From the figures, one

may also see that for this setup, it is advantageous to
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Fig. 11. The probability of finding the correct model order of the

signal as a function of SNR for the gridless versions of q-SPICE and

SPICE, together with the gridded version of q-SPICE.

choose q in the interval q = [1.25, 2.25]. To demonstrate

the differences in the solutions obtained from using

different values of q, we show a typical simulation result

for four different values of q, namely q = 1, 1.5, 2, and

2.5, for the settings above, with SNR= 5 dB. Figure 9

shows the results, where it may again be noted that the

sparsity level increases with q.

Finally, we provide a numerical example showing the

results from solving the {r, q}-SPICE using (50), with

r = 1 and q = 1.75, and for the case where each noise

variance are allowed to differ across the samples. In this

scenario, we evaluated the gridless version of {r, q}-

SPICE, given in (50), and the gridless version of SPICE,

given in [37], together with the grid-based {r, q}-SPICE,

given a frequency grid of M = 500 grid points. In

each of the 100 Monte-Carlo simulations, the N = 50
samples long signal contained four sinusoids, each with

random phase, with two peaks having magnitude 4, one

peak magnitude 2, and the last one unit magnitude.

The frequencies were selected not to be closer than

1/2N from each other and were randomly selected in

each simulation from the interval (0, 1]. Both gridless

versions were computed using the SDP-solver in CVX

[30,31]. Figure 10 and 11 show the resulting RMSE and

probability of finding the correct support as functions of

the SNR level. As seen in the figures, the two versions of

the q-SPICE outperforms the gridless version of SPICE.

It is worth noting that in this scenario, only SPICE had

the benefit of removing the smallest peaks. Furthermore,

the model order was deemed correct if the method found

the true number of peaks, thus there were no limitation

on how close an estimated frequency had to be the true

value. If the model order was too high, the four largest
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peaks were selected to compute the RMSE, whereas

if the model order was too low, these estimates were

omitted from the RMSE evaluations.

Furthermore, one may see that the gridless version

of q-SPICE is slightly better than the gridded version.

However, this slight improvement from using the gridless

q-SPICE version may not be worth the extra computation

time; the gridless version took on average 9.4 seconds to

execute, whereas the gridded version only took 0.5 sec-

onds. However, it is worth recalling that other works on

gridless solutions implicate that faster implementations

are available (see, e.g., [39]), and these improvements in

implementation can likely also be applied to the gridless

q-SPICE.

VII. CONCLUSION

In this paper, we introduced a generalization of

the SPICE method, in which we allow for a trade-off

between the penalties for the model, using a q-norm,

and the noise parameters, using an r-norm. We show

that for larger values of q, one achieves a higher level

of sparsity and better performance for recovering the

support of the signal. Furthermore, we show that the

proposed method is equivalent to a penalized regression

formulation, with the 2q
q+1 norm on the model fit, for

the case when we let the noise variance vary across

all samples. In the case where the noise variance

is assumed to be equal for all samples, it is shown

that the proposed method is equal to the (weighted)

square-root LASSO, where the regularization parameter

has a one-to-one correspondence to the choice of q
for a given problem. Furthermore, we provide a fast

and efficient implementation for both the case when

r = 1 and the noise variances are equal for all samples,

and where they are allowed to differ. As a result of

the shown equivalence, the presented implementation

offers an attractive alternative for solving 2q
q+1 -norm

problems, and, perhaps more interesting, (weighted)

square-root LASSO problems for different regularization

parameters. We also present a gridless version of {r, q}-

SPICE for the sinusoidal signals, which is on the

form of an SDP problem. Numerical result show the

preferred performance of the {r, q}-SPICE as compared

to the original SPICE method, both for gridded and for

gridless versions for the estimator.
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