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Linear Shrinkage Estimation of Covariance Matrices

Using Low-Complexity Cross-Validation
Jun Tong, Rui Hu, Jiangtao Xi, Zhitao Xiao, Qinghua Guo and Yanguang Yu

Abstract—Shrinkage can effectively improve the condition
number and accuracy of covariance matrix estimation, especially
for low-sample-support applications with the number of training
samples smaller than the dimensionality. This paper investigates
parameter choice for linear shrinkage estimators. We propose
data-driven, leave-one-out cross-validation (LOOCV) methods
for automatically choosing the shrinkage coefficients, aiming to
minimize the Frobenius norm of the estimation error. A quadratic
loss is used as the prediction error for LOOCV. The resulting
solutions can be found analytically or by solving optimization
problems of small sizes and thus have low complexities. Our
proposed methods are compared with various existing techniques.
We show that the LOOCV method achieves near-oracle per-
formance for shrinkage designs using sample covariance matrix
(SCM) and several typical shrinkage targets. Furthermore, the
LOOCV method provides low-complexity solutions for estimators
that use general shrinkage targets, multiple targets, and/or
ordinary least squares (OLS)-based covariance matrix estimation.
We also show applications of our proposed techniques to several
different problems in array signal processing.

Index Terms—Covariance matrix, cross-validation, linear
shrinkage, ordinary least squares, sample covariance matrix.

I. INTRODUCTION

In statistical signal processing, one critical problem is to es-

timate the covariance matrix, which has extensive applications

in correlation analysis, portfolio optimization, and various

signal processing tasks in radar and communication systems

[1]-[5]. One key challenge is that when the dimensionality is

large but the sample support is relatively low, the estimated

covariance matrix R, which may be obtained using a general

method such as sample covariance matrix (SCM) or ordinary

least squares (OLS), becomes ill-conditioned or even singular,

and suffers from significant errors relative to the true covari-

ance matrix Σ. Consequently, signal processing tasks that rely

on covariance matrix estimation may perform poorly or fail

to apply. Regularization techniques have attracted tremendous

attention recently for covariance matrix estimation. By impos-

ing structural assumptions of the true covariance matrix Σ,

techniques such as banding [6], thresholding [7], and shrinkage

[8]-[18] have demonstrated great potential for improving the

performance of covariance matrix estimation. See [19]-[21] for

recent surveys.
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This paper is concerned with the linear shrinkage estimation

of covariance matrices. Given an estimate R of the covariance

matrix, a linear shrinkage estimate is constructed as

Σ̂ρ,τ = ρR+ τT0, (1)

where T0 is the shrinkage target and ρ and τ are nonnegative

shrinkage coefficients. In general, the shrinkage target T0

is better-conditioned, more parsimonious or more structured,

with lower variance but higher bias compared to the original

estimate R [11]. The coefficients ρ and τ are chosen to

provide a good tradeoff between bias and variance, such that

an estimate outperforming both R and T0 is achieved and a

better approximation to the true covariance matrix Σ can be

obtained. Compared to other regularized estimators such as

banding and thresholding, linear shrinkage estimators can be

easily designed to guarantee positive-definiteness. Such shrink-

age designs have been employed in various applications which

utilize covariance matrices and have demonstrated significant

performance improvements. The linear shrinkage approach

has also been generalized to nonlinear shrinkage estimation

of covariance matrices [22], [23], and is closely related to

several unitarily invariant covariance matrix estimators that

shrink the eigenvalues of the SCM, such as those imposing

condition number constraints on the estimate [24], [25]. There

are also a body of studies on shrinkage estimation of precision

matrix (the inverse of covariance matrix) [26]-[30] and on

application-oriented design of shrinkage estimators. See [31]-

[36] for example applications in array signal processing.

Shrinkage has a Bayes interpretation [2], [9]. The true

covariance matrix Σ can be assumed to be within the neighbor-

hoods of the shrinkage target T0. There can be various differ-

ent approaches for constructing R and T0. For example, when

a generative model about the observation exists, one may first

estimate the model parameters and then construct R [20]. A

typical example of this is linear models seen in communication

systems. Furthermore, different types of shrinkage targets, not

necessarily limited to identity or diagonal targets, can be used

to better utilize prior knowledge. For example, knowledge-

aided space-time signal processing (KA-STAP) may set T0

using knowledge about the environment [3] or past covariance

matrix estimates [37]. Even multiple shrinkage targets can be

applied when distinct guesses about the true covariance matrix

are available [17].

The choice of shrinkage coefficients significantly influences

the performance of linear shrinkage estimators. Various criteria

and methods have been studied. Under the mean squared error

(MSE) criterion, Ledoit and Wolf (LW) [2] derived closed-
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form solutions based on asymptotic estimates of the statistics

needed for finding the optimal shrinkage coefficients, where

R and T0 are assumed as the SCM and identity matrix,

respectively. Later the LW solution was extended for more

general shrinkage targets [3], [17]. Chen et al [4] assumed

Gaussian distribution and proposed an oracle approximating

shrinkage (OAS) estimator, which achieves near-optimal pa-

rameter choice for Gaussian data even with very low sample

supports. The shrinkage coefficients determination can also be

cast as a model selection problem and thus generic model

selection techniques such as cross-validation (CV) [38]-[40]

can be applied. In general, CV splits the training samples for

multiple times into disjoint subsets and then fits and assesses

the models under different splits based on a properly chosen

prediction loss. This has been explored, e.g., in [10], [13],

where the Gaussian likelihood is used as the prediction loss.

All these data-driven techniques achieve near-optimal pa-

rameter choice when the underlying assumptions hold. How-

ever, there are also limitations to their applications: almost all

existing analytical solutions to shrinkage coefficients [2]-[4],

[17] were derived under the assumption of SCM and certain

special forms of shrinkage targets. They need to be re-designed

when applied to other cases, which is generally nontrivial. The

asymptotic analysis-based methods [2], [3] may not perform

well when the sample support is very low. Although the

existing CV approaches [10], [13] have broader applications,

they assume Gaussian distribution and employ grid search

to determine the shrinkage coefficients. The likelihood cost

of [10], [13] must be computed for multiple data splits and

multiple candidates of shrinkage coefficients, which can be

time-consuming.

In this paper, we further investigate data-driven techniques

that automatically tune the linear shrinkage coefficients us-

ing leave-one-out cross-validation (LOOCV). We choose a

simple quadratic loss as the prediction loss for LOOCV, and

derive analytical and computationally efficient solutions. The

solutions do not need to specify the distribution of the data.

Furthermore, the LOOCV treatment is applicable to different

covariance matrix estimators including the SCM- and ordinary

least squares (OLS)-based schemes. It can be used together

with general shrinkage targets and can also be easily extended

to incorporate multiple shrinkage targets. The numerical ex-

amples show that the proposed method can achieve oracle-

approximating performance for covariance matrix estimation

and can improve the performance of several array signal

processing schemes.

The remainder of the paper is organized as follows. In

Section 2, we present computationally efficient LOOCV meth-

ods for choosing the linear shrinkage coefficients for both

SCM- and OLS-based covariance matrix estimators and also

compare the proposed LOOCV methods with several existing

methods which have attracted considerable attentions recently.

In Section 3, we extend our results for multi-target shrinkage.

Section 4 reports numerical examples, and finally Section 5

gives conclusions.

II. LOOCV CHOICE OF LINEAR SHRINKAGE

COEFFICIENTS

This paper deals with the estimation of covariance matrices

of zero-mean signals whose fourth-order moments exist. We

study the LOOCV choice of the shrinkage coefficients for the

linear shrinkage covariance matrix estimator (1), i.e., Σ̂ρ,τ =
ρR+ τT0. The following assumptions are made:

1) The true covariance matrix Σ, the estimated covariance

matrix R, and the shrinkage target T0 are all Hermitian

and positive-semidefinite (PSD).

2) T independent, identically distributed (i.i.d.) samples

{yt} of the signal are available.

3) The shrinkage coefficients are nonnegative, i.e.,

ρ ≥ 0, τ ≥ 0. (2)

Assumption 3 follows the treatments in [2]-[4] and is sufficient

but not necessary to guarantee that the shrinkage estimate Σ̂ρ,τ

is PSD when Assumption 1 holds1. Two classes of shrinkage

targets will be considered in this paper. One is constructed

independent of the training samples {yt} for generating R,

similarly to the knowledge-aided targets as considered in [3].

The other is constructed from {yt}, but is highly structured

with significantly fewer free parameters as compared to R.

Examples of the second class include those constructed using

only the diagonal entries of R [4], [20] and the Toeplitz

approximations of R [17].

A. Oracle Choice

Different criteria may be used for evaluating the covariance

matrix estimators. In this paper, we use the squared Frobenius

norm of the estimation error as the performance measure.

Given Σ, R and T0, the oracle shrinkage coefficients min-

imize

JO(ρ, τ) = ||Σ̂ρ,τ −Σ||2F = ||ρR+ τT0 −Σ||2F , (3)

where || · ||F denotes the Frobenius norm. The cost function

in (3) can then be rewritten as a quadratic function of the

shrinkage coefficients:

JO(ρ, τ) =

[
ρ
τ

]T
AO

[
ρ
τ

]
− 2

[
ρ
τ

]T
bO + tr(Σ2), (4)

AO =

[
tr(R2) tr(RT0)
tr(RT0) tr(T2

0)

]
, (5)

bO =

[
tr(RΣ)
tr(T0Σ)

]
, (6)

where tr(·) denotes the trace of a matrix. As AO is positive-

definite, we can find the minimizer of JO(ρ, τ) by solving

the above bivariate convex optimization problem. We can also

apply the Karush-Kuhn-Tucker (KKT) conditions to find the

solution analytically. From (4), letting
JO(ρ,τ)

∂ρ = JO(ρ,τ)
∂τ = 0

leads to
tr(R2)

tr(RΣ)
ρ+

tr(RT0)

tr(RΣ)
τ = 1, (7)

1Imposing Assumption 3 may introduce performance loss. Alternatively,
one may remove the constraint ρ ≥ 0, τ ≥ 0 and impose a constraint that

Σ̂ρ,τ is PSD, similar to a treatment in [5].
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tr(RT0)

tr(T0Σ)
ρ+

tr(T2
0)

tr(T0Σ)
τ = 1. (8)

The oracle shrinkage coefficients can be obtained by solving

(7) and (8): [
ρ⋆O
τ⋆O

]
= A−1

O bO. (9)

Note that (9) may produce negative shrinkage coefficients,

which may not lead to a positive-definite estimate of the

covariance matrix. In this case, we clip the negative coefficient

to zero and then find the other coefficient using (7) or (8)

to guarantee the positive definiteness, for τ = 0 or ρ = 0,

respectively. This treatment is similar to [2]-[5] and provides

a suboptimal yet simple solution. The oracle estimator requires

knowledge of Σ, which is unavailable in real applications, but

the result serves as an upper bound of the performance given

the linear shrinkage structure.

B. LOOCV Choice for General Cases

Let Σ̂ denote a positive-definite, Hermitian matrix. It can

be easily verified that the following cost

JS(Σ̂) , E[||Σ̂− yy†||2F ] (10)

is minimized when Σ̂ = Σ, where the expectation is taken

over y. In this paper, we apply LOOCV [38] to produce an

estimate of JS(Σ̂) as the proxy for measuring the accuracy of

Σ̂, based on which the shrinkage coefficients can be selected.

With the LOOCV method, the length-T training data Y =
[y1,y2, · · · ,yT ] is repeatedly split into two sets with respect

to time. For the t-th split, where 1 ≤ t ≤ T , T − 1 samples

in Yt (with the t-th column yt omitted from Y) are used for

producing a covariance matrix estimate Rt and the remaining

sample yt is spared for parameter validation. In total, T splits

of the training data Y are used and all the training samples are

used for validation once. Assuming shrinkage estimation with

given shrinkage coefficients (ρ, τ), we construct from each Yt

a shrinkage covariance matrix estimator as

Σ̂t,ρ,τ = ρRt + τT0. (11)

We propose to use the following LOOCV cost function

JCV(ρ, τ) =
1

T

T∑

t=1

||Σ̂t,ρ,τ − yty
†
t ||2F (12)

=
1

T

T∑

t=1

||ρRt + τT0 − yty
†
t ||2F (13)

to approximate the cost in (10) when Σ̂ is chosen as Σ̂t,ρ,τ .

For notational simplicity, define

St , yty
†
t . (14)

After some manipulations, the above cost function can be

written similarly to (4) as

JCV(ρ, τ) =

[
ρ
τ

]T
ACV

[
ρ
τ

]
−2

[
ρ
τ

]T
bCV+

1

T

T∑

t=1

tr(S2
t ),

(15)

where

ACV =




1
T

T∑
t=1

tr(R2
t )

1
T

T∑
t=1

tr(RtT0)

1
T

T∑
t=1

tr(RtT0) tr(T2
0)


 , (16)

bCV =




1
T

T∑
t=1

tr(RtSt)

1
T

T∑
t=1

tr(T0St)


 . (17)

The shrinkage coefficients can then be found by solving the

above bivariate, constant-coefficient quadratic program. Ana-

lytical solutions can be obtained under different conditions, as

shown below.

1) Unconstrained shrinkage: For unconstrained (ρ, τ), set-

ting the partial derivatives
∂JCV(ρ,τ)

∂ρ = ∂JCV(ρ,τ)
∂τ = 0 yields

T∑
t=1

tr(R2
t )

T∑
t=1

tr(RtSt)

ρ+

T∑
t=1

tr(RtT0)

T∑
t=1

tr(RtSt)

τ = 1, (18)

T∑
t=1

tr(RtT0)

T∑
t=1

tr(T0St)

ρ+
T tr(T2

0)
T∑

t=1
tr(T0St)

τ = 1. (19)

Solving (18) and (19) produces the unconstrained solution
[
ρ⋆CV

τ⋆CV

]
= A−1

CVbCV. (20)

We choose (20) as the optimal shrinkage coefficients if both

ρ⋆CV and τ⋆CV are nonnegative. Otherwise, we consider the

optimal choices on the boundary of ρ ≥ 0, τ ≥ 0 specified by

(18) or (19) for τ = 0 or ρ = 0 as

ρ⋆CV =

T∑
t=1

tr(RtSt)

T∑
t=1

tr(R2
t )

, τ⋆CV = 0, (21)

or

ρ⋆CV = 0, τ⋆CV =

T∑
t=1

tr(T0St)

T tr(T2
0)

. (22)

2) Constrained shrinkage: For the more parsimonious de-

sign using convex linear combination, the following constraint

is imposed:

ρ = 1− τ. (23)

By plugging (23) into the cost function (12) and taking the

minimizer, we can also easily find the optimal shrinkage

coefficients using

ρ⋆CV =

T∑
t=1

(
tr(T2

0)− tr(RtT0)− tr(T0St) + tr(StRt)
)

T∑
t=1

(tr(R2
t )− 2tr(RtT0) + tr(T2

0))

.

(24)
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In case a negative shrinkage coefficient is produced, we set

it to zero and let the other be one according to (23). Note

that although the closed-form solution involves multiple matrix

operations, the quantities involved need to be computed only

once. Furthermore, the computational complexity may be

greatly reduced given a specific method of covariance matrix

estimation. In the following two subsections, we will show

the simplified solutions for SCM- and OLS-based covariance

matrix estimation.

C. LOOCV Choice for SCM-Based Estimation

We consider in this subsection that R is the SCM estimate

of Σ. In this case,

R =
1

T

T∑

t=1

yty
†
t =

1

T

T∑

t=1

Rt =
1

T

T∑

t=1

St, (25)

which is a sufficient statistic for Gaussian-distributed data

when the mean vector is the zero vector. For the t-th split,

the SCM constructed from all the samples except the t-th is

Rt =
1

T − 1

∑

j 6=t

yjy
†
j =

T

T − 1
R− 1

T − 1
St. (26)

We can then verify the following expressions for quickly

computing the relevant quantities in (16) and (17):

1

T

T∑

t=1

tr(R2
t ) =

T (T − 2)

(T − 1)2
tr(R2)− 1

T (T − 1)2

T∑

t=1

||yt||4F ,

(27)

1

T

T∑

t=1

tr(RtSt) =
T

T − 1
tr(R2)− 1

T (T − 1)

T∑

t=1

||yt||4F ,

(28)

1

T

T∑

t=1

tr(RtT0) = tr(RT0), (29)

1

T

T∑

t=1

tr(StT0) = tr (RT0) . (30)

Plugging these into (16) and (17) and after some manipula-

tions, we can rewrite the LOOCV cost function (15) as

JCV(ρ, τ) =
ρT (ρT − 2ρ− 2T + 2)

(T − 1)2
tr(R2)

+ 2τ(ρ− 1)tr(RT0) + τ2tr(T2
0)

+
1

T

(
ρ

T − 1
+ 1

)2 T∑

t=1

‖yt‖4F . (31)

The optimal shrinkage coefficients can then be obtained ana-

lytically from the SCM R, the shrinkage target T0, and the

training samples {yt}, as discussed below.

1) Unconstrained shrinkage: It can be verified from (19)

and (30) that the optimal shrinkage coefficients (ignoring the

nonnegative constraint ρ ≥ 0, τ ≥ 0) satisfy

τ = (1− ρ)
tr(RT0)

tr(T2
0)

. (32)

The closed-form solution to ρ is given by

ρ⋆CV,SCM =

T tr(R2)
T−1 − (tr(RT0))

2

tr(T2

0
)

−
T∑

t=1

‖yt‖4

F

T (T−1)

(T 2−2T )tr(R2)
(T−1)2 − (tr(RT0))2

tr(T2

0
)

+

T∑
t=1

‖yt‖4

F

T (T−1)2

. (33)

In case ρ⋆CV,SCM > 1 or ρ⋆CV,SCM < 0, we apply (21) or (22),

respectively, to determine the solution, using the expressions

in (27)-(30).

Note that for the typical shrinkage target T0 = tr(R)
N I, (32)

results in τ⋆CV,SCM = 1 − ρ⋆CV,SCM. This provides another

justification for the convex linear combination design with an

identity target, which has been widely adopted in the literature,

e.g., [4]. This also shows that for such a special target

the unconstrained solution is equivalent to the constrained

solution, which does not hold for more general shrinkage

targets.

2) Constrained shrinkage: For the widely considered con-

vex linear combination with constraint ρ+ τ = 1, the optimal

ρ (ignoring the nonnegative constraint) is computed as

ρ⋆CV,SCM =

T tr(R2)
T−1 − 2tr(RT0) + tr(T2

0)−
T∑

t=1

‖yt‖4

F

T (T−1)

(T 2−2T )tr(R2)
(T−1)2 − 2tr(RT0) + tr(T2

0) +

T∑
t=1

‖yt‖4

F

T (T−1)2

.

(34)

Similarly, in case a negative shrinkage coefficient is obtained,

we set it to zero and let the other be one.

The above results show that the optimal shrinkage coeffi-

cients for the covariance matrix estimate (1) can be computed

directly from the samples and shrinkage target, without the

need of specifying any user parameters. The constrained

shrinkage design may lead to certain performance loss as

compared to the unconstrained one.

D. LOOCV Choice for OLS-Based Covariance Estimation

One advantage of the LOOCV method is that it can be

applied to different covariance matrix estimators. In this

subsection, we discuss the LOOCV method for OLS-based

covariance matrix estimation. Note that most existing analyt-

ical solutions for choosing the shrinkage coefficients assume

SCM and specific shrinkage targets and need to be re-derived

for general cases. Also, in contrast to general applications of

LOOCV which require a grid search of the parameters and

thus a high computational complexity, we have shown that for

SCM, fast analytical solutions can be obtained for choosing

the shrinkage coefficients. This will also be the case for the

OLS-based covariance matrix estimation.

Consider the case with observation y ∈ CN modeled as

y = Hx+ z, (35)

where H ∈ C
N×M is a deterministic channel matrix and

z ∈ CN a zero-mean, white noise with covariance matrix

σ2I, which is uncorrelated with the zero-mean input signal

x ∈ CM with covariance matrix I. If both training samples of

x and y are known, we may first estimate the channel matrix

H and the covariance matrix of the noise z using the ordinary
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least squares (OLS) approach. Let the block of training data

be (X,Y), where the input signal X can be designed to have

certain properties such as being orthogonal. The OLS estimates

of the channel matrix and noise variance are then obtained as

Ĥ = YX† (XX†)−1
, (36)

σ̂2 =
1

TN

∥∥∥Y − ĤX

∥∥∥
2

F

=
1

TN
tr
(
(Y − ĤX)(Y − ĤX)†

)

=
1

TN
tr
(
Y(I −X†(XX†)−1X)Y†) , (37)

where (̂·) denotes the estimate of a quantity. In this case, the

covariance matrix of y can be estimated as

R = ĤĤ† + σ̂2I. (38)

Such OLS-based covariance matrix estimation may be useful

for designing signal estimation schemes in wireless commu-

nications. We can apply the linear shrinkage design (1) to

enhance its accuracy and apply the LOOCV method (12) to

choose the shrinkage coefficients. Note that in this case, in

the t-th split, we generate the covariance matrix estimate Rt

by applying the OLS estimate to the leave-one-out samples

(Xt,Yt) which are the subset of (X,Y) with the pair (xt,yt)
omitted. The LOOCV cost is the same as (15). In this case,

the leave-one-out estimate of the covariance matrix for the t-th
data split is

Rt = ĤtĤ
†
t + σ̂2

t I, (39)

where Ĥt and σ̂2
t denote the channel matrix and noise variance

estimated from (Xt,Yt), respectively. A direct computation of

(16) and (17) for evaluating the LOOCV cost performs OLS

estimation for T times, which incurs significant complexity.

The complexity can be greatly reduced by observing that the

leave-one-out OLS estimate of the channel matrix is related

to the OLS channel matrix estimate Ĥ in (36) by a rank-one

update:

Ĥt = YtX
†
t

(
XtX

†
t

)−1

= Ĥ− etf
†
t , (40)

where

et , yt − Ĥxt, (41)

ft ,
1

1− Φt
(XX†)−1xt. (42)

In the above,

Φt , x
†
t (XX†)−1xt (43)

is the t-th diagonal entry of

Φ = X†(XX†)−1X. (44)

Similarly, the leave-one-out estimate of the noise variance can

be updated as

σ̂2
t =

1

N(T − 1)
tr
(
(Yt − ĤtXt)(Yt − ĤtXt)

†
)

= σ̂2 − δt, (45)

where

δt =
‖et‖2F

N(T − 1)(1− Φt)
− σ̂2

T − 1
. (46)

Note that both updates can be achieved with low complexity

when a few matrices are computed in advance and reused. In

this way, the covariance matrix estimate can be computed as

Rt = R− δtI− etφ
†
t −ψte

†
t , (47)

where φt and ψt are defined as

φt = Ĥft, (48)

ψt = φt − ||ft||2Fet. (49)

This shows that the leave-one-out OLS covariance matrix

estimate can be obtained from R by corrections involving

a scaled identity matrix and two rank-one updates. Eqn.

(47) can be exploited to compute the closed-form LOOCV

solution quickly. From (47), the most involved computation

for finding the solution of the optimization problem (15) can

be implemented as

1

T

T∑

t=1

tr(R2
t ) = tr(R2) +

N
∑T

i=1 δ
2
t

T
− 2

∑T
i=1 δt
T

tr(R)

+
1

T

T∑

i=1

||et||2F (||φt||2F + ||ψt||2F )

− 2

T

T∑

i=1

R(e†t(R − δtI)(φt + ψt)− e
†
tψte

†
tφt),

(50)

where R(·) denotes the real part of a scalar. When R is already

computed, the right-hand side of (50) can be evaluated using

inner products and matrix-vector products. The terms tr(T2
0)

and tr(T0St) are the same as those for SCM. For the other

two terms, we have

1

T

T∑

t=1

tr(RtSt) =
1

T
tr
(
RYY†)

− 1

T

T∑

t=1

R(δt ‖yt‖2F + y
†
tetφ

†
tyt + y

†
tψte

†
tyt),

(51)

1

T

T∑

t=1

tr(RtT0) = tr (RT0)−
∑T

t=1 δt
T

tr(T0)

− 1

T

T∑

t=1

R(φ†
tT0et + e

†
tT0ψt). (52)

Note that the computational complexities of (50)-(52) are low

because the major operations are matrix-vector products and

inner products.

E. Comparisons with Alternative Choices of Linear Shrinkage

Coefficients

In the above, we have introduced LOOCV methods with

analytical solutions for choosing the coefficients for linear
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shrinkage covariance matrix estimators. We now discuss sev-

eral alternative techniques which have received considerable

attentions recently and compare them with the LOOCV meth-

ods proposed in this paper.

In 2004, Ledoit and Wolf (LW) [2] studied estimators that

shrink SCM toward an identity target, i.e., T0 = I. Such

estimators do not alter the eigenvectors but shrink eigenvalues

of the SCM, which is well supported by the fact that sample

eigenvalues tend to be more spread than population eigen-

values. The optimal shrinkage coefficients under the MMSE

criterion (3) can be written as

ρ⋆ =
α2

δ2
, τ⋆ =

β2

δ2
µ, (53)

where the parameters µ ,
tr(Σ)
N , δ2 , E[‖R− µI‖2F ],

β2 = E[‖Σ−R‖2F ], and α2 = ‖Σ− µI‖2F depend on the

true covariance matrix Σ and other unknown statistics. Ref.

[2] shows that δ2 = α2+β2 and proposes to approximate these

quantities by their asymptotic estimates under T → ∞, N →
∞, N/T → c < ∞, as

µ̂ =
tr(R)

N
, δ̂2 = ‖R− µ̂I‖2F , (54)

β̂2 = min

(
δ̂2,

1

T 2

T∑

t=1

∥∥∥yty
†
t −R

∥∥∥
2

F

)
, α̂2 = δ̂2 − β̂2,

(55)

which can all be computed from the training samples. By

substituting these into (53), estimators that significantly out-

perform SCM are obtained, which also approach the oracle

estimators when the training length is large enough.

The above LW estimator is extended by Stoica et al in

2008 [3] for complex-valued signals with general shrinkage

targets T0, with applications to knowledge-aided space-time

adaptive processing (KA-STAP) in radar applications. Several

estimators with similar performance are derived there. For the

general linear combination (GLC) design of [3], it is shown

that the oracle shrinkage coefficients for (1) satisfy

ρ⋆ = 1− τ⋆

ν
, (56)

where

ν =
tr(T0Σ)

‖T0‖2F
, τ⋆ = ν

β2

E[‖R− νT0‖2F ]
. (57)

The quantity β2 is estimated in the same way as (55), and a

computationally efficient expression for β̂2 is given by

β̂2 =
1

T 2

T∑

t=1

‖yt‖4F − 1

T
‖R‖2F . (58)

Furthermore, ν and E[||R − νT0||2F ] are estimated as ν̂ =
tr(T0R)
||T0||2F

and ||R−ν̂T0||2F , respectively. This leads to the result

given by Eqns. (34) and (35) of [3], which can recover the

LW estimator [2] when the identity shrinkage target T0 = I

is assumed.

More recently, Chen et al [4] derived the oracle approx-

imating shrinkage (OAS) estimator, which assumes SCM,

real-valued Gaussian samples, and scaled identity target with

T0 = tr(R)
N I and ρ = 1 − τ . They first derive the oracle

shrinkage coefficients for SCM obtained from i.i.d. Gaussian

samples, which is determined by N, T, tr(Σ) and tr(Σ2).
Then, they propose an iterative procedure to approach the

oracle estimator. In the iterations, tr(Σ2) and tr(Σ) are

estimated by tr(Σ̂jR) and tr(Σ̂j), respectively, where Σ̂j

is the covariance matrix estimate at the j-th iteration. It is

further proved that Σ̂j converges to the OAS estimator with

the following analytical expression for τ :

τ⋆OAS = min

(
1,

(
1− 2

N

)
tr(R2) + (tr(R))2

(
T + 1− 2

N

)
[tr(R2)− (tr(R))2

N ]

)
. (59)

This approach achieves superior performance for (scaled) iden-

tity target and Gaussian data and dominates the LW estimator

[2] when T is small. It was later generalized by Senneret et

al [20] to a shrinkage target chosen as the diagonal entries of

the SCM. Other related techniques include [14], which also

assumes SCM, Gaussian data, and identity/diagonal shrinkage

targets.

All the above techniques provide analytical solutions and

achieve near-oracle performance when the underlying as-

sumptions (e.g., large dimensionality, large size of training

data, identity/diagonal shrinkage targets) hold. However, they

also have limitations. A common restriction is that all these

analytical solutions assume SCM and are not optimized for

other types of covariance matrix estimators such as model-

based estimators. In particular, the LW and GLC methods [2],

[3], which employ asymptotic approximations, may exhibit a

noticeable gap to the oracle choice when the sample support

is low, which may be relevant in some applications. The OAS

method [4] assumed identity target, but its extensions to more

general cases, e.g., with multiple/general shrinkage targets,

are not trivial. By contrast, the LOOCV method proposed in

this paper allows different designs and achieves near-oracle

performance in general.

Cross-validation has also been applied previously for choos-

ing shrinkage coefficients for covariance matrix estimation.

The key issues for applying this generic tool include finding

appropriate predictive metrics for scoring the different estima-

tors and fast computation schemes. In [10], [13], the Gaussian

likelihood was chosen as such a proxy. The computations

with likelihood are generally involved as multiple matrix in-

verses/determinants are required, and a grid search is required

for finding the optimal parameters. In this paper, we use the

distribution-free, Frobenius norm loss in (12) as the metric,

which leads to analytical solutions and is computationally

more tractable.

III. MULTI-TARGET SHRINKAGE

In Section 2, we have considered linear shrinkage designs

with a single target. Multiple shrinkage targets may be used to

further enhance performance, which may be obtained from a

priori knowledge, e.g., a past covariance matrix estimate from

older training samples or from neighboring frequencies. We

can easily extend our proposed LOOCV method to multiple

targets.
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A. Oracle choice of shrinkage coefficients

Consider the multi-target shrinkage design

Σ̂ρ,τ = ρR+

K∑

k=1

τkTk, (60)

where all the shrinkage coefficients are nonnegative to guar-

antee PSD covariance matrix estimates, i.e.,

ρ ≥ 0; τk ≥ 0, ∀k. (61)

The oracle multi-target shrinkage minimizes the squared

Frobenius norm of the estimation error

JO,MT(ρ, τ ) =

∥∥∥∥∥ρR+

K∑

k=1

τkTk −Σ

∥∥∥∥∥

2

F

, (62)

which can be rewritten as

JO,MT(ρ, τ ) =

[
ρ
τ

]T
AO,MT

[
ρ
τ

]
−2

[
ρ
τ

]T
bO,MT+tr(Σ2),

(63)

where τ = [τ1, τ2, · · · , τK ]T ,

AO,MT =




tr(R2) tr(RT1) · · · tr(RTK)
tr(T1R) tr(T2

1) · · · tr(T1TK)
...

...
. . .

...

tr(TKR) tr(TKT1) · · · tr(T2
K)


 , (64)

bO,MT =




tr(RΣ)
tr(T1Σ)

...

tr(TKΣ)


 . (65)

The oracle shrinkage coefficients can then be obtained by solv-

ing the problem of minimizing the cost function JO,MT(ρ, τ )
of (63), which is a strictly convex quadratic program (SCQP)

with K + 1 variables.

B. LOOCV choice of shrinkage coefficients

We now extend the LOOCV method in Section 2 to the

multi-target shrinkage here. Following the same treatment as

in Section II-B, in each split of the training data, Rt and St

are constructed to generate and validate the covariance matrix

estimate, respectively. The multiple shrinkage coefficients are

chosen to minimize the LOOCV cost

JCV,MT(ρ, τ ) =
1

T

T∑

t=1

∥∥∥∥∥ρRt +

K∑

k=1

τkTk − St

∥∥∥∥∥

2

F

. (66)

The above cost function can be rewritten in a form similar to

(15) as

JCV,MT(ρ, τ ) =

[
ρ
τ

]T
ACV,MT

[
ρ
τ

]
− 2

[
ρ
τ

]T
bCV,MT

+
1

T

T∑

t=1

tr(S2
t ) (67)

with

ACV,MT =




T∑
t=1

tr(R2

t
)

T

T∑
t=1

tr(RtT1)

T · · ·
T∑

t=1

tr(RtTK)

T
T∑

t=1

tr(T1Rt)

T tr(T2
1) · · · tr(T1TK)

...
...

. . .
...

T∑
t=1

tr(TKRt)

T tr(TKT1) · · · tr(T2
K)




,

(68)

bCV,MT =




1
T

T∑
t=1

tr(RtSt)

1
T

T∑
t=1

tr(T1St)

...

1
T

T∑
t=1

tr(TKSt)




. (69)

The constant entries of ACV,MT and bCV,MT can be computed

in the same way as for the single-target case. When K is small,

which is typically the case, the solution that minimizes the

LOOCV cost can be found quickly using standard optimization

tools. Alternatively, we may find first the global optimizer that

ignores the nonnegative constraint by
[
ρ⋆CV,MT

τ ⋆
CV,MT

]
= A−1

CV,MTbCV,MT, (70)

and check if the nonnegative condition is satisfied. If a

negative shrinkage coefficient is produced, we then consider

the boundaries of ρ ≥ 0, τk ≥ 0, k = 1, 2, · · · ,K , which

are equivalent to removing a certain number of shrinkage

targets from the shrinkage design. The solution can be found

in exactly the same way as (70) but with fewer targets.

Similarly to the single-target case, we may also consider a

constrained case, where the shrinkage targets {Tk} have the

same trace as the estimated covariance matrix R, and

ρ+

K∑

k=1

τk = 1. (71)

Then the LOOCV cost function can be rewritten as

JCV,MT(τ ) =
1

T

T∑

t=1

∥∥∥∥∥
K∑

k=1

τkAkt +Bt

∥∥∥∥∥

2

F

, (72)

where

Akt , Tk −Rt, 1 ≤ k ≤ K, 1 ≤ t ≤ T, (73)

Bt , Rt − St, 1 ≤ t ≤ T. (74)

The optimal shrinkage coefficients can be found similarly as

for the unconstrained case by minimizing

JCV,MT(τ ) = τ
TA′

CV,MTτ − 2τTb′
CV,MT +

1

T

T∑

t=1

tr(B2
t ),

(75)
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where the entries of A′
CV,MT and b′

CV,MT are defined by

[A′
CV,MT]mn ,

1

T

T∑

t=1

tr(AmtAnt), 1 ≤ m,n ≤ K, (76)

[b′
CV,MT]k ,

1

T

T∑

t=1

tr(AktBt), 1 ≤ k ≤ K. (77)

These entries may also be evaluated quickly. For example,

with SCM,

[A′
CV,MT]mn = tr(TmTn)− tr((Tm +Tn)R) + η, (78)

[b′
CV,MT]k =

T

T − 1
tr(R2)− 1

T (T − 1)

T∑

t=1

||yt||4F−η, (79)

where

η =
1

T

T∑

t=1

tr(R2
t )

can be computed using (27). The solution to τ can be found

as

τ ⋆
CV,MT = A′−1

CV,MTb
′
CV,MT (80)

if the nonnegative condition is satisfied. Otherwise, find the

solution in a similar way as for the unconstrained case.

Note that for multi-target shrinkage, Lancewicki and Al-

adjem [17] recently introduced another method for finding

the shrinkage coefficients. They assume SCM and shrinkage

targets which belong to a set that can be characterized by

Eqn. (21) of [17]. Then, they follow the Ledoit-Wolf (LW)

framework [2] to derive unbiased estimates of the unknown

coefficients needed for minimizing the expectation of the cost

in (62), based on which {ρ, τ} can be optimized. By contrast,

our approach resorts to a LOOCV estimate of the cost in (10),

which does not rely on the aforementioned assumptions in

[17]. As will be shown later, the LOOCV method can achieve

similar performance as [17] for the shrinkage targets consid-

ered there. However, it can be applied to general estimators

other than SCM and shrinkage targets which are not covered

by Eqn. (21) of [17], offering wider applicability.

IV. NUMERICAL EXAMPLES

In this section, we present numerical examples to demon-

strate the effectiveness of the proposed shrinkage design and

compare it with alternative methods. The quality of covariance

matrix estimation is measured by the MSE normalized by the

average of the squared Frobenius norm ||Σ||2F , i.e.,

NMSEΣ ,
E[||Σ̂ρ,τ −Σ||2F ]

E[||Σ||2F ]
. (81)

We show examples of covariance matrix estimation and its ap-

plications in array signal processing. We denote by N (µ, σ2)
a real-valued Gaussian distribution with mean µ and variance

σ2.

Example 1: Shrinkage toward an identity target: We first

consider a real-valued example with an autoregressive (AR)

covariance matrix, whose (i, j)-th entry is given by

[Σ]i,j = r|i−j|, 1 ≤ i, j ≤ N, (82)

0 5 10 15 20 25 30

T
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m
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Figure 1. NMSE of single-target (ST) shrinkage estimates of an AR

covariance matrix with N = 100, r = 0.5, T0 =
tr(R)
N

I. “LW”, “GLC”
and “OAS” refer to the methods of [2], [3] and [4], respectively, which are
also described in Section II-E; “CV” refers to our proposed LOOCV method;
“Oracle” refers to the coefficient choice in Section II-A; and “Con” and “Unc”
indicate that the constraint ρ+ τ = 1 is imposed or not, respectively.

which has been widely considered for evaluating covariance

matrix estimation techniques [4]-[7]. Let Σ1/2 be the Cholesky

factor of Σ. The training samples are randomly generated

as yt = Σ1/2nt, where nt consists of i.i.d. entries drawn

from N (0, 1). The typical shrinkage target T0 = tr(R)
N I is

considered for single-target shrinkage. Our proposed LOOCV

method is compared with the widely used alternative methods

[2]-[4] for choosing the shrinkage coefficients. The simulation

results (averaged over 1000 repetitions for each training length

T ) in Fig. 1 confirm that the LOOCV methods with and

without the constraint ρ + τ = 1 produce the same results

for the scaled identity target and they achieve performance

almost identical to the OAS estimator [4], which was derived

by assuming Gaussian data and identity target. The LW [2]

and GLC [3] methods, which are equivalent for the scaled

identity target here, do not perform well for very low sample

support, but are able to approximate the oracle choice very

well when more samples are available, which is consistent

with the observations from [4]. All of these shrinkage designs

significantly outperform the SCM, confirming the effectiveness

of shrinkage for covariance matrix estimation. Recall that

these methods were derived using different strategies and

assumptions and have different analytical solutions.

Example 2: Shrinkage toward a nondiagonal target: We

then consider an example of the linear model given by

(35). For each training length, 1000 random realizations of

Σ = HH†+σ2I are generated and estimated through training,

where σ2 = 0.1. The entries of H are independently generated

from N (0, 1) and then fixed for the whole training process.

Given H, T training samples are generated by y = Hx + z,

with the entries of x and z generated independently from

N (0, 1) and N (0, σ2), respectively. In order to demonstrate

the effectiveness of the LOOCV method for general shrinkage

targets, we assume a scenario where H is slowly time-varying

and the shrinkage target T0 can be constructed as a well-
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Figure 2. NMSE of single-target (ST) shrinkage estimation of covariance
matrix for the linear model (35) with N = 50,M = 50, σ2 = 0.1. The non-
diagonal shrinkage target is constructed from the estimate of a past covariance
matrix. The result indicated by “T0” corresponds to estimating Σ as T0.
“Identity” indicates a scaled identity shrinkage target is used instead. We
can show that imposing the constraint (23) leads to negligible change in
performance for the proposed LOOCV approach.

conditioned estimate of a past covariance matrix

Σpast = HpastHpast† + σ2I, (83)

where

Hpast = H+∆, (84)

and the entries of ∆ are independently drawn from N (0, 0.2)
and are fixed for each repetition. Specifically, we construct T0

as the shrinkage estimate of Σpast using SCM and the scaled

identity target. This construction is similar to the knowledge-

aided target considered in [3] and the resulting T0 is not

diagonal. We assume that the numbers of samples used for

estimating Σ and T0 are both equal to T . The simulation

results are included in Fig. 2 for the normalized MSE. It can be

seen that the LOOCV methods generally achieve near-oracle

performance and outperform the GLC method. Also, the non-

diagonal shrinkage target achieves better performance than the

scaled identity target.

Example 3: Shrinkage with multiple targets: A multi-target

example is illustrated in Fig. 3. An AR covariance matrix

is estimated by shrinking SCM with three targets which

can be represented by Eqn. (21) of [17]: T1 = tr(R)
N I,

T2 = Diag(R), and T3 is a symmetric, Toeplitz matrix which

was considered in [17]:

T3 =
tr(R)

N
I+

N−1∑

i=1

tr(CiR)

2(N − i)
Ci, (85)

where Ci is a symmetric, Toeplitz matrix with unit entries on

the i-th sub- and super-diagonals and zeros elsewhere. It is

seen that multi-target shrinkage can significantly outperform

single-target shrinkage with T0 = tr(R)
N I when the number

of samples is large enough. For the oracle parameter choices,

the unconstrained shrinkage design, which allows a larger set

of shrinkage factors to be chosen, can noticeably outperform

the design constrained by (71). However, when the proposed
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Figure 3. MSE of covariance matrix estimation with multi-target (MT)
shrinkage and LOOCV parameter choices. AR covariance matrix with N =

50, r = 0.9 is assumed. “LA” refers to the method proposed by Lancewicki
and Aladjem [17]. Note that the LOOCV methods and the LA method achieve
similar performance for this example.

LOOCV methods are used, the gap is significantly reduced.

We can show that when the number of samples is small,

using a more parsimonious design with constrained shrinkage

coefficients or fewer shrinkage targets may achieve better

performance. It is seen that the multi-target shrinkage method

of [17] (indicated by “MT-LA” in Fig. 3) performs similarly

to the LOOCV method for this example. Note that the method

of [17] assumes SCM and shrinkage targets satisfying certain

structures and does not apply directly to model-based covari-

ance matrix estimation or more general shrinkage targets.

Example 4: Application to MMSE estimation of MIMO

channels. A potential application of the proposed technique is

the design of MMSE estimator of MIMO channels. Consider

a point-to-point MIMO system with Nt transmitting antennas

and Nr receiving antennas. Let B be the length of the pilot

sequence. The received signal matrix during the training stage

is modelled as

Y = HP+N, (86)

where Y ∈ CNr×B is the received signal matrix, H ∈
CNr×Nt the channel matrix, P ∈ CNt×B the pilot matrix,

and N ∈ CNr×B the noise which is uncorrelated with H.

Vectorizing Y in (86) gives

y = P̃h+ n, (87)

where y = vec(Y), P̃ = PT ⊗ I, h = vec(H), n = vec(N),

vec(·) denotes vectorization, and ⊗ denotes Kronecker prod-

uct. We assume a Rayleigh fading channel and denote by

Σh ∈ CNtNr×NtNr the covariance matrix of the channel

vector h. We also assume that the disturbance n is complex

Gaussian-distributed with a zero mean and identity covariance

matrix.

Given Σh, the MMSE estimate of h from y can be

computed as [41]

ĥMMSE = ΣhP̃
†(P̃ΣhP̃

† + I)−1y. (88)

The covariance matrix Σh, which can be very large, must

be estimated in order to compute ĥMMSE. In communication
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Figure 4. Performance of MMSE estimation of MIMO channels with the
channel covariance matrix estimated using different estimators with Nt =

Nr = B = 10. Pilot-to-noise ratio is 5 dB. “LS” refers to the LS estimator
in (89); “MMSE” refers to the MMSE channel estimator (88) constructed
using estimated covariance matrices; “identity” and “past” represent shrinkage
targets chosen as the scaled identity matrix and the estimate of a past
covariance matrix, respectively; “MT-CV” uses both the identity target and
the target set as a past estimate.

systems, h is not directly observable and thus the SCM

estimator can not be directly applied to generate Σh. One

may estimate Σh from least squares (LS) estimates of H, i.e.,

ĤLS = YP†(PP†)−1. (89)

When orthogonal training signal with P =
√
P I is applied,

where P determines the power for training signals, it can be

shown that

ĤLS =
1√
P
Y =

1√
P
(HP+N) = H+

1√
P
N. (90)

Denote by ĥLS the vectorization of ĤLS. It can be shown that

the covariance matrix of ĥLS is

Σ
ĥLS

, E[ĥLSĥ
†
LS] = Σh +

1

P
I. (91)

Therefore, if Σ
ĥLS

is estimated as Σ̂
ĥLS

, we can then use (91)

to estimate Σh as

Σ̂h = Σ̂
ĥLS

− 1

P
I,

which can be used in (88). The estimation of Σ
ĥLS

can be

achieved using the different shrinkage estimators introduced

in this paper.

An example is shown in Fig. 4. The covariance matrix is

assumed to be

Σh = Σt ⊗Σr, (92)

where Σt and Σr are, respectively, the transmitter side and

receiver side covariance matrix, with entries given by

[Σt]i,j =

{
r
|i−j|
t , i ≥ j

(r∗t )
|i−j|

, i < j
, (93)

[Σr]i,j =

{
r
|i−j|
r , i ≥ j

(r∗r )
|i−j|

, i < j
, (94)

rt = 0.7e−j0.9349π and rr = 0.9e−j0.9289π. While applying

shrinkage to estimate Σ
ĥLS

, two shrinkage targets are tested:

the identity matrix and the shrinkage estimate (with a scaled

identity target) of a past covariance matrix. The second is

considered based on the assumption that Σh is slowly varying

in time and a well-conditioned estimate of a past covariance

matrix Σ
past
h can be available. In our simulations, Σ

past
h

is modeled by randomly perturbing rt and rr in (93) and

(94) by δt and δr whose real and imaginary parts are both

randomly and uniformly generated from
[
− 1

10
√
2
, 1
10

√
2

]
. The

normalized MSE of channel estimation is defined as

NMSEh ,
E[||ĥMMSE − h||2F ]

E[||h||2F ]
, (95)

where ĥMMSE is the MMSE channel estimate obtained from

(88) with the true channel covariance matrix replaced by its

shrinkage estimate.

From the simulation results in Fig. 4, when the number of

samples T of channel estimates is small, the MMSE channel

estimator constructed using the SCM estimate of Σh is poorer

than the LS estimator which does not require any knowledge of

Σh. Therefore, an accurate estimate of the covariance matrix

is necessary to exploit the potential of the MMSE channel

estimator. Shrinkage with LOOCV choice of the shrinkage

coefficients improves the performance of the MMSE channel

estimator by providing a better estimate of Σh. Two-target

shrinkage can further enhance performance. Note that the

multi-target method of [17] is not directly applicable to the

shrinkage target used here. Similarly to [42], we do not exploit

the Kronecker product structure in (92) and the exponential

modeling of (93) and (94) while estimating the covariance

matrix and similar trends can be observed when the channel

covariance matrix follows different models such as those in

[43], [44].

Example 5: Application to LMMSE signal estimation: An-

other example application is the design of linear minimum

mean squared error (LMMSE) estimator [45], [46] for estimat-

ing the transmitted signal x in MIMO communications. The

received signal is modeled by (35) and the LMMSE estimate

of x is obtained as

x̂ = H†Σ−1
y y, (96)

where we have assumed that x has identity covariance ma-

trix and Σy is the covariance matrix of y. The OLS-based

covariance matrix estimation in Section II-D can be used to

estimate Σy in (96). In Fig. 5, we show an example where

the shrinkage target T0 is chosen as the diagonal matrix of

the OLS estimate (38) of the covariance matrix. This results

in a shrunk LMMSE signal estimator

x̂ = Ĥ†(ρ(ĤĤ† + σ̂2I) + τT0)
−1y. (97)

Orthogonal training of length T constructed from the discrete

Fourier transform (DFT) matrix is assumed for the OLS

channel estimate and finding the shrinkage coefficients using

our proposed LOOCV method is achieved at a low complexity.
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Figure 5. Performance of the LMMSE signal estimator with channel matrix
and received signal’s covariance matrices estimated using OLS and shrinkage.
The entries of H are independently generated from complex Gaussian distri-
bution with zero mean and variance 1/40, and the noise variance σ2 = 0.1.

The normalized MSE of signal estimation is defined as

NMSEx ,
E[||x̂− x||2F ]
E[||x||2F ]

. (98)

Fig. 5 presents the simulation results averaged over 1000
random realizations of H for each T . It can be seen that

the shrinkage estimate of the covariance matrix can lead to

noticeable improvement of the MSE performance of signal

estimation. The resulting performance can approach the oracle

choice of (ρ, τ) that minimizes the MSE of estimating x [35].

Note that in contrast to the cross-validation methods in [35]

and [36] which choose shrinkage factors by a grid search

for optimizing the signal estimation performance, the method

proposed in this paper has an analytical solution and optimizes

covariance matrix estimation. It also differs from [47] which

targets the design of a signal estimator that shrinks the sample

LMMSE filter toward the matched filter.

Example 6: Application to MVDR beamforming: Finally, we

show an example application to minimum variance distortion-

less response (MVDR) beamforming [31], [33]. We assume

a N = 30-element uniform linear array (ULA) with half-

wavelength spacing between neighboring antennas. As in [33],

we assume that the desired complex Gaussian signal has an

angle of arrival (AoA) of θ0 = 0◦ and there are 8 complex

Gaussian interferences in the directions {θm} = {8◦, −15◦,
23◦, −21◦, 46◦, −44◦, −85◦, 74◦}, all with an average

power 10 dB higher than the desired signal. The noise is

assumed to be additive white Gaussian noise (AWGN) with

an average power 10 dB lower than the desired signal. The

MVDR beamformer is given by

w =
Σ−1s

s†Σ−1s
, (99)

where s is the steering vector of the desired signal and Σ is

the covariance matrix of the received signal. We consider a

practical scenario where the desired signal’s steering vector

suffers from an AoA error uniformly distributed in [−5◦, 5◦]
and Σ is estimated from the training samples by shrinking

the SCM R toward the scaled identity matrix
tr(R)
N I. We
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Figure 6. Average output SINR for a MVDR beamformer with AoA mismatch
and the estimated covariance matrix. The results labeled by “SCM” is obtained
by replacing Σ

−1 in (99) with the pseudo-inverse of the SCM. Note that the
LOOCV and OAS methods achieve almost the same performance, which is
slightly better than the GLC method when T is very small.

focus on the low-sample-support case and compare the result

with an approach that uses the pseudo-inverse of the SCM for

computing w. The output signal-to-interference-and-noise ra-

tio (SINR) averaged over 1000 repetitions are plotted in Fig. 6.

It is seen that though the proposed approach targets covariance

matrix estimation only and is not optimized for beamformer

designs, it still provides noticeable gains as compared to the

pseudo-inverse approach in the low-sample-support regime.

V. CONCLUSIONS

In this paper, we have introduced a leave-one-out cross-

validation (LOOCV) method for choosing the coefficients for

linear shrinkage covariance matrix estimators. By employing

a quadratic loss as the LOOCV prediction error, analytical

expressions of the optimal shrinkage coefficients are obtained,

which do not require a grid search of the parameters. As a

result, the coefficients can be computed at low costs for the

SCM- and OLS-based estimation of the covariance matrix.

The LOOCV method is generic in the sense that it can be

applied to different covariance matrix estimation methods and

different shrinkage targets. Numerical examples show that

it can approximate the oracle parameter choices in general

and have wider applications than several existing analytical

methods that have been widely applied.

Zero-mean signals have been assumed in this paper. When

nonzero-mean signals are considered, our proposed approach

may be applied after subtracting an estimate of the mean

from the samples. However, the inaccuracy in the mean vector

estimate may introduce extra errors to the covariance matrix

estimation. Jointly estimating the mean and covariance matrix

in a robust manner may be further explored. Other future work

includes theoretical study of the properties of the proposed

approach and low-complexity cross-validation schemes for

choosing shrinkage factors for specific signal processing appli-

cations such as beamforming, space-time adaptive processing,

correlation analysis, etc.
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