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Highlights

• At first, we derive the theoretical SRL expressions for the TR-MIMO and

conventional MIMO radar systems;

• Contrary to existing works, we take into account all the noise terms and

particularly the required noise whitening process for the exact SRL for-

mula computation;

• Finally, we provide a performance comparison between the conventional

and TR schemes which confirms the performance gain shown in the litera-

ture (e.g. Foroozan et al (2013)) when the noise term of the time reversed

signal is neglected. However, our analysis highlights the fact that the TR

scheme’s gain would be lost in the case where such assumption is not any

more valid.
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Abstract

In the single-input multiple-output radar, the system transmits scaled (coher-

ent) versions of a single waveform. The multiple-input multiple-output (MIMO)

radar uses multiple antennas to simultaneously transmit several non-coherent

waveforms and exploits multiple antennas to receive the reflected signals (echoes).

This diversity in term of waveform coding allows to transmit orthogonal wave-

forms which enables the MIMO radar superiority in several fundamental as-

pects, including: improved parameter identifiability and estimation and much

enhanced flexibility for transmit beam-pattern design. The context of this work

is the co-located MIMO radar where the transmit and the receive arrays are close

in space. In this paper, we provide a theoretical performance analysis to com-

pare two configurations of MIMO radar: conventional configuration and Time

Reversal (TR) configuration in term of Statistical Resolution Limit (SRL). This

study provides new insights on the performance gain of the TR scheme which

is discussed and illustrated by appropriate simulation results depending on the

receive noise level.

Keywords: Cramér-Rao Bound, Statistical Resolution Limit, Source detection

and localization, MIMO radar, Time Reversal.
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1. Introduction

In the Time Reversal (TR) communication scheme, several pulses, trans-

mitted through a dispersive medium, are received by an array, then time re-

versed, energy normalized, and retransmitted through the same channel. If the

scattering channel is reciprocal1, the retransmitted waveform refocuses on the5

original source. Recently, the TR strategy has been successively exploited for

source localization [1] in the sense that the Directions of Arrival (DOA) of the

sources are estimated with higher accuracy as compared to the conventional

approach (without TR strategy). In the context of (Multipe-Input Multiple-

Output) MIMO radar, the new scheme is denoted by the acronym TR-MIMO10

radar. The TR-MIMO radar benefits from (i) an extra degree of freedom and

increased design flexibility, e.g. [2, 3], due to the MIMO strategy and (ii) the

focusing property of the TR approach. As shown in [4], the target detection

performance is improved for a TR-MIMO radar.

Regarding the theoretical performance of any system, it is interesting to con-15

sider lower bound of the MSE (Mean Squared Error) as the Cramer-Rao Bound

(CRB) and the related resolution capability, namely the Statistical Resolution

Limit (SRL) [5, 6]. The CRB and the SRL, denoted by δ, are useful as a touch-

stone against which the efficiency of the considered estimators can be tested.

The SRL can be interpreted as the minimal separation in the parameter set to20

resolve two closely spaced targets as illustrated in Fig. 1.

The evaluation of the resolution limit is an old and fundamental problem and

a survey can be found in references [5, 6]. In [7], it is shown that the SRL

is the solution of an equation involving the CRB of the SRL given by δ2 =25

1Due to the reciprocity principle, the forward and reverse channels are assumed to be the

same.
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Figure 1: Resolution of two closely spaced parameters

µCRB(δ) where µ > 0 is a properly chosen scalar factor. In addition, in [8],

it is demonstrated that this equation naturally appears in the performance of

the Generalized Likelihood Ratio Test (GLRT) for a binary hypothesis test

consisting of the decision between the presence of one or two targets. Hence,

the criterion introduced heuristically in [7] is in fact optimal in the sense it30

coincides with the GLRT. In our work, it is this second strategy based on the

GLRT that is adopted due to its relative simplicity in the considered context.

The CRB and the SRL for the co-located MIMO radar (without TR) are derived

and analysed in [9]. In [10], the CRB and the SRL are derived for the TR-MIMO

and the gain to use the TR strategy at high Signal to Noise Ratio (SNR) is35

demonstrated. On the other hand, in [11], it is shown that an other interesting

quantity to assess the performance of a MIMO system is to derive the minimal

theoretical SNR in order to resolve two closely spaced targets. This SNR is

shown to be a quadratic function of the inverse SRL value. In this paper, we

extend the work initiated in [11] for the MIMO radar to the TR-MIMO radar40

context.

More precisely, our contributions are threefold: (i) at first we derive the

theoretical SRL expressions for the TR-MIMO and conventional MIMO cases;

4
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(ii) contrary to existing works, we take into account all the noise terms and

particularly the required noise whitening process for the exact SRL formula45

computation; (iii) finally, we provide a performance comparison between the

conventional and TR schemes which confirms the performance gain shown in

[10, 4] when the noise term of the time reversed signal is neglected. However,

our analysis highlights the fact that the TR scheme’s gain would be lost in the

case where such assumption is not any more valid. This result is well aligned50

with the general observation made in [12] about the TR scheme.

The rest of the paper is organised as follows: Section 2 gives the mathe-

matical model in conventional and TR MIMO radar. Taylor expansion w.r.t.

the SRL is presented in section 3 while the formulation of the hypothesis test is

given by section 4. Section 5 presents expressions of the SRL as well as the min-55

imum SNR needed to resolve two closely space sources. Numerical simulations

and discussions are presented in section 6. Finally, the conclusion of presented

work is given is section 7.

2. Model setup for Conventional and TR MIMO radar

We consider two co-located arrays A and B (with P and N sensors respec-60

tively as shown in Fig. 2). First, array A sends to array B a (P × 1) wideband

signal vector fA(t), with carrier frequency ωc. Secondly, array B sends to ar-

ray A another (N × 1) wideband signal vector βfB(t), with the same carrier

frequency ωc and β =
√

EfA

EfB
being a normalization constant. Here, EfB (resp.

EfA) stands for the energy of transmitted signal (resp. the energy of received65

signal), assuming that all the antennas in A and B are transmitting with the

same power. In the following sections 2.1 and 2.2, we derive the expression of

the first set of observations at array B in the single source and multiple sources

cases, respectively. Then, in the same way, we will deduce the second set of ob-

servations at array A in section 2.3. Finally, the model setup for the TR-MIMO70

radar is provided in subsection 2.4.
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Figure 2: Propagation model: (a) Conventional model. (b) Time Reversal model. Clutter

and scatterer signals are not presented.

2.1. Single source case

To formulate our model’s equation, we assume at first that the emitted signals

illuminate only one source. The observed signal at the nth sensor of array B is

expressed as:

[r(t)]n =
P∑

p=1

αnp
[
fA(t− τ̃Ap − τ̃Bn )

]
p

+ [v(t)]n + [ra(t)]n . (1)

where [.]n stands for the nth component, and αnp is the attenuation associated

to the considered source when sensor p is probing and sensor n is receiving.75

The target is assumed to be in the far field of the co-located arrays so that the

attenuation αnp = α for all n, p. Let τ̃Ap = r0
c + τAp (Ω), τ̃Bn = r0

c + τBn (Ω), where

r0 is the range of the target w.r.t. the reference sensor, τAp (Ω) (resp. τBn (Ω))

stands for the time delay of the pth sensor of the array A (resp. nth sensor of

the array B) w.r.t. the sensor reference which depends2 on Ω = sin(θ) , where80

2The expression of these delays are given in the sequel for uniform linear array geometry.
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θ is the direction of arrival (DOA) of the source signal. The additive noise v(t)

is a white circular Gaussian process with zero mean and variance σ2
v and ra(t)

represents the clutter response. In the following and similarly to [13, 8], we

assume that the clutter signal is known (or previously estimated) and then it

will be removed from the considered model.85

The frequency component of (1) in the qth frequency bin (denoted ωq) can

be expressed as (the signals are down converted to baseband)

[r(ωq)]n = α

P∑

p=1

e−j(ωq+ωc)(
2r0
c +τAp (Ω)+τBn (Ω)) [fA(ωq)]p + [v(ωq)]n . (2)

The observed vector in matrix form is given by

r(ωq) = αe−j(ωq+ωc)
2r0
c A(Ω, ωq)fA(ωq) + v(ωq). (3)

where the (n, p)th element of the transmit-receive propagation matrix A(Ω, ωq)

is given by [A(Ω, ωq)]np = e−j(ωq+ωc)(τ
B
n (Ω)+τAp (Ω)), 1 ≤ n ≤ N and 1 ≤ p ≤ P .

2.2. Multiple sources case

Now, we generalize equation (3) to the multiple sources context, in which

case we have

r(ωq) =

L∑

l=1

Al(Ωl, ωq)fA(ωq) + v(ωq). (4)

where Al(Ωl, ωq) = αle
−j(ωq+ωc)

2r0l
c A(Ωl, ωq), 1 ≤ l ≤ L and L is the number

of sources.90

Let r =
[
rT (ω1), · · · , rT (ωQ)

]T
be the vector of size (NQ×1) of all frequency

components. It can be expressed as

r =
L∑

l=1

Al(Ωl)fA + v. (5)

where Al(Ωl) = Bdiag [Al(Ωl, ω1), · · · ,Al(Ωl, ωQ)], Bdiag stands for ‘Block

diag’ operator, fA =
[
fTA (ω1), · · · , fTA (ωQ)

]T
and v =

[
vT (ω1), · · · ,vT (ωQ)

]T
.

7
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2.3. Retransmitted signals from array B to array A

In the same way as previous subsections, the second set of observations in

the qth frequency bin ωq is given by

y(ωq) = βc

L∑

l=1

AT
l (Ωl, ωq)fB(ωq) + w(ωq). (6)

where βc =
√

EfA

EfB
is a power normalizing factor (EfA and EfB being the energy

used by array A and B respectively), w is white circular Gaussian noise with

zero mean and variance σ2
w. The (PQ×1) observation vector y can be expressed

as

y = βc

L∑

l=1

AT
l (Ωl)fB + w. (7)

where fB = [fB(ω1), · · · , fB(ωQ)]
T

and wB = [wB(ω1), · · · ,wB(ωQ)]
T

. In (7),

we have assumed a symmetric channel so that if Al(Ωl) models the transmission

from A to B then AT
l (Ωl) represents the propagation channel from B to A.

Finally, the data in r and y are both concatenated to form the total observation

vector uc according to:

uc =
[
rT yT

]T
. (8)

2.4. Model setup for Time Reversal observations

Now we consider the TR case where array A sends a wideband signal fA,95

with carrier frequency ωc. The observed data at B (i.e., r in equation (5)) is

recorded, energy normalized, time reversed (TR) and retransmitted (i.e., we

transmit βTRr(−t) where βTR =
√

EfA

EfB
). Based on equation (6), the received

vector x at array A is given by

x(ωq) = βTR

L∑

l=1

AT
l (Ωl, ωq)r

∗(ωq) + w(ωq),

= βTR




L∑

l=1

AT
l (Ωl, ωq)

L∑

l′=1

A∗
l′ (Ω

′
l, ωq)


f∗A(ωq)+n

′
(ωq). (9)

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where n
′
(ωq) = βTR

∑L
l=1 A

T
l (Ωl)v

∗(ωq) + w(ωq). The (PQ × 1) observation

vector x can be expressed as

x = βTR




L∑

l=1

AT
l (Ωl)

L∑

l′=1

A∗
l′ (Ω

′
l)


 f∗A + n

′
. (10)

where n
′

=
[
n
′T (ω1), · · · , n

′T (ωq)
]T

. Now, the TR observations set is

formed using r and x as

uTR =
[
rT xT

]T
. (11)

3. Taylor expansion and linear model w.r.t. SRL100

In the sequel, we consider the situation where two sources are closely spaced

in terms of DOA while the other sources (if any) are far away with known (or well

estimated) parameters. Following the methodology introduced in [14], the aim

of this section is to linearise, w.r.t. the angle difference of two closely spaced

sources, equations (5) and (7) (i.e., conventional model) and (10) (i.e., TR105

model) using Taylor expansion. The result will be used to derive the minimum

Signal to Noise Ratio (SNR) required to resolve the considered two closely space

sources. Without loss of generality, we consider that these two sources are

parametrized by Ω1 and Ω2, in which case we denote by δ = Ω2 − Ω1 the

‘distance’ between the two parameters and by Ωc = Ω1+Ω2

2 their center.110

For simplicity, we consider next two aligned uniform arrays (A and B) as

shown in Fig. 2, for which the resolution limit is developed. in that case the

time delays expressions are given by

τBn (Ω) =
dBn
c

Ω (12)

τAp (Ω) =
dAp
c

Ω (13)

where dBn (resp. dAp ) is the distance between the nth sensor of the array B (resp.

pth sensor of the array A) and the reference sensor.115

9
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3.1. Conventional model

As shown in Appendix A, the first-order Taylor expansion of (5) around

δ = 0 leads to

r
1≈ AcfA + δDfA +

L∑

l=3

Al(Ωl)fA + v. (14)

where
1≈ means the first-order approximation and

Ac = Bdiag [Ac(ω1), · · · ,Ac(ωQ)] , (15)

D = Bdiag [D(ω1), · · · ,D(ωQ)] . (16)

The (n, p)th element of matrices Ac(ωq) and D(ωq) are given by

[Ac(ωq)]np = α+(ωq)e
−j (ωq+ωc)(d

B
n+dAp )

c Ωc , (17)

[D(ωq)]np = α−(ωq)j
(ωq + ωc)(d

B
n + dAp )

2c
e−j

(ωq+ωc)(d
B
n+dAp )

c Ωc , (18)

with

α+(ωq) = α1e
−j(ωq+ωc)

2r01
c + α2e

−j(ωq+ωc)
2r02
c , (19)

α−(ωq) = α1e
−j(ωq+ωc)

2r01
c − α2e

−j(ωq+ωc)
2r02
c . (20)

In the same way, The first-order Taylor expansion around δ = 0 of (7) leads

to

y
1≈ βcAT

c fB + δβcD
T fB + βc

L∑

l=3

AT
l (Ωl)fB + w. (21)

The first-order Taylor expansion of the conventional data set uc (cf. equation

(8)) is given by

uc
1≈ Acfc + δDcfc +

L∑

l=3

Al(Ωl)fc + ξc. (22)

where Ac = Bdiag
[
Ac, βcA

T
c

]
, Dc = Bdiag

[
D, βcD

T
]
, Al(Ωl) = Bdiag

[
Al(Ωl), βcA

T
l (Ωl)

]
120

fc =
[
fTA , f

T
B

]T
and ξc =

[
vT ,wT

]T
.

10
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3.2. Time Reversal model

As shown in Appendix B, the first-order Taylor expansion of (10) around

δ = 0 leads to

x
1≈ βTRHcf

∗
A + βTRδHdf

∗
A + βTRδD

Tv∗ + w
′
. (23)

where

Hc = Bdiag [Hc(ω1), · · · ,Hc(ωQ)] , (24)

Hd = Bdiag [Hd(ω1), · · · ,Hd(ωQ)] , (25)

Acc(ωq) = Ac(ωq) +
L∑

l=3

Al(Ωl, ωq),

Hc(ωq) = AT
cc(ωq)A

∗
cc(ωq),

Hd(ωq) = AT
cc(ωq)D

∗(ωq) + DT (ωq)A
∗
cc(ωq),

w
′

=
[
w
′T (ω1), · · · , w

′T (ωq)
]T
, (26)

w
′
(ωq) = βTRAcc(ωq)v

∗(ωq) + w(ωq).

One can observe that the noise term
(
βTRδD

Tv∗ + w
′
)

is not white any-

more3. For that and in order to simplify the computation of the SINR, we

whiten the observed vector x. As shown in Appendix C, the whitened vector

x̃ is given by

x̃ = βTRW0Hcf
∗
A + βTRδ

(
W0Hd −

β2
TRσ

2
v

2σ2
W

3
2
0 HdW

3
2
0 Hc

)
f∗A + v′. (27)

where W0 = Bdiag [W0(ω1), · · · ,W0(ωQ)] and W0(ωq) = σR
− 1

2
0 (ωq) is the

principal term of the first order expansion of the whitening matrix (see Appendix125

Appendix C for details), with R0(ωq) is the covariance matrix of x(ωq) for δ = 0,
(
R0(ωq) = β2

TRσ
2
vHc(ωq) + σ2

wI
)
, and v′ ∼ CN(0, σ2I).

3The noise
(
βTRδD

Tv∗(ωq) +w
′
(ωq)

)
∼ CN (0,Rδ(ωq)), where Rδ(ωq) =

β2
TRσ

2
v (Hc(ωq) + δHd(ωq)) + σ2

wI, the term proportional to δ2 is neglected here. For more

details see Appendix C.

11
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The first-order Taylor expansion of the TR data vector uTR is given by

uTR
1≈ ATRfTR + δDTRfTR +

L∑

l=3

Ol(Ωl)fTR + ξTR. (28)

where ATR = Bdiag [Ac, βTRW0Hc], DTR = Bdiag
[
D, βTR

(
W0Hd − β2

TRσ
2
v

2σ2 W
3
2
0 HdW

3
2
0 Hc

)]
,

Ol(Ωl) = Bdiag [Al(Ωl),0QP×QP ], all the elements of the matrix 0 are equal to

0, fTR =
[
fTA , f

H
A

]T
and ξTR =

[
vT ,v

′T
]T

.130

4. Hypothesis test formulation

In the following we assume that two sources are in the vicinity of each other.

Let the hypothesisH0 represents the case where the two Source Of Interest (SOI)

exist but are combined into a single signal, whereas the hypothesis H1 embodies

the situation where the two SOI are resolvable. Consequently, a convenient

binary hypothesis test is given by




H0 : δ = 0

H1 : δ 6= 0
(29)

In this case, the Generalized Likelihood Ratio Test [15] is given by

G(u) =
p(u; δ̂,H1)

p(u;H0)
≶H0

H1
η′. (30)

in which p(u;H0) and p(u;H1) denote the probability density functions (pdf)

under H0 and H1, respectively, and where η′, δ̂ denote the detection threshold,

the maximum likelihood estimate (MLE) of δ under H1. If the statistic G(u) is

greater than a given threshold η′, then the signals are said to be resolvable.135

In the following, we assume that Ωc and Al(Ωl), 3 ≤ l ≤ L are known or

previously estimated. This simplifying assumption can be justified as follows:

• The directions of arrival as well as the cross section coefficients of well

separated sources (i.e. sources 3 to L) can be accurately estimated and

hence, for simplicity, they are assumed known in the sequel. This is also140

the case for the central direction Ωc of the two closely spaced sources.

12
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• Note that simplifying assumptions are often used when deriving the perfor-

mance bounds due to the problem difficulty. For this reason, most papers

investigating the estimation performance bounds (Cramer Rao Bounds or

others) rely on the simplifying assumption that the detection of the num-145

ber of sources is perfect and focus only on the estimation performance

bound. Similarly, in our case, we assume that the estimation of the pre-

viously mentioned parameters is perfect and focus only on the detection

performance bound. This allows us to understand how the SRL depends

on different system parameters including the SNR, the number of sen-150

sors and their location, the unknown cross section coefficients of the two

closely spaced sources, the waveform signal, etc. and to compare the two

considered schemes (with or without the TR).

We define now new observation vectors: zc for the conventional model

zc = uc − Acfc −
L∑

l=3

Al(Ωl)fc,

= δDcfc + ξc. (31)

and zTR for the time reversal model155

zTR = uTR − ATRfTR −
L∑

l=3

Ol(Ωl)fTR,

= δDTRfTR + ξTR. (32)

Without loss of generality, we define only one new observation vector z

z = δDf + ξ. (33)

where D = Dc, f = fc and ξ = ξc for the conventional model and D = DTR,

f = fTR and ξ = ξTR for the time reversal model.

4.1. Binary hypothesis test

The binary hypothesis test for signal (33) is



H0 : z = ξ ∼ CN(0,Rξ)

H1 : z = δg + ξ ∼ CN(δg,Rξ)
(34)

13
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where





g = Dcfc and Rξ = Bdiag
[
σ2
vI, σ

2
wI
]

for conventional model

g = DTRfTR and Rξ = Bdiag
[
σ2
vI, σ

2I
]

for time reversal model

4.2. Constrained MLE (CMLE)160

As the SRL δ is a real value, one has to define the constrained MLE (CMLE)

of δ. More precisely, the constrained optimization problem can be written ac-

cording to arg minδ L(z, δ) subject to δ is real valued, where L(z, δ) is the neg-

ative log-likelihood function is given by

L(z, δ) = −ln(p(z)), (35)

= Q(N + P ) ln(π) +QN ln(σ2
N ) +QP ln(σ2

P )

+
1

σ2
N

‖zN − δgN‖2 +
1

σ2
P

‖zP − δgP ‖2 . (36)

where z = [zN , zP ]
T

, zN =
[
z(1), · · · , z(QN)

]T
, zP =

[
z(QN+1), · · · , z(QN+QP )

]T
,165

g = [gN , gP ]
T

, gN =
[
g(1), · · · , g(QN)

]T
and gP =

[
g(QN+1), · · · , g(QN+QP )

]T
,

σ2
N and σ2

P are the noise variances associated to the observed vectors zN and

zP respectively. In conventional case (σ2
N , σ

2
P ) = (σ2

v, σ
2
w) and in time reversal

case (σ2
N , σ

2
P ) = (σ2

v, σ
2).

This problem of optimization can be solved by the Lagrange multiplier

method. The Lagrange function is given by

L(z, δ) = L(z, δ) + ϑ=(δ). (37)

where ϑ is a real Lagrange multiplier and =(δ) stands for the imaginary part of

δ. The partial derivatives of the Lagrange function are




∂L(z,δ)
∂δ = 1

σ2
N

(
‖gN‖2 δ∗ − zHNgN

)
+ 1

σ2
P

(
‖gP ‖2 δ∗ − zHP gP

)
− ϑ2

∂L(z,δ)
∂ϑ = =(δ)

(38)

where the condition =(δ) = 0 can be written according to  1
2 (δ − δ∗) = 0. By

letting ∂L(z,δ)
∂ϑ

∣∣∣
ϑ=ϑ0

= 0, one can obtain ϑ0 = 2=
(

1
σ2
N
gHNzN + 1

σ2
P
gHP zP

)
. By

replacing this expression in δ0 expression obtained by letting ∂L(z,δ)
∂δ

∣∣∣
δ=δ0

= 0,

one obtains

δ0 =
σ2
Nσ

2
P

σ2
N ‖gP ‖

2
+ σ2

P ‖gN‖
2<
(

1

σ2
N

gHNzN +
1

σ2
P

gHP zP

)
(39)
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Using (39), the statistic of the GLRT is then given by170

G(z) =
p(z; δ̂0,H1)

p(z;H0)
≶H0

H1
η′, (40)

= e

{
1

2σ2
N

(‖zN‖2−‖zN−δ0gN‖2)+ 1

2σ2
P

(‖zP ‖2−‖zP−δ0gP ‖2)
}

. (41)

Plugging (39) in (41) and defining a new statistic T(z), one obtains

T(z) = 2 ln(G(z)) (42)

=
σ2
Nσ

2
P

σ2
N ‖gP ‖

2
+ σ2

P ‖gN‖
2<2

(
1

σ2
N

gHNzN +
1

σ2
P

gHP zP

)
(43)

Using the result of Appendix D, we have

T(z) ∼





χ2
1 under H0,

χ2
1(λ) under H1.

(44)

where the non-centrality parameter is given by

λ = 2δ2
0

(
‖gN‖2
σ2
N

+
‖gP ‖2
σ2
P

)
. (45)

and where χ2
1 denotes the central Chi 2 distribution with one degree of freedom.

Note that, given some target false alarm and detection probabilities, parameter

λ can be computed using the numerical algorithm propose in [8].

5. Minimum SNR expressions175

From equation (45) and according to the corresponding model, we derive

closed form expressions of the SNR.

5.1. Conventional model

The parameters of equation (45) are given by gN = DfA, gP = DfB , σ2
N =

σ2
v and σ2

P = σ2
w. Hence

λ = 2δ2
0

(
‖DfA‖2
σ2
v

+ β2
c

∥∥DT fB
∥∥2

σ2
w

)
. (46)
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By letting κ =
σ2
v

σ2
w

and SNR = ‖fA‖2
σ2
w

, one obtains

λ = 2δ2
0SNR

(
‖DfA‖2

κ ‖fA‖2
+ β2

c

∥∥DT fB
∥∥2

‖fA‖2

)
(47)

finally

δ0 =

√√√√ λ ‖fA‖2

2SNR
(

1
κ ‖DfA‖2 + β2

c ‖DT fB‖2
) (48)

and the minimum SNRmin to resolve the two closely space sources can be given

by

SNRmin =
λ ‖fA‖2

2δ2
0

(
1
κ ‖DfA‖2 + β2

c ‖DT fB‖2
) (49)

5.2. Time reversal model

In this case, the parameters of equation (45) are given by σ2
N = σ2

v , σ2
P = σ2,

gN = DfA and gP = βTR

(
W0Hd − β2

TRσ
2
v

2σ2 W
3
2
0 HdW

3
2
0 Hc

)
f∗A. In the following,

we have W0 = σR
− 1

2
0 , R0 = σ2

wC0 where C0 = β2
TRκHc+I and κ =

σ2
v

σ2
w

. Under

theses definitions, equation (45) becomes

λ = 2δ2
0

SNR

‖fA‖2

(
1

κ
‖DfA‖2 + β2

TR

∥∥∥∥
(
C
− 1

2
0 Hd − κ

β2
TR

2
C
− 3

4
0 HdC

− 3
4

0 Hc

)
f∗A

∥∥∥∥
2
)

(50)

where SNR = ‖fA‖2
σ2
w

and180

β2
TR =

‖fA‖2

‖r∗‖2
=

‖fA‖2∥∥∥
∑L
l=1 A

∗
l f
∗
∥∥∥

2

+QNσ2
v

=
‖fA‖2

‖A∗ccf∗A + δDf∗A‖
2

+QNσ2
v

(51)

≈ ‖fA‖2

‖A∗ccf∗A‖
2

+QNσ2
v

=
1

1
β̃2

+ κ QN
SNR

(52)

where β̃2 = ‖fA‖2

‖A∗ccf∗A‖2
. In order to keep the second order of equation (50) w.r.t.

δ, we have taken the constant term of β2
TR as shown in equation (52).
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Finally, the SRL is given by

δ0 =

√√√√√
λ ‖fA‖2

2SNR

(
1
κ ‖DfA‖2 + β2

TR

∥∥∥
(
C
− 1

2
0 Hd − κ β2

TR

2 C
− 3

4
0 HdC

− 3
4

0 Hc

)
f∗A

∥∥∥
2
)

(53)

So, the minimum SNRmin to resolve the two closely space sources can be given

by

SNRmin =
λ ‖fA‖2

2δ2
0

(
1
κ ‖DfA‖2 + β2

TR

∥∥∥
(
C
− 1

2
0 Hd − κ β2

TR

2 C
− 3

4
0 HdC

− 3
4

0 Hc

)
f∗A

∥∥∥
2
)

(54)

6. Numerical results

In this section, we consider two co-located uniform linear arrays A and B

with P = 15 = N = 15 sensors. The emitted signals are chosen in such a

way they are orthogonal and share the same frequency bandwidth. Here, these

signals are given by (according to the phase coding scheme in [4])

[f(wq)]m = e2π
mq
Q f(wq) (55)

where wq = q∆f , ∆f = B
Q , B = 50MHz is the frequency bandwidth, Q = 25

is the number of frequency bins. [f(wq)]m stands for the emitted signal from185

the mth sensor. f(wq) represents the frequency response of a Linear Frequency

Modulated (LFM) signal (see [4] for more details).

In our simulations, we are interested in the angular resolution limit (ARL).

For that, arrays A and B illuminate L = 4 sources where two of them are in

the same vicinity. Their different ranges are r1 = 1000, r2 = 1200, r3 = 1600190

and r4 = 800. The attenuation factors are assumed to be real and given by

α1 = 0.9, α2 = 0.8, α3 = 0.7 and α4 = 0.6. The central direction of arrival

of the two closely spaced sources is θc = 15o while θ3 = 60o and θ4 = 80o

are the directions of arrival of the third and fourth sources, respectively. The

probabilities of detection and false alarm are Pd = 0.99 and Pfa = 0.01.195
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In the first experiment, we compare the ARL for the two considered MIMO

systems (conventional and TR). In Figures 3, 4 and 5, the plots represent the

SRL δ w.r.t. the central direction θc for different values of the parameter κ =
σ2
v

σ2
w

.

As we can see from Figure 3, when the noise term of the time reversed signal is

relatively weak with κ < 1, the transmit and receive signals at antenna A are200

well matched and hence the performance of the TR-MIMO radar is superior to

that of the conventional MIMO radar which corresponds to the results already

obtained in [10]. However, for κ = 1 (Figure 4), the two configurations lead

to approximately the same SRL performance. In Figure 5 we consider the case

κ > 1 for which the TR scheme is significantly degraded (due to the weak205

matching between the transmitted and received signals at antenna A). In that

case, we observe that the conventional MIMO radar outperforms the TR-MIMO

w.r.t. the SRL performance.

Figure 3: SRL versus θc for κ < 1

To confirm this result, we use now the approximation (simplification) intro-

duced in [4] where the noise term of the time reversed signal is ignored (see

equations (37)-(40) in [4]). By considering this simplification, the SRL expres-
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Figure 4: SRL versus θc for κ = 1

Figure 5: SRL versus θc for κ > 1

sion of the TR-MIMO radar becomes:

δ0 =

√√√√ λ ‖fA‖2

2SNR
(

1
κ ‖DfA‖2 + β2

TR ‖Hdf∗A‖
2
) (56)

Figure 6 provides a comparative SRL performance between the conventional and

TR schemes with the considered assumption, i.e. eq. (56) for the latter scheme.210

As we can see, the TR configuration leads to a significant gain as compared to
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the conventional configuration when the noise term of the time reversed signal

is neglected which confirms the observations of Figures 3, 4 and 5. Another

observation made out of this experiment, is the highly nonlinear dependency

of the SLR w.r.t. the central direction θc as well as the non symmetry of the215

problem (i.e. the SRL for θc is different from the one of −θc) which is due to

the chosen reference sensor and the non-symmetrical geometry of the considered

radar system.

Figure 6: SRL versus θc with the simplifying assumption of [4]

In the last experiment, we analyse the SRL and SNRmin variations w.r.t.

different system parameters. Figure 7, illustrates the variations of the SRL δ220

versus the SNR for κ = 0.1 and central DOA θc = 60o. From the plots, one

can see that for δ = 2.4 10−4, SNRmin = 19 dB in the conventional MIMO

case while SNRmin = 16.5 for the TR-MIMO case which represents a gain of

2.5 dB. When considering the simplifying assumption of [4] (i.e., by considering

the SRL expression given by equation (56)), one can obtain a gain of 7.5 dB for225

δ = 1.97 10−4 as shown in Figure 8.
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Figure 7: SRL versus θc for the considered assumption used in [4]

Figure 8: SRL versus θc for the considered assumption used in [4]

7. Conclusion

In this paper, we have derived the exact SRL expressions for both TR-

MIMO and conventional MIMO radar systems. Based on this study, we have

demonstrated that the time reversal can improve the SRL and the obtained gain230

can be very important in the case where the noise term of the time reversed
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signal is weak. Another key observation, is that this gain is highly dependent

on the latter assumption and one can obtain better performance results with

the conventional scheme if the considered noise in no longer negligible. Also, it

is shown that the SRL performance strongly depends on the central direction235

of arrival of the two closely spaced sources.

Appendices

Appendix A. Taylor expansion of the conventional model

Equation (4) can be expressed as

r(ωq) = (A1(Ω1, ωq) + A2(Ω2, ωq)) fA(ωq) +
L∑

l=3

Al(Ωl, ωq)fA(ωq) + v(ωq).

(A.1)

and, for n, p, we have

[A1(Ω1, ωq) + A2(Ω2, ωq)]np = α1e
−j(ωq+ωc)

2r01
c e−j(ωq+ωc)(τ

B
n (Ω1)+τAp (Ω1))

+α2e
−j(ωq+ωc)

2r02
c e−j(ωq+ωc)(τ

B
n (Ω2)+τAp (Ω2)). (A.2)

where r0i is the range of source i w.r.t. the reference sensor. Without loss of

generality, we assume that Ω1 and Ω2 are closely-spaced and Ω3, · · · ,ΩL are

widely spaced (cf. Fig. 1 of [14]). Let us rewrite the angle parameters as




Ω1 = 1
2 (2Ωc − δ)

Ω2 = 1
2 (2Ωc + δ)

(A.3)

Replacing Ω1, Ω2, τBn (Ωl) and τAp (Ωl), l = 1, 2 by their values in equation240

(A.2), one obtains

[A1(Ω1, ωq) + A2(Ω2, ωq)]np = e−j
(ωq+ωc)(d

B
n+dAp )

c Ωc

[
α1e
−j(ωq+ωc)

2r01
c ej

(ωq+ωc)(d
B
n+dAp )

2c δ

+ α2e
−j(ωq+ωc)

2r02
c e−j

(ωq+ωc)(d
B
n+dAp )

2c δ

]
. (A.4)

The first-order Taylor expansion is given by

[A1(Ω1, ωq) + A2(Ω2, ωq)]np
1≈ e−j

(ωq+ωc)(d
B
n+dAp )

c Ωc

[
α1e
−j(ωq+ωc)

2r01
c + α2e

−j(ωq+ωc)
2r02
c

]

+j
(ωq + ωc)(d

B
n + dAp )

2c
e−j

(ωq+ωc)(d
B
n+dAp )

c Ωc

[
α1e
−j(ωq+ωc)

2r01
c − α2e

−j(ωq+ωc)
2r02
c

]
δ. (A.5)
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By using equations (17)-(20), One can obtain the following matrix form

A1(Ω1, ωq) + A2(Ω2, ωq)
1≈ Ac(ωq) + δD(ωq). (A.6)

and then equation (A.1) becomes

r(ωq) = (Ac(ωq) + δD(ωq)) fA(ωq) +
L∑

l=3

Al(Ωl, ωq)fA(ωq) + v(ωq). (A.7)

Consequently, one can obtain the first-order Taylor expansion (14)

Appendix B. Taylor expansion of the Time Reversal model

Equation (9) can be written as245

x(ωq) = βTR

(
AT

1 (Ω1, ωq) + AT
2 (Ω2, ωq) +

L∑

l=3

AT
l (Ωl, ωq)

)

×
(
A∗1(Ω1, ωq) + A∗2(Ω2, ωq) +

L∑

l=3

A∗l (Ωl, ωq)

)
f∗A(ωq)

+βTR

(
AT

1 (Ω1, ωq) + AT
2 (Ω2, ωq) +

L∑

l=3

AT
l (Ωl)

)
v∗(ωq) + w(ωq).(B.1)

By replacing equation (A.6) in equation (B.1), one obtains

x(ωq) = βTR
(
AT
cc(ωq)A

∗
cc(ωq)+δ

[
AT
cc(ωq)D

∗(ωq) + DT (ωq)A
∗
cc(ωq)

])
f∗A(ωq)

+ βTR

(
AT
c (Ωc, ωq) +

L∑

l=3

AT
l (Ωl)

)
v∗(ωq) + βTRδD

T (ωq)v
∗(ωq) + w(ωq),

= βTRHc(ωq)f
∗
A(ωq) + βTRδHd(ωq)f

∗
A(ωq) + βTRδD

T (ωq)v
∗(ωq) + w

′
(ωq). (B.2)

where Hc(ωq) = AT
cc(ωq)A

∗
cc(ωq), Hd(ωq) = AT

cc(ωq)D
∗(ωq) + DT (ωq)A

∗
cc(ωq),

Acc(ωq) = Ac(ωq)+
∑L
l=3 Al(Ωl, ωq) and w

′
(ωq) = βTRA

T
cc(ωq)v

∗(ωq)+w(ωq).

Consequently, one can obtain the first-order Taylor expansion (23).

Appendix C. Whitening250

Let Rδ(ωq) be the covariance matrix of the noise term
(
βδDT (ωq)v

∗(ωq) + w′(ωq)
)
,

the whitening matrix is given by [16, 17]

Wδ(ωq) = σR
− 1

2

δ (ωq). (C.1)

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In this case, the whitened observation vector is given by

x̃(ωq) = Wδ(ωq)x(ωq),

= βWδ(ωq)Hc(ωq)f
∗
A(ωq) + βδWδ(ωq)Hd(ωq)f

∗
A(ωq) + v′(ωq).(C.2)

where v′(ωq) = Wδ(ωq)
(
βδDT (ωq)v

∗(ωq) + w′(ωq)
)
∼ CN(0, σ2I).

Now, let R0(ωq) be the covariance matrix of
(
βTRδD

T (ωq)v
∗(ωq) + w′(ωq)

)

for δ = 0
(
i.e., R0(ωq) = E

[
w′(ωq)w′H(ωq)

]
= β2σ2

vHc(ωq) + σ2
wI
)
. Let us express Wδ(ωq)255

as function of W0(ωq) = σR
− 1

2
0 (wq).

We recall here Rδ(ωq) = E
[
(βδD(ωq)v

∗(ωq) + w′(ωq)) (βδD(ωq)v
∗(ωq) + w′(ωq))

H
]

and

Rδ(ωq)
1≈ R0(ωq) + βδ

(
DT (ωq)E

[
v∗(ωq)w

′H(ωq)
]

+ E
[
w′(ωq)v

T (ωq)
]
D∗(ωq)

)
,

(C.3)

= R0(ωq) + δR(ωq), (C.4)

= R0(ωq)
1
2

(
I + δR

− 1
2

0 (ωq)R(ωq)R
− 1

2
0 (ωq)

)
R

1
2
0 (ωq). (C.5)

where

R(ωq) = βDT (ωq)E
[
v∗(ωq)w

′H(ωq)
]

+ βE
[
w′(ωq)v

T (ωq)
]
D∗(ωq), (C.6)

= βDT (ωq)E
[
v∗(ωq)

(
βAT

cc(ωq)v
∗(ωq) + w(ωq)

)H]

+ βE
[(
βAT

cc(ωq)v
∗(ωq) + w(ωq)

)
vT (ωq)

]
D∗(ωq), (C.7)

= βDT (ωq)




E
[
v∗(ωq)v

T (ωq)
]
βA∗cc(ωq) + E

[
v∗(ωq)w

H(ωq)
]

︸ ︷︷ ︸
0





+β




βAT

cc(ωq)E
[
v∗(ωq)v

T (ωq)
]

+ E
[
w(ωq)v

T (ωq)
]

︸ ︷︷ ︸
0





D∗(ωq),(C.8)

= β2σ2
v

{
DT (ωq)A

∗
cc(ωq) + AT

cc(ωq)D
∗(ωq)

}
, (C.9)

= β2σ2
vHd(ωq). (C.10)

and hence

Rδ(ωq) = β2σ2
v (Hc(ωq) + δHd(ωq)) + σ2

wI. (C.11)
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equation (C.5) leads to the following first-order Taylor expansion

R
− 1

2

δ (ωq) = R
− 1

2
0 (ωq)−

1

2
δR
− 3

4
0 (ωq)R(ωq)R

− 3
4

0 (ωq). (C.12)

and thus

Wδ(ωq) = W0(ωq)−
1

2
δW

3
2
0 (ωq)

1

σ2
R(ωq)W

3
2
0 (ωq). (C.13)

Now, we replace Wδ(ωq) and R(ωq) by their expressions in equation (C.2), one260

can obtain (27).

Appendix D. Statistic of T(z)

We recall that under hypothesis H1

z =


 zN

zP


 = δ


 gN

gP


+


 ξN

ξP


 . (D.1)

hence zN = δgN + ξN and zP = δgP + ξP . We assume ξN and ξP are two

circular complex white Gaussian vectors according to

<(ξN ) ∼ N (0,
σ2
N

2
I), =(ξN ) ∼ N (0,

σ2
N

2 I), (D.2)

<(ξP ) ∼ N (0,
σ2
P

2
I), =(ξP ) ∼ N (0,

σ2
P

2 I). (D.3)

we have zN ∼ N (δgN , σ
2
NI) since265

E(zN ) = E(<(zN )) + E(=(zN )), (D.4)

= δ<(gN ) + δı(gN ), (D.5)

= δgN . (D.6)

Using the circular property of ξN

E
(
(zN − δgN )(zN − δgN )H

)
= E(ξNξ

H
N ), (D.7)

= E(<(ξN )<(ξN )T ) + E(=(ξN )=(ξN )T ),(D.8)

= (
σ2
N

2
+
σ2
N

2
)I, (D.9)

= σ2
NI. (D.10)
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By following the same way, we have zP ∼ N (δgP , σ
2
P I). Let

u =
1

σ2
N

<(gHNzN ), (D.11)

v =
1

σ2
P

<(gHP zP ). (D.12)

we have

E(u) = E

(
1

σ2
N

(
<(gN )T<(zN ) + =(gN )T=(zN )

))
, (D.13)

=
1

σ2
N

[
<(gN )TE(<(zN )) + =(gN )TE(=(zN ))

]
, (D.14)

=
1

σ2
N

[
δ ‖<(gN )‖2 + δ ‖=(gN )‖2

]
, (D.15)

=
δ ‖gN‖2
σ2
N

(D.16)

and

Cu = E



(
u− δ ‖gN‖2

σ2
N

)2

 =

1

σ4
N

E

((
<(gHNzN )− δ ‖gN‖2

)2
)
,

=
1

σ4
N

E
(
<2
(
gHN (zN − δgN )

))
, (D.17)

=
1

σ4
N

E
(
<2
(
gHN ξN

))
, (D.18)

=
1

σ4
N

E
((
<(gN )T<(ξN ) + =(gN )T=(ξN )

)2)
, (D.19)

=
1

σ4
N

σ2
N

2
‖gN‖2 , (D.20)

=
1

2σ2
N

‖gN‖2 . (D.21)

Thus270

u ∼ N
(
δ ‖gN‖2
σ2
N

,
‖gN‖2
2σ2

N

)
, (D.22)

v ∼ N
(
δ ‖gP ‖2
σ2
P

,
‖gP ‖2
2σ2

P

)
(D.23)

The statistic of u+ v is

CN
(
δ

(
‖gN‖2
σ2
N

+
‖gP ‖2
σ2
P

)
,

1

2

(
‖gN‖2
σ2
N

+
‖gP ‖2
σ2
P

))
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if u and v are independent random variables.

Now, we can verify the following equality:

T(z) =
(u+ v)2

Cu+v
, (D.24)

=
2σ2

Nσ
2
P

σ2
N ‖gP ‖

2
+ σ2

P ‖gN‖
2<2

(
1

σ2
N

gHNzN +
1

σ2
P

gHP zP

)
. (D.25)

The non-centrality parameter is

λ =
E2(u+ v)

Cu+v
= 2δ2

(
‖gN‖2
σ2
N

+
‖gP ‖2
σ2
P

)
. (D.26)

and

T(z) ∼ χ2
1(λ).
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