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Abstract

Active contour models have been widely used for image segmentation purposes. However, they 

may fail to delineate objects of interest depicted on images with intensity inhomogeneity. To 

resolve this issue, a novel image feature, termed as local edge entropy, is proposed in this study to 

reduce the negative impact of inhomogeneity on image segmentation. An active contour model is 

developed on the basis of this feature, where an edge entropy fitting (EEF) energy is defined with 

the combination of a redesigned regularization term. Minimizing the energy in a variational level 

set formulation can successfully drive the motion of an initial contour curve towards optimal 

object boundaries. Experiments on a number of test images demonstrate that the proposed model 

has the capability of handling intensity inhomogeneity with reasonable segmentation accuracy.
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1. Introduction

Image segmentation [1] aims to partition an image into meaningful subregions. There have 

been numerous approaches developed for this purpose [2–4]. Among the available schemes, 

active contour models [5–7] attract considerable attention and are able to segment target 

regions with reasonable accuracy. The underlying idea of the active contour models is 

initializing a contour as the zero level set [8] of a higher dimensional function and then 

driving the contour towards object boundaries by minimizing a predefined energy functional. 

To minimize the energy, a variational level set formulation is widely used to deal with 
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topological changes of contour curves. The available active contour models can be primarily 

categorized into edge based models [9,10] and region based models [11–13].

Edge based models generally segment images by introducing image gradients as an edge 

stopping function (ESF) [6] into a predefined energy functional. Their advantages are the 

low computational cost and reliable segmentation performance for objects with high 

contrast; however, they are sensitive to the presence of noise and intensity inhomogeneity. 

Consequently, this type of models cannot work well for images with obvious noisy and 

inhomogeneous intensity, tends to get stuck in local minima and may suffer from leakage 

problems in weak boundary regions. To overcome these disadvantages, region based models 

have been developed to statistically model desirable object regions. Although they are 

relatively robust against image noise and initial contour placements, they may fail to 

segment images with intensity inhomogeneity because they are theoretically based on a 

homogeneous assumption that different objects have different intensities.

To enable a reliable segmentation for images with inhomogeneous intensity, a number of 

feature information has been utilized to guide the optimal evolution of contour curves [14]. 

He et al. [15] improved the region-scalable fitting (RSF) energy [16] by assigning each pixel 

with a homogeneous weight derived from local grey level distribution entropy and replacing 

Gaussian kernel with a mollifying kernel, termed as the WRSF model. Dai et al. [17] 

developed an inhomogeneity-embedded (InH) active contour model by introducing a pixel 

inhomogeneity factor into the model originally proposed by Chan and Vese (CV) [6] for 

natural image segmentation. Unlike the InH model, Niu et al. [18] extended the CV model 

(ECV) by characterizing local image differences between pixel coordinates and intensities. 

These models demonstrated a reasonable performance in handling intensity inhomogeneity, 

but the utilized feature information may be insufficient to alleviate the influence of intensity 

inhomogeneity for certain images and ultimately fail to differentiate the foreground and 

background as illustrated by the example in Fig. 1. Hence, it is desirable to develop novel 

image segmentation schemes that can significantly alleviate the influence of intensity 

inhomogeneity and thus enable a reliable and accurate delineation of the boundaries of 

objects depicted on images.

In this study, a novel region based model is proposed to effectively detect object boundaries 

in inhomogeneous regions and exclude irrelevant image background. Specifically, a new 

image feature, termed as local edge entropy, is introduced to suppress intensity 

inhomogeneity and highlight object edges in fuzzy regions. This entropy is large in regions 

containing edge information, and can assist in differentiating the foreground from the 

background in segmentation. Based on the proposed edge entropy, a region based model is 

developed by extending the RSF energy function. The model aims to drive the evolution of 

the initial contours towards object boundaries with a high accuracy as compared to available 

models with only intensity information. In particular, a length regularization term of the 

level set function [6] is redefined based on the edge entropy to keep contour curves smooth 

and close to object boundaries. The regularization term aims to reduce unnecessary contour 

evolution and improve segmentation accuracy.
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The remainder of this paper is organized as follows. Section 2 briefly presents an overview 

of two typical region based models and explains their advantages and weaknesses. Section 3 

introduces the developed edge entropy and energy functional, along with the redesigned 

regularization term of the level set function. In Section 4, we describe the performance 

metrics and experimental results. Finally, we discussed the developed model and conclude 

this study respectively in Sections 5 and 6.

2. Related work

2.1. The CV model

The CV model [6] was originally proposed to mitigate the Mumfor-Shah problem [19] by 

assuming that the image to be processed was a piecewise constant function. Let Ω ⊂ ℜ2 be a 

two-dimensional (2D) image domain, I : Ω ⊂ ℜ be a gray image. For each pixel x in the 

image, the CV model can use constants c1 and c2 to globally characterize the intensity 

differences between the foreground and background based on the following fitting energy:

ECV = λ1∫Ω1
I(x) − c1

2H1(ϕ)dx + λ2∫Ω2
I(x) − c2

2H2(ϕ)dx (1)

where Ω1 and Ω2 denote the internal and external regions of a given initial contour C: Ω ⊂ ℜ. 

These two regions are specified by functions H1 (ϕ) = H(ϕ) and H2 (ϕ) = 1 − H(ϕ). 
respectively, where H(ϕ) = 0.5 + arctan(ϕ/ε)/π is the smoothed Heaviside function with a 

small positive constant ε . ϕ: Ω ⊂ ℜ is the level set function to represent the initial contour 

C. Constants c1 and c2 are used to approximate pixel intensities in regions Ω1 and Ω2. λ1 and 

λ2 are nonnegative constants to balance two image fitting terms in the energy functional.

The CV model is relatively insensitive to image noise and the initial contour placements due 

to the presence of global intensities. However, it relies on the piecewise constant assumption 

and ignores other image information (e.g., intensity means and variances) in local or global 

regions, and thus may lead to limited segmentation accuracy especially for images with 

inhomogeneous intensity. In addition, representing the image differences between the 

foreground and background by merely using constants c1 and c2 is not sufficient for accurate 

segmentation.

2.2. The RSF model

To lower the influence of inhomogeneity, the RSF model [16] was developed to extend the 

CV model by utilizing the local image information specified by a Gaussian window. The 

fitting energy of the model can be represented as:

ERSF = λ1∬ Kσ(x, y) I(y) − f 1(x) 2H1(ϕ)dydx

+ λ2∬ Kσ(x, y) I(y) − f 2(x) 2H2(ϕ)dydx

(2)
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where Kσ(x, y) = exp(−(x − y)2/2σ2)/ 2πσ is the Gaussian window function with standard 

deviation σ. This function defines a local neighborhood centered at x and specifies a weight 

for each pixel y based on the distance between y and x; functions f1(x) and f2(x) 

approximately represent local pixel intensities inside and outside the contour curves, 

respectively. λ1 and λ2 are weighting parameters for two local image fitting terms.

Based on the RSF fitting energy and two level set regularization terms [16], this model is 

capable of correctly evolving the initial contour towards target boundaries, despite the 

presence of intensity inhomogeneity. It can also identify effectively small intensity 

differences in inhomogeneous regions and suppress irrelevant image background in 

segmentation. However, this model tends to fall into the local minima when the initial 

contour is far away from object boundaries. In addition, it ignores other useful image 

information in local or global regions, and thus leads to incomplete or even incorrect 

segmentation in noisy and inhomogeneous regions.

2.3. Summary

As demonstrated by the CV and RSF models, the region based models characterize the 

image differences inside and outside contour curves by merely utilizing pixel intensities in 

local or global regions. These intensities are simplified by different approximation functions 

(e.g., ci andfi(x)), giving rise to the loss of valuable image information. This makes these 

models incompetent to suppress intensity inhomogeneity, and prone to improperly segment 

target objects depicted on inhomogeneous images. Hence, it may be prudent to utilize more 

image information to mitigate the adverse influence of inhomogeneity.

3. The proposed model based on edge entropy fitting energy

A novel region based model is proposed to segment images with intensity inhomogeneity. 

The model consists of three components: local edge entropy, edge entropy fitting energy 

functional, and redefined regularization term of the level set function. The local entropy is 

used to reduce the influence of inhomogeneity, while the functional and regularization term 

are used to differentiate the image differences between the foreground and the background 

of an object, and iteratively evolve the initial contours.

3.1. Local edge entropy

Image entropy has been widely used as an important feature in various image processing 

tasks, and can be expressed, based on the Shannon’s definition [20], as follows:

Lr(x) = − ∑
y ∈ Πx

p(y)logp(y) (3)

where Πx is a local region centered at position x, with a diameter of r. p(y) is a certain 

probability distribution of pixel y in the local region. The definition of p(y) typically 

depends on the processing schemes for different tasks. In image segmentation, Shiozaki’s 
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definition [21,22] of p(y) = I(y)/∑j ∈ Πx
I( j) is often used to stress intensity differences, and 

termed as local grey level distribution.

Image entropy based on local grey level distribution is related to intensity variation and has a 

large value for homogeneous regions and a small value for inhomogeneous regions [15]. 

This property can be used to reduce the influence of inhomogeneity. However, the range of 

this entropy is relatively small, leading to limited capability of identifying image differences 

in inhomogeneous regions, as shown in Fig. 2. To overcome the disadvantage, a novel 

probability distribution is proposed and defined as:

p(y) = mod(I(y), m)
m (4)

where m denotes the intensity mean in local region of Πx; mod( ⋅ ) is the modulus operator. 

With the proposed probability distribution, image entropy is large for edge regions and vice 

versa, and referred to as local edge entropy in this study. The unique property of edge 

entropy can be attributed to the use of local intensity mean. The statistical measure (i.e., m) 

makes the edge entropy relatively insensitive to the presence of image noise, and able to take 

values in a reasonable range. In addition, the statistical characteristic allows edge entropy to 

have a better capability of identifying intensity differences than the grey level distribution 

entropy and image gradient, in the presence of inhomogeneity.

3.2. Edge entropy fitting energy

According to the above analysis, the feature map of edge entropy can be regarded as a new 

image and incorporated into the RSF energy functional to assist in image segmentation. 

Thus, the edge entropy fitting (EEF) energy is constructed under the framework of the RSF 

model by simultaneously employing pixel intensity I(x) and local edge entropy Lr(x) to 

accurately segment objects of interest, and expressed as:

EEEF = ∑
i = 1

2 ∬ Kσ(x, y) I(y) − f i(x) 2 + Lr(y) − mi(x) 2

× Hi(ϕ(y))dydx

(5)

where Lr(y) denotes the edge entropy in the neighborhood of the position y with a diameter 

of r. r is set to 4 (pixels). fi(x) and mi(x) denote the intensity means for the images I(x) and 

Lr(x), respectively. These two images characterize objects of interest from different aspects 

and enable the EEF energy to differentiate the foreground and background.

To preserve the regularity of ϕ, two widely used regularization terms [13,18], namely P(ϕ) 

and Q(ϕ), are introduced into the developed energy to enable a stable and accurate evolution 

of the level set function:
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P(ϕ) = 1
2∫ ( ∇ϕ(x) − 1 )2dx (6)

Q(ϕ) = ∫ ∇H(ϕ(x)) dx (7)

where P(ϕ) penalizes the deviation from a signed distance function, while Q(ϕ) enables the 

level set function to have an optimal length in contour evolution. ∇ is the gradient operator.

To keep the level set function close to object boundaries, the length regularization term Q(ϕ) 

is redefined as Q*(ϕ) to improve the computational efficiency and accuracy:

Q * (ϕ) = ∫ g(x) ∇H(ϕ(x)) dx (8)

where g(x) = 1/(1 + Lr(x)2) has a small value for edge regions and serves as an edge 

stopping function [23,24], which aims to reduce or stop the evolution of contour curves 

when they are close to object boundaries. By combining the two regularization terms and the 

EEF fitting energy, the final fitting energy functional is given by:

E(ϕ) = EEEF + μP(ϕ) + υQ * (ϕ) (9)

where μ and υ are the weighting parameters for P(ϕ) and Q*(ϕ), respectively.

3.3. Energy functional minimization

To evolve the initial contours towards object boundaries, the proposed energy functional 

E(ϕ) needs to be minimized using the standard gradient descent method. For a fixed level set 

function φ, E(φ) is minimized with respect to the functions fi(x) and mi(x), which satisfy the 

following equations separately:

∫ Kσ(x, y) I(y) − f i(x) Hi(ϕ(y))dy = 0 (10)

∫ Kσ(x, y) Lr(y) − mi(x) Hi(ϕ(y))dy = 0 (11)

Based on the above two equations, fi(x) and mi(x) are given by:
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f i(x) =
∫ Kσ(x, y)I(y)Hi(ϕ(y))dy

∫ Kσ(x, y)Hi(ϕ(y))dy (12)

mi(x) =
∫ Kσ(x, y)Lr(y)Hi(ϕ(y))dy

∫ Kσ(x, y)Hi(ϕ(y))dy (13)

Keeping fi(x) and mi(x) fixed, E(ϕ) is minimized with respect to ϕ, resulting in the evolution 

formula of the level set function ϕ:

∂ϕ
∂t = − δ(ϕ) e1(x) − e2(x) + μ ∇2ϕ − div ∇ϕ

∇ϕ
+ υδ(ϕ)div g(x) ∇ϕ

∇ϕ

(14)

ei(x) = ∫ Kσ(x, y) I(y) − f i(x) 2 + Lr(y) − mi(x) 2 dy,

i = 1, 2

(15)

where δ(φ) is the derivative of the function H(φ), div( ⋅ ) denotes the divergence operator, 

and ei(x) simultaneously quantifies the image differences between the foreground and 

background for the original image and its edge entropy.

In contour evolution, the level set function φ was initially assigned to a positive constant 2 

outside a region and −2 inside, and then updated iteratively by using the formulation of φn+1 

= φn + Δt ⋅ Δφn with iterative number n and the time step Δt. The convergence condition was 

|φn+1 − φn| ≤ ζ, where ζ = 0.1 in this study [25]. σ was assigned to 3 to balance the 

convergence rate and computational efficiency. Gaussian window Kσ(x, y) was simplified as 

a ( 4σ + 1) × (4σ + 1) mask as recommended in previous studies [11,26]. Δt and μ were 

related by Δt ⋅ μ = 0.1 to satisfy the Courant Friedrichs Lewy (CFL) condition for numerical 

stability [27] and they were set at Δt = 0.1 and μ = 1, respectively. The parameter υ was set 

by default as υ = 0.001 × 255 × 255.

4. Experiments

To demonstrate the performances of the proposed method, we performed segmentation 

experiments on a synthetic image dataset and a public Berkeley segmentation dataset 500 

(BSDS500) [28]. The former, which can be accessed at http://www.engr.uconn.edu/~cmli/, 

was used widely in previous studies [16, 26], while the latter consists of a number of natural 

images and manual annotations. Experiment results are quantitatively estimated based on the 

Dice Similarity Coefficient (DSC) [29,30] that is defined as:
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DSC(A, B) = 2N(A ∩ B)
N(A) + N(B) (16)

where A denotes the results of a specific segmentation algorithm and B is the ground truth. 

∩ is the intersection operator; N( ⋅ ) indicates the number of pixels enclosed set. The DSC 

ranges from 0 to 1, and a higher DSC means a better segmentation performance.

4.1. Segmentation results

Figs. 3 and 4 showed the segmentation results when the proposed method was applied with 

different initial contour placements and image noise. It can be seen that the developed 

method successfully delineated the objects of interest, where the initial triangle, rectangle, 

pentagon and circle contours converged to the same results. As demonstrated by Fig. 4, the 

developed method can achieve consistent segmentation results for the images corrupted by 

additive Gaussian noise with the standard deviations of 5, 10, and 15, respectively, 

suggesting that the developed method was, to some extent, insensitive to initial contour 

placements and image noise.

Fig. 5 showed the segmentation results when the proposed method was applied to eight 

synthetic images with different intensity inhomogeneity and image noise. The developed 

method successfully identified the desirable objects with varying dimensions and shapes, 

and the average DSC was 0.935, suggesting a capability of dealing with intensity 

inhomogeneity with reasonable segmentation accuracy.

4.2. Performance comparison

We compared the performance of the proposed method with the CV, RSF, WRSF, InH and 

ECV methods using the above synthetic images (Figs. 5–7). It can be seen that the CV 

model had the smallest DSC values for the inhomogeneous images and failed to segment the 

objects of interest due to the mere use of global intensity information. The RSF model 

achieved a relatively good segmentation accuracy by using local intensities to identify image 

differences between the foreground and background, but it was not competent to locate 

target objects from inhomogeneity regions. Unlike the CV and RSF models, the other four 

methods took pixel intensities and feature information in local regions into account 

simultaneously to evolve the initial contours. Given their capability of dealing with intensity 

inhomogeneity, these four methods (i.e., WRSF, InH, ECV and EEF) achieved high accuracy 

in terms of the average DSC (i.e., 0.908, 0.923, 0.914 and 0.935) as compared to the CV and 

RSF methods (i.e., 0.656 and 0.878).

The proposed method was further compared quantitatively with the RSF, WRSF, InH, and 

ECV methods using 35 randomly chosen natural images from the BSDS500 dataset. 

Experiment results of these methods were displayed in Fig. 8 where a box plot was used 

(25% for top limit and 75% for bottom, red line for the median value) based on the DSC 

metric. The DSC means of the RSF, WRSF, InH, ECV and our methods were 0.743, 0.781, 

0.809, 0.776 and 0.812 with the standard deviations of 0.087, 0.073, 0.068, 0.077 and 0.066, 

respectively. The results demonstrated that the developed method had better segmentation 
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performance in accuracy as compared with the other four methods (Fig. 9), and was capable 

of consistently delineating the objects of interest in the presence of inhomogeneous and 

complex background.

The computational cost of the above five methods was also assessed (in Matlab 2013a on a 

PC with a 2.6 GHz Intel Core CPU and 16GB RAM) and summarized in Fig. 10. The InH 

and EEF methods are more efficient than the RSF, WRSF and ECV methods since these two 

methods used edge information (see Figs. 1 and 2) obtained from the pixel inhomogeneity 

factor and local edge entropy, respectively. These feature information can assist to reduce 

unnecessary iterative evolution of contour curves in segmentation. Also, the edge entropy 

had better capability of handling inhomogeneity than the pixel inhomogeneity factor; hence, 

the proposed method was slightly better than the InH model.

4.3. Effect of local edge entropy

The developed edge entropy is an important image feature and used to construct the intensity 

fitting term |Lr(x) − mi(x)|2 and regularization term ∫g(x)|∇H(ϕ(x))|dx, respectively. This 

causes that the proposed method has the potential for handling intensity inhomogeneity and 

avoiding unnecessary contour evolution in segmentation. This can be verified by the results 

shown in Figs. 11 and 12, where the proposed method was tested to segment synthetic 

images with or without the function g(x). Experiment results demonstrated that the proposed 

method with g(x) had better segmentation accuracy and less computational cost than our 

method without g(x) for the same images and parameters. This suggested that local edge 

entropy can highlight the intensity variation in an image, alleviate the problems caused by 

inhomogeneity, and thus assist in excluding undesirable background. With the edge entropy, 

the proposed method demonstrated a unique capability of handling intensity inhomogeneity.

5. Discussions

In this study, we proposed a novel active contour model to segment images and evaluated its 

performances based on widely used images in previous studies and a publicly available 

database. This model displays the capability of handling intensity inhomogeneity and 

achieves a relatively good segmentation accuracy and efficiency as compared to several 

available models, owing to the utilization of local edge entropy. There are several parameters 

in the proposed contour model, and some of them (e.g., σ and ε) are correlated with one 

another. This causes that our model has the difficulty in balancing these parameters and 

achieving an optimal segmentation result. For example, the parameter r is important for the 

local edge entropy. A small r makes edge entropy more sensitive to inhomogeneity, while a 

large r reduces the capability of handling inhomogeneity, and leads to the expansion of 

object boundaries. This can be verified by Fig. 13, where our model is capable of extracting 

objects of interest for the value r of 3 and 5, but fails when r is set at 7. This suggested that 

the developed method can achieve reasonable segmentation performances with a relatively 

small r value.

We are aware that there are some limitations with this method. First, although the 

introduction of the edge entropy makes it possible to suppress inhomogeneity in fuzzy 

regions and keep contour curves close to object boundaries, it may fail to highlight object 
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boundaries and affects the segmentation accuracy of the proposed model, because pixel 

probabilities for the edge entropy is based on the modulus operation and its sum is generally 

larger than 1 in a specified region. Second, the proposed model is incompetent for certain 

segmentation tasks, where the desirable object depicted on an image consists of multiple 

components and each of them has very different intensity properties. This is caused by the 

fact that region based contour models are theoretically derived from the image homogeneity 

assumption, i.e., pixel intensities should be approximately equal to one another when they 

present the same object in an image. This means that our model may not be suitable for 

segmenting natural images with large dimensions. Third, this model usually has different 

segmentation accuracy and robustness, depending on image resolution and contrast, and thus 

is inferior to certain supervised segmentation algorithms, such as convolutional neural 

networks (CNN) [33], which can exploit a large number of underlying texture features for 

precise image segmentation. To alleviate these issues of our model, we will attempt in the 

future to extend local edge entropy using simultaneously pixel intensities and coordinates 

and further improve the proposed image evaluation strategy to segment images with 

intensity inhomogeneity.

6. Conclusion

A region based active contour model was proposed for segmenting inhomogeneous images. 

Its novelty lies in the introduction of a novel feature descriptor (i.e., local edge entropy), the 

hybrid image fitting energy functional based on pixel intensities and edge entropy, and the 

combination of a redefined regularization term of the level set function. Our experiments 

show that the developed model is capable of segmenting images with intensity 

inhomogeneity with a relatively high accuracy as compared to available models. This is 

largely attributed to the simultaneous utilization of pixel intensity and edge entropy. Also, 

the developed model is robust to the initial contour placement and insensitive to the presence 

of image noise.
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Fig. 1. 
The right is the feature map of a given image in the left, which is obtained by pixel 

inhomogeneity factor based on a circle window with a diameter of 5 (pixels). The feature 

failed to identify target objects in the region as indicated by the arrow.
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Fig. 2. 
Feature maps obtained using Shiozaki’s entropy (left) and the proposed entropy (center) 

based on a circle window with a diameter of 3 (pixels) for the image shown in Fig. 1. The 

image gradients are shown in the right.
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Fig. 3. 
Segmentation results of an inhomogeneous image by the proposed method for different 

initial contours. The top row is the initial contours (in green) and their final results (in red), 

the bottom row shows the RMS of intensity differences between the original image and its 

local fitted image [31] with respect to iteration numbers. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Segmentation results of the developed method for two images corrupted by different 

Gaussian noise [32]. From left column to right one are images with different levels of noise 

(standard deviations: 5, 10, and 15, respectively).
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Fig. 5. 
The segmentation results of the proposed method for eight test images with different noise 

and inhomogeneity.
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Fig. 6. 
Segmentation results of three inhomogeneous images obtained separately by the CV, RSF, 

WRSF, InH, ECV and EEF methods in different columns.
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Fig. 7. 
The means and standard deviations of the DSC values for six different methods based on 

images shown in Fig. 5.
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Fig. 8. 
The DSC values of the RSF, WRSF, InH, ECV and our methods based on 35 randomly 

chosen natural images from BSD500 dataset.
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Fig. 9. 
Comparisons of segmentation results obtained by the RSF, WRSF, InH, ECV, and our 

methods for different initial contours (in green). From top row to bottom one corresponds to 

the manual annotations and the results of the RSF, WRSF, InH, ECV and our methods, 

respectively. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 10. 
The average computational cost of the RSF, WRSF, InH, ECV and EEF models based on all 

of test images.
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Fig. 11. 
Segmentation results of the developed model with (1st row) and without (2nd row) the 

function g(x) for images shown in Fig. 5.
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Fig. 12. 
The computational cost of the proposed method with or without g(x) for eight images shown 

in Fig. 5, where images in the first and second rows were numbered from 1 to 4, and 5 to 8, 

respectively.
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Fig. 13. 
Segmentation results of the proposed method for different edge entropies. The top row 

displays the edge entropy with the value r of 3, 5, and 7, respectively, the bottom row is the 

initial (in green) and final (in red) contours. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.)
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