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Abstract

Compressed Sensing (CS) is a new data acquisition theory based on the existence of

a sparse representation of a signal and a projected dictionary PD, where P ∈ Rm×d

is the projection matrix and D ∈ Rd×n is the dictionary. To recover the signal from a

small number m of measurements, it is expected that the projected dictionary PD is of

low mutual coherence. Several previous methods attempt to find the projection P such

that the mutual coherence of PD is low. However, they do not minimize the mutual

coherence directly and thus they may be far from optimal. Their used solvers lack con-

vergence guarantee and thus the quality of their solutions is not guaranteed. This work

aims to address these issues. We propose to find an optimal projection matrix by min-

imizing the mutual coherence of PD directly. This leads to a nonconvex nonsmooth

minimization problem. We approximate it by smoothing, solve it by alternating min-

imization and prove the convergence of our algorithm. To the best of our knowledge,

this is the first work which directly minimizes the mutual coherence of the projected

dictionary and has convergence guarantee. Numerical experiments demonstrate that

our method can recover sparse signals better than existing ones.

Keywords: mutual coherence minimization, compressed sensing, convergence

guarantee
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1. Introduction

Compressed Sensing (CS) [1, 2] is a new sampling/data acquisition theory asserting

that one can exploit sparsity or compressibility when acquiring signals of interest. It

shows that signals which have a sparse representation with respect to appropriate bases

can be recovered from a small number of measurements. A fundamental problem in5

CS is how to construct a measurement matrix such that the number of measurements is

near minimal.

Consider a signal x ∈ Rd which is assumed to have a sparse representation with

respect to a fixed overcomplete dictionary D ∈ Rd×n (d < n). This can be described

as

x = Dα, (1)

where α ∈ Rn is a sparse representation coefficient, i.e., ‖α‖0 � n. Here ‖α‖0
denotes the `0-norm which counts the number of nonzero elements in α. The solution

to problem (1) is not unique since d < n. To find an appropriate solution in the solution

set of (1), we need to use some additional structures of D and α. Considering that α is

sparse, we are interested in finding the sparsest representation coefficient α. This leads

to the following sparse representation problem

min
α
‖α‖0 , s. t. x = Dα. (2)

However, the above problem is NP-hard [3] and thus is challenging to solve. Some

algorithms, such as Basis Pursuit (BP) [4] and Orthogonal Matching Pursuit (OMP)

[5], can be used to find suboptimal solutions.10

An interesting theoretical problem is that under what conditions the optimal solu-

tion to (2) can be computed. If the solution is computable, can it be exactly or approx-

imately computed by BP or OMP? Some previous works answer the above questions

based on the mutual coherence of the dictionary D [6].

Definition 1. Given D = [d1, · · · ,dn] ∈ Rd×n, its mutual coherence is defined as

the largest absolute and normalized inner product between different columns of D, i.e.,

µ(D) = max
1≤i,j≤n
i6=j

|dTi dj |
‖di‖ ‖dj‖

.
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The mutual coherence measures the highest correlation between any two columns of15

D. It is expected to be as low as possible in order to find the sparest solution to (2).

Theorem 1. [6, 7, 8] For problem (2), if α satisfies

‖α‖0 <
1

2

(
1 +

1

µ(D)

)
, (3)

then the following results hold:

• α is the solution to (2).

• α is also the solution to the following convex `1-minimization problem

min
α
‖α‖1 , s. t. x = Dα,

where ‖α‖1 =
∑
i |αi| is the `1-norm of α.

• α can be obtained by OMP.20

The above theorem shows that if the mutual coherence of D is low enough, then the

sparest solution to (2) is computable. Thus, how to construct a dictionary D with

low mutual coherence is crucial in sparse coding. In CS, to reduce the number of

measurements, we face a similar problem on the sensing matrix construction.

The theory of CS guarantees that a signal having a sparse representation can be re-

covered exactly from a small set of linear and nonadaptive measurements. This result

suggests that it may be possible to sense sparse signals by taking far fewer measure-

ments than what the conventional Nyquist-Shannon sampling theorem requires. But

note that CS differs from classical sampling in several aspects. First, the sampling

theory typically considers infinite-length and continuous-time signals. In contrast, CS

is a mathematical theory that focuses on measuring finite-dimensional vectors in Rn.

Second, rather than sampling the signal at specific points in time, CS systems typically

acquire measurements in the form of inner products between the signal and general test

functions. At last, the ways to dealing with the signal recovery are different. Given the

signal x ∈ Rd in (1), CS suggests replacing these n direct samples with m indirect

ones by measuring linear projections of x defined by a proper projection or sensing

matrix P ∈ Rm×d, i.e.,

y = Px, (4)
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such that m� d. It means that instead of sensing all n elements of the original signal

x, we can sense x indirectly by its compressed form y in a much smaller size m.

Surprisingly, the original signal x can be recovered from the observed y by using the

sparse representation in (1), i.e, y = PDα with the sparest α. Thus the reconstruction

requires solving the following problem

min
α
‖α‖0 , s. t. y = Mα, (5)

where M = PD ∈ Rm×n is called the effective dictionary. Problem (5) is also NP-

hard. As suggested by Theorem 1, if the mutual coherence of PD is low enough,

then the solution α to (5) is computable by OMP or by solving the following convex

problem

min
α
‖α‖1 , s. t. y = Mα. (6)

Finally, the original signal x can be reconstructed by x = Dα. So it is expected to find25

a proper projection matrix P such that µ(PD) is low. Furthermore, many previous

works [9, 10] show that the required number of measurements for recovering the signal

x by CS can be reduced if µ(PD) is low.

In summary, the above discussions imply that by choosing an appropriate projection

matrix P such that µ(PD) is low enough, the true signal x can be recovered with30

high probability by efficient algorithms. At the beginning, random projection matrices

were shown to be good choices since their columns are incoherent with any fixed basis

D with high probability [11]. However, many previous works [9, 12, 10] show that

well designed deterministic projection matrices can often lead to better performance

of signal reconstruction than random projections do. In this work, we focus on the35

construction of deterministic projection matrices. We first give a brief review on some

previous deterministic methods.

1.1. Related Work

In this work, we only consider the case that D is fixed while P can be changed.

Our target is to find P by minimizing µ(M), where M = PD. If each column of40

M is normalized to have unit Euclidean length, then µ(M) = ‖G‖∞,off, where G =

(gij) = MTM is named as the Gram matrix and ‖G‖∞,off = maxi 6=j |gij | is the
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largest off-diagonal element of |G|. Several previous works used the Gram matrix to

find the projection matrix P [9, 12, 10]. We give a review on these methods in the

following.45

1.1.1. The Algorithm of Elad

The algorithm of Elad [9] considers minimizing the t-averaged mutual coherence

defined as the average of the absolute and normalized inner products between different

columns of M which are above t, i.e.,

µt(M) =

∑
1≤i,j≤k, i 6=j χt(|gij |)|gij |∑

1≤i,j≤k, i 6=j χt(|gij |)
,

where χt(x) is the characteristic function defined as

χt(x) =

1, if x ≥ t,

0, otherwise,

and t is a fixed threshold which controls the top fraction of the matrix elements of |G|

that are to be considered.

To find P by minimizing µt(M), some properties of the Gram matrix G = MTM

are used. Assume that each column of M is normalized to have unit Euclidean length.

Then

diag (G) = 1, (7)

rank (G) = m. (8)

The work [9] proposed to minimize µt(M) by iteratively updating P as follows. First,

initialize P as a random matrix and normalize each column of PD to have unit Eu-

clidean length. Second, shrink the elements of G = MTM (where M = PD) by

gij =


γgij , if |gij | ≥ t,

γtsign(gij), if t > |gij | ≥ γt,

gij , if γt > |gij |,
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where 0 < γ < 1 is a down-scaling factor. Third, apply SVD and reduce the rank of G

to be equal to m. At last, build the square root S of G: STS = G, where S ∈ Rm×n,50

and find P = SD†, where † denotes the Moore-Penrose pseudoinverse.

There are several limitations of the algorithm of Elad. First, it is suboptimal since

the t-averaged mutual coherence µt(M) is different from the mutual coherence µ(M)

which is our real target. Second, the proposed algorithm to minimize µt(M) has no

convergence guarantee. So the quality of the obtained solution is not guaranteed. Third,55

the choices of two parameters, t and γ, are crucial for the signal recovery performance

in CS. However, there is no guideline for their settings and thus in practice it is usually

difficult to find their best choices.

1.1.2. The Algorithm of Duarte-Carajalino and Sapiro

The algorithm of Duarte-Carajalino and Sapiro [12] is not a method that is based

on mutual coherence. It instead aims to find the sensing matrix P such that the corre-

sponding Gram matrix is as close to the identity matrix as possible, i.e.,

G = MTM = DTPTPD ≈ I, (9)

where I denotes the identity matrix. Multiplying both sides of the previous expression

by D on the left and DT on the right, it becomes

DDTPTPDDT ≈ DDT . (10)

Let DDT = VΛVT be the eigen-decomposition of DDT . Then (10) is equivalent to

ΛVTPTPVΛ = Λ. (11)

Define Γ = PV. Then they finally formulate the following model w.r.t. Γ

min
Γ

∥∥Λ−ΛΓTΓΛ
∥∥
F
. (12)

After solving the above problem, the projection matrix can be obtained as P = ΓVT .60

However, usually the signal recovery performance of the algorithm of Duarte-

Carajalino and Sapiro is not very good. The reason is that M is overcomplete and

the Gram matrix G cannot be an identity matrix. In this case, simply minimizing the

difference between the Gram matrix G and the identity matrix does not imply a solu-

tion M with low mutual coherence.65
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1.1.3. The Algorithm of Xu et al.

The algorithm of Xu et al. [10] is motivated by the well-known Welch bound [13].

For any M ∈ Rm×n, the mutual coherence µ(M) is lower bounded, e.g.,

µ(M) ≥
√

n−m
m(n− 1)

. (13)

The algorithm of Xu et al. aims to find M such that the off-diagonal elements of

G = MTM approximate the Welch bound well. They proposed to solve the following

problem

min
G
‖G−GΛ‖F

s.t. GΛ = GT
Λ, diag(GΛ) = 1, ‖GΛ‖∞,off ≤ µW ,

(14)

where µW =
√

n−m
m(n−1) . The proposed iterative solver for the above problem is similar

to the algorithm of Elad. The main difference is the shrinkage function used to control

the elements of G. See [10] for more details.

However, their proposed solver in [10] for (14) also lacks convergence guarantee.70

Another issue is that, for M ∈ Rm×n, the Welch bound (13) is not tight when n is

large. Actually, the equality of (13) can hold only when n ≤ m(m+1)
2 . This implies

that the algorithm of Xu et al. is not optimal when n > m(m+1)
2 .

Beyond the above three methods, there are also some other mutual coherence op-

timization based methods for the dictionary learning. For example, the work [14] pro-75

poses a joint sparse coding and incoherent dictionary learning model which shares a

similar idea as the algorithm of Duarte-Carajalino and Sapiro [12]. The work [15] con-

siders a model with hard constraint on the mutual coherence and sparsity and proposes

a heuristic iterative projection solver. Greedy algorithms are proposed in [16, 17] to

find a sensing matrix for a dictionary that gives low cumulative coherence.80

1.2. Contributions

There are at least two main issues in the previous methods reviewed above. First,

none of them aims to find P by directly minimizing µ(PD) which is our real target.

Thus the objectives of these methods are not optimal. For their obtained solutions P,

µ(PD) is usually much larger than the Welch bound in (13). Second, the algorithms85

7



of Elad and Xu et al. have no convergence guarantee and thus they may produce very

different solutions given slightly different initializations. The convergence issue may

limit their applications in CS.

To address the above issues, we develop Direct Mutual Coherence Minimization

(DMCM) models. First, we show how to construct a low mutual coherence matrix M90

by minimizing µ(M) directly. This leads to a nonconvex and nonsmooth problem. To

solve our new problem efficiently, we first smooth the objective function such that its

gradient is Lipschitz continuous. Then we solve the approximate problem by proximal

gradient which has convergence guarantee. Second, inspired by DMCM, we propose a

DMCM based Projection (DMCM-P) model which aims to find a projection P by min-95

imizing µ(PD) directly. To solve the nonconvex DMCM-P problem, we then propose

an alternating minimization method and prove its convergence. Experimental results

show that our DMCM-P achieves the lowest mutual coherence of PD and also leads

to the best signal recovery performance.

2. Low Mutual Coherence Matrix Construction100

In this section, we show how to construct a matrix M ∈ Rm×n with low mutual

coherence µ(M) by DMCM. Assume that each column of M is normalized to unit

Euclidean length. Then we aim to find M by the following DMCM model

min
M∈Rm×n

µ(M) =
∥∥MTM

∥∥
∞,off

s. t. ‖Mi‖2 = 1, i = 1, · · · , n,
(15)

where Mi (or (M)i) denotes the i-th column of M. The above problem is equivalent

to

min
M∈Rm×n

f(M) =
∥∥MTM− I

∥∥
∞

s. t. ‖Mi‖2 = 1, i = 1, · · · , n,
(16)

where ‖A‖∞ = maxi,j |aij | denotes the `∞-norm of A. Solving the above problem

is not easy since it is nonconvex and its objective is nonsmooth. In general, due to

the nonconvexity, the globally optimal solution to (16) is not computable. We instead

consider finding a locally optimal solution with convergence guarantee.
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First, to ease the problem, we adopt the smoothing technique in [18] to smooth the

nonsmooth `∞-norm in the objective of (16). By the fact that the `1-norm is the dual

norm of the `∞-norm, the objective function in (16) can be rewritten as

f(M) =
∥∥MTM− I

∥∥
∞ = max

‖V‖1≤1
〈MTM− I,V〉,

where ‖V‖1 =
∑
ij |vij | denotes the `1-norm of V. Since {V|‖V‖1 ≤ 1} is a

bounded convex set, we can define a proximal function d(V) for this set, where d(V)

is continuous and strongly convex on this set. A natural choice of d(V) is d(V) =

1
2‖V‖

2
F , where ‖ · ‖F denotes the Frobenius norm of a matrix. Hence, we have the

following smooth approximation of f defined in (16):

fρ(M) = max
‖V‖1≤1

〈MTM− I,V〉 − ρ

2
‖V‖2F , (17)

where ρ > 0 is a smoothing parameter. Note that the smooth function fρ can approx-

imate the nonsmooth f with an arbitrary precision and it is easier to be minimized.

Indeed, f and fρ have the following relationship

fρ(M) ≤ f(M) ≤ fρ(M) + ργ,

where γ = maxV{ 1
2 ‖V‖

2
F | ‖V‖∞ ≤ 1}. For any ε > 0, if we choose ρ = ε

γ , then

|f(M) − fρ(M)| ≤ ε. This implies that if ρ is sufficiently small, then the difference

between f and fρ can be very small. This motives us to use fρ to replace f in (16) and

thus we have the following relaxed problem

min
M∈Rm×n

fρ(M)

s. t. ‖Mi‖2 = 1, i = 1, · · · , n.
(18)

As fρ can approximate f at an arbitrary precision, solving (18) can still be regarded

as directly minimizing the mutual coherence. Problem (18) is easier to solve since

∇fρ(M) = M(V∗ + V∗T ), where V∗ is the optimal solution to (17), is Lipschitz

continuous. That is, for any M1,M2 ∈ Rm×n, there exists a constant L = 1/ρ such

that

‖∇fρ(M1)−∇fρ(M2)‖F ≤ L ‖M1 −M2‖F .
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Algorithm 1 Solve (18) by Proximal Gradient algorithm.
Initialize: k = 0, Mk ∈ Rm×n, ρ > 0, α = 0.99ρ, K > 0.

Output: M∗ = PG(Mk, ρ).

while k < K do

1. Compute Vk by solving (21);

2. Compute Mk+1 by solving (19);

3. k = k + 1.

end while

With the above property, problem (18) can be solved by the proximal gradient method

which updates M in the (k + 1)-th iteration by

Mk+1 = arg min
M
〈∇fρ(Mk),M−Mk〉+

1

2α
‖M−Mk‖2F

= arg min
M

1

2
‖M− (Mk − α∇fρ(Mk))‖2F (19)

s. t. ‖Mi‖2 = 1, i = 1, · · · , n,

where α > 0 is the step size. To guarantee convergence, it is required that α < ρ. In

this work, we simply set α = 0.99ρ. The above problem has a closed form solution by

normalizing each column of Mk − α∇fρ(Mk), i.e.,

(Mk+1)i =
(Mk − α∇fρ(Mk))i
‖(Mk − α∇fρ(Mk))i‖2

. (20)

To compute ∇fρ(Mk) = Mk(Vk + Vk
T ), where Vk is optimal to (17) when M =

Mk, one has to solve (17) which is equivalent to the following problem

Vk = arg min
V

1

2

∥∥V − (MT
kMk − I)/ρ

∥∥
F
,

s. t. ‖V‖1 ≤ 1.

(21)

Solving the above problem requires computing a proximal projection onto the `1 ball.105

This can be done efficiently by the method in [19].

Iteratively updating V by (21) and M by (19) leads to the Proximal Gradient (PG)

algorithm for solving problem (18). We summarize the whole procedure of PG for (18)
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in Algorithm 1. For the convergence guarantee, PG can be proved to be convergent.

But we omit its proof since we will introduce a more general solver and provide the110

convergence guarantee in Section 3. For the per-iteration cost of Algorithm 1, there

are two main parts. For the update of M by (19), we need to compute ∇ρf(Mk) =

Mk(Vk+MT
k ) which costsO(mn2). For the update of V by (21), we need to compute

MT
kMk which costs O(mn2). Thus, the per-iteration cost of Algorithm 1 is O(m2n+

mn2).115

Though PG is guaranteed to converge, the obtained suboptimal solution to (18)

may be far from optimal to problem (16) which is our original target. There are two

important factors which may affect the quality of the obtained solution by PG. First,

due to the nonconvexity of (18), the solution may be sensitive to the initialization of

M. Second, the smoothing parameter ρ > 0 should be small so that the objective fρ120

in (18) can well approximate the objective f in (16). However, if ρ is directly set to

a very small value, PG may decrease the objective function value of (18) very slowly.

This can be easily seen from the updating of M in (19), where α < ρ. To address the

above two issues, we use a continuation trick to find a better solution to (16) by solving

(18) with different initializations. Namely, we begin with a relatively large value of125

ρ and reduce it gradually. For each fixed ρ, we solve (18) by PG in Algorithm 1 and

use its solution as a new initialization of M in PG. To achieve a better solution, we

repeat the above procedure T times or until ρ reaches a predefined small value ρmin.

We summarize the procedure of PG with the continuation trick in Algorithm 2.

Finally, we would like to emphasize some advantages of our DMCM model (16)130

and the proposed solver. A main merit of our model (16) is that it minimizes the mutual

coherence µ(M) directly and thus the mutual coherence of its optimal solution can be

low. Though the optimal solution is in general not computable due to the nonconvexity

of (16), our proposed solver, which first smooths the objective and then minimizes

it by PG, has convergence guarantee. To the best of our knowledge, this is the first135

work which directly minimizes the mutual coherence of a matrix with convergence

guarantee.
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Algorithm 2 Solve (18) by PG with continuation trick.
Initialize: ρ > 0, α = 0.99ρ, η > 1, M, t = 0, T > 0.

while t < T do

1. M = PG(M, ρ) by calling Algorithm 1;

2. ρ = ρ/η, α = 0.99ρ;

3. t = t+ 1.

end while

3. Low Mutual Coherence Based Projection

In this section, we show how to find a projection matrix P such that µ(PD) can

be as low as possible. This is crucial for signal recovery by CS associated to problem

(5). Similar to the DMCM model shown in (16), an ideal way is to minimize µ(PD)

directly, i.e.,

min
P∈Rm×d

∥∥(PD)T (PD)− I
∥∥
∞

s. t. ‖PDi‖2 = 1, i = 1, · · · , n.
(22)

However, the constraint of (22) is more complex than the one in (16), and thus (22) is

much more challenging to solve. We instead consider an approximate model of (22)140

based on the following observation.

Theorem 2. For any M1,M2 ∈ Rm×n, if M1 →M2, then µ(M1)→ µ(M2).

It is easy to prove the above result by the definition of the mutual coherence of a

matrix. The above theorem indicates that the difference of the mutual coherences of

two matrices is small when the difference of two matrices is small. This motivates us

to find M such that µ(M) is low and the difference between M and PD is small. So

we have the following approximate model of (22):

min
P∈Rm×d,M∈Rm×n

‖MTM− I‖∞ +
1

2β
‖M−PD‖2F

s. t. ‖Mi‖2 = 1, i = 1, · · · , n,
(23)

12



where β > 0 trades off µ(M) and the difference between M and PD. To distinguish

from the DMCM model in (16), in this paper we name the above model as DMCM

based Projection (DMCM-P).145

Now we show how to solve (23). First, we smooth ‖MTM − I‖∞ as fρ(M)

defined in (17). Then problem (23) can be approximated by the following problem

with a smooth objective:

min
P,M

F (M,P) = fρ(M) +
1

2β
‖M−PD‖2F

s. t. ‖Mi‖2 = 1, i = 1, · · · , n.
(24)

When both ρ and β are small, fρ is very close to f . So is µ(PD) to µ(M) because

‖M − PD‖F has to be small. Thus solving problem (24) can still be regarded as

minimizing the mutual coherence directly. We propose to alternately update P and M

to solve problem (24).

1. Fix P = Pk and update M by

Mk+1

= arg min
M
〈∇fρ(Mk),M−Mk〉+

1

2α
‖M−Mk‖2F

+
1

2β
‖M−PkD‖2F (25)

= arg min
M

1

2

∥∥∥∥∥∥M−
(

1
αMk + 1

βPkD−∇fρ(Mk)
)

1
α + 1

β

∥∥∥∥∥∥
2

F

s. t. ‖Mi‖2 = 1, i = 1, · · · , n,

where α > 0 is a step size satisfying α < ρ. Similar to (19), the above problem has a150

closed form solution. To compute ∇fρ(Mk) in (25), we also need to compute Vk by

solving (21).

2. Fix M = Mk+1 and update P by solving

Pk+1 = argmin
P

‖Mk+1 −PD‖2F , (26)

which has a closed form solution P = Mk+1D
†.

Iteratively updating P by (26) and M by (25) leads to the Alternating Minimization155

(AM) method for (24). We summarize the whole procedure of AM in Algorithm 3. It

13



Algorithm 3 Solve (24) by Alternating Minimization.
Initialize: k = 0, Pk ∈ Rm×d, Mk ∈ Rm×n, ρ > 0, α = 0.99ρ, β > 0.

Output: {P∗M∗} = AM(Mk,Pk, ρ, β).

while k < K do

1. Compute Vk by solving (21);

2. Compute Mk+1 by solving (25);

3. Compute Pk+1 by solving (26);

4. k = k + 1.

end while

can be easily seen that the per-iteration cost of Algorithm 3 is O((d+m)n2 +n3). We

can prove that the sequence generated by AM converges to a critical point.

We define

h(M) =

 0, if ‖Mi‖2 = 1, i = 1, · · · , n,

+∞, otherwise.
(27)

Theorem 3. Assume that D in problem (24) is of full row rank. Let {(Mk,Pk)} be160

the sequence generated by Algorithm 3. Then the following results hold:

(i) There esits some constants a > 0 and b > 0 such that

h(Mk+1) + F (Mk+1,Pk+1)

≤h(Mk) + F (Mk,Pk)− a‖Mk+1 −Mk‖2F − b ‖Pk+1 −Pk‖2F . (28)

(ii) There exists Wk+1 ∈ ∇MF (Mk+1,Pk+1) + ∂h(Mk+1) and constants c > 0,

d > 0, such that

‖Wk+1‖F ≤ c ‖Mk+1 −Mk‖F + d ‖Pk −Pk+1‖F , (29)

∇PF (Mk+1,Pk+1) = 0. (30)

14



(iii) There exist a subsequence {(Mkj ,Pkj )} and (M∗,P∗) such that (Mkj ,Pkj )→

(M∗,P∗) and F (Mkj ,Pkj ) + h(Mkj )→ F (M∗,P∗) + h(M∗).

The proof of Theorem 3 can be found in Appendix. Note that to guarantee the conver-165

gence of Algorithm 3, Theorem 3 requires D in problem (24) to be of full row rank.

Such an assumption usually holds in CS since D ∈ Rd×n is an overcomplete dictionary

with d < n.

Based on Theorem 3, we then have the following convergence results.

Theorem 4. (Convergence to a critical point). The sequence {(Mk,Pk)} generated

by Algorithm 3 converges to a critical point of F (M,P) + h(M). Moreover, the

sequence {(Mk,Pk)} ha a finite length, i.e.,

+∞∑
k=0

(a ‖Mk+1 −Mk‖+ b ‖Pk+1 −Pk‖) <∞,

where a > 0 and b > 0 are constants as in Theorem 3 (i).170

Theorem 4 is directly obtained by Theorem 2.9 in [20] based on the results in

Threorem 3. Though AM is guaranteed to converge, the obtained solution to (24) may

be far from optimal to problem (23) which is our original target. In order for (24) to

approximate (23) well, ρ > 0 should be small. On the other hand, β > 0 should also

to be small such that the difference between M and PD is small and thus µ(PD) can175

well approximate µ(M). Similar to Algorithm 2, we use a continuation trick to achieve

a good solution to (23). Namely, we begin with a relatively large value of ρ > 0 and

β > 0 and reduce them gradually. For each fixed pair (ρ, β), we solve (24) by AM in

Algorithm 3 and use its solution as a new initialization of P and M in AM. We repeat

the procedure T times or until ρ and β reach predefined small values ρmin and βmin.180

We summarize the procedure of AM with the continuation trick in Algorithm 4.

Finally, we would like to emphasize some advantages of our DMCM-P over pre-

vious methods. The main merit of our DMCM-P is that it is the first model which

minimizes µ(PD) directly and the proposed solver also has convergence guarantee.

The algorithms of Elad [9] and Xu et al. [10] are also mutual coherence based meth-185

ods. But their objectives are suboptimal and their solvers lack convergence guarantee.
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Algorithm 4 Solve (24) by AM with continuation trick.
Initialize: ρ > 0, α = 0.99ρ, β > 0, η > 1, M, P, t = 0, T > 0.

while t < T do

1. (P,M) = AM(P,M, ρ, β) by calling Algorithm 3;

2. ρ = ρ/η, α = 0.99ρ;

3. β = β/η;

4. t = t+ 1.

end while

6 8 10 12 14 16
0

0.5

1

1.5

# of measurements

M
ut

ua
l C

oh
er

en
ce

 

 

DMCM
Random
Elad
Xu
Duarte
Welch bound

(a) n = 60

10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

# of measurements

M
ut

ua
l C

oh
er

en
ce

 

 

DMCM
Random
Elad
Xu
Duarte
Welch bound

(b) n = 120

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

# of measurements

M
ut

ua
l C

oh
er

en
ce

 

 

DMCM
Random
Elad
Xu
Duarte
Welch bound

(c) n = 180

Figure 1: Plots of the means and standard deviations of mutual coherences of M v.s. the number m of

measurements.

It is worth mentioning that the sparse signal recovery can be guaranteed under some

other different settings and conditions. The low mutual coherence property still plays

an important role. For example, a similar recovery bound can be obtained under the

additional assumption that the signs of the non-zero entries of the signal are chosen190

at random [21, 22]. The theory requires incoherence between the sensing and sparsity

bases. The variable density sampling is a technique to recover the signal of highest

sparsity by optimizing the sampling profile [23]. The proposed technique which di-

rectly minimizes the mutual coherence may be also applied in the variable density

sampling to improve the recovery performance.195
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(b) n = 120
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(c) n = 180

Figure 2: Plots of the means and standard deviations of mutual coherences of PD v.s. the number m of

measurements, where D is a standard Gaussian random matrix.

4. Numerical Results

In this section, we conduct several experiments to verify the effectiveness of our

proposed methods by comparing them with previous methods. The experiments consist

of two parts. The first part shows the values of mutual coherence. The second part

shows the signal recovery errors in CS.200

4.1. Comparing the Mutual Coherence

This subsection presents two experiments to show the effectiveness of DMCM and

DMCM-P, respectively. In the first experiment, we show that our DMCM is able to

construct a matrix M ∈ Rm×n with lower mutual coherence than previous methods

do. We compare DMCM with205

• Random: random matrix whose elements are drawn independently from the stan-

dard normal distribution.

• Elad: the algorithm of Elad [9] with D = I.

• Xu: the algorithm of Xu et al. [10] with D = I.

• Duarte: the algorithm of Duarte-Carajalino and Sapiro [12] with D = I.210

• Welch bound: the Welch bound [13] shown in (13).
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Note that the compared algorithms of Elad [9], Xu et al. [10] and Duarte-Carajalino

and Sapiro [12] were designed to find a projection P such that M = PD has low

mutual coherence. They can still be compared with our DMCM by setting D as the

identity matrix I.215

To solve our DMCM model in (18), we run Algorithm 2 for 15 iterations and Al-

gorithm 1 for 1000 iterations. In Algorithm 2, we set ρ0 = 0.5 and η = 1.2. M is

initialized as a Gaussian random matrix. In the method of Elad, we follow [9] to set

t = 0.2 and γ = 0.95. In the method of Xu, we try multiple choices of the convex

combination parameter α and set it as 0.5 which results in the lowest mutual coherence220

in most cases. The method of Duarte do not need special parameters. All the compared

methods have the same random initializations of P (except Duarte, which has a closed

form solution).

The compared methods are tested on three settings with different sizes of M ∈

Rm×n: (1) m = [6 : 2 : 16], n = 60; (2) m = [10 : 5 : 35], n = 120; and (3)225

m = [10 : 10 : 50], n = 180. Note that the constructed matrices may not be the

same for the compared methods with different initializations. So for each choice of

size (m,n), we repeat the experiment for 100 times and record the means and standard

deviations of the mutual coherences of the constructed matrices M. The means and

standard deviations of mutual coherences v.s. the number m of measurements are230

shown in Figure 1. It can be seen that the matrix constructed by our DMCM achieves

much lower mutual coherences than previous methods do. The main reason is that our

DMCM minimizes the mutual coherence of M directly, while the objectives of all the

previous methods are indirect. It can also be seen that the standard deviations of our

method is close to zero, while some other compared methods may not be stable in some235

cases. A possible reason is that the solver of our method has convergence guarantee,

while other methods do not.

For the second experiment in this subsection, we show that for given D ∈ Rd×n our

DMCM-P is able to compute a projection P ∈ Rm×d such that PD ∈ Rm×n has low

mutual coherence. We choose D to be a Gaussian random matrix in this experiment. To240

solve our DMCM-P model in (23), we run Algorithm 4 for 15 iterations and Algorithm

3 for 1000 iterations. In Algorithm 4, we set ρ0 = 0.5, β = 2 and η = 1.2. P is

18



6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

# of measurements

M
ut

ua
l C

oh
er

en
ce

 

 

DMCM−P
Random
Elad
Xu
Duarte
Welch bound

Figure 3: Plots of the means and standard deviations of mutual coherences of PD v.s. the number m of

measurements, where the elements of D are uniformly distributed in [0, 1].

Table 1: Comparison of running time (in seconds) of DMCM-P, Elad, Xu and Duarte on problem (23) under

different settings.

DMCM-P Elad Xu Duarte

m = 10, d = 30, n = 60 181 5 5 0.0033

m = 20, d = 60, n = 120 582 8 8 0.004

m = 30, d = 90, n = 180 838 14 12 0.004

initialized as a Gaussian random matrix.

We compare our DMCM-P with the algorithms of Elad [9], Xu et al. [10] and

Duarte-Carajalino and Sapiro [12] on the mutual coherence of PD. We test on three245

settings: (1)m = [6 : 2 : 16], n = 60, d = 30; (2)m = [10 : 5 : 35], n = 120, d = 60;

and (3) m = [10 : 10 : 50], n = 180, d = 90. Figure 2 shows the mutual coherence of

PD as a function of the number m of measurements. It can be seen that our DMCM-P

achieves the best projection such that PD has the lowest mutual coherences in all the

three settings. So are the standard deviations. Note that our algorithm does not use any250

special property of D. So it is expected to work for D in other distributions as well.

We test our method in the case that the elements of D are uniformly distributed in [0, 1]

and report the results in Figure 3. It can be seen that our method still outperforms other

methods in both mean and standard deviation.
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Figure 4: Distributions of the absolute values of (PD)T (PD).

Furthermore, Figure 4 shows the distribution of the absolute values of inner prod-255

ucts between distinct columns of PD with m = 20, n = 120, and d = 60. It can be

seen that our DMCM-P has the shortest tail, showing that the number of elements in

the Gram matrix that are closer to the ideal Welch bound is larger than the compared

methods. Such a result is consistent with the lowest mutual coherences shown in Figure

2.260

Finally, we report the running time of the algorithms of Elad, Xu, Duarte and our

DMCM-P in Table 1. The settings of the algorithms are the same as those in Figure 2

and the running time is reported based on different choices of m, d and n. It can be

seen that Duarte is the fastest method since it has a closed form solution. Our DMCM-

P is not very efficient since we use the continuation trick in Algorithm 4, which repeats265

Algorithm 3 many times. Note that speeding up the algorithm, although valuable, is

not the main focus of this paper. Actually, for many applications the projection matrix

P can be computed offline. So we leave the speeding-up issue as future work.
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Figure 5: Signal reconstruction errors and support recovery rate v.s. number of measurements, where D is

the Gaussian random matrix.

4.2. Comparing the CS Performance

In this subsection, we apply the optimized projection by our DMCM-P to CS. We270

first generate a T -sparse vector α ∈ Rn, which constitutes a sparse representation

of signal x = Dα, where x ∈ Rd. The locations of nonzeros are chosen randomly

and their values obey a uniform distribution in [−1, 1]. We choose the dictionary D ∈

Rd×n as a Gaussian random matrix, the DCT matrix and the matrix learned by K-SVD,

respectively. Then we apply different projection matrices P learned by our DMCM-P,275

random projection matrix, and the algorithms of Elad [9], Xu et al. [10] and Duarte-

Carajalino and Sapiro [12] to generate the compressed y via y = PDα. At last, we

solve problem (5) by OMP to obtain α̂. We compare the performance of projection

matrices computed by different methods using the relative reconstruction error ‖x −

x∗‖2/‖x∗‖2 and the support recovery rate |support(x) ∩ support(x∗)|/|support(x∗)|,280

where x∗ is the ground truth. A smaller reconstruction error and larger support recovery

rate mean better CS performance.

We conduct two experiments in this subsection. The first one changes the number

m of measurements and the second one changes the sparsity level T . For every value of

the aforementioned parameters we perform 3000 experiments and calculate the average285

relative reconstruction error and support recovery rate.

In the first experiment, we vary m and set n = 60, d = 30, T = 2 when D is the
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Figure 6: Signal reconstruction error and support recovery rate v.s. number of measurements, where D is

the DCT matrix.
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Figure 7: Signal reconstruction error and support recovery rate v.s. number of measurements, where D is

learned by K-SVD.
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Figure 8: Signal reconstruction error and support recovery rate v.s. sparsity, where D is the Gaussian random

matrix.

Gaussian random matrix, n = 60, d = 60, T = 2 when D is the DCT matrix and n =

100, d = 100, T = 4 when D is the matrix learned by K-SVD, respectively. Figure 5,

6 and 7 show the average relative reconstruction error (left) and support recovery rate290

(right) v.s. the number m of measurements (T is fixed). In the last case, we follow [24]

to train a dictionary for sparsely representing patches of size 10×10 extracted from the

image Barbara. This image is of size 512×512 and thus has 253009 possible patches,

considering all overlaps. We extract one tenth of these patches (uniformly spread) to

train on using the K-SVD with 50 iterations. The CS performance improves as m295

increases. Also, as expected, all the optimized projection matrices produce better CS

performance than the random projection does, and our proposed DMCM-P consistently

outperforms the algorithms of Elad, Xu et al. and Duarte-Carajalino and Sapiro.

In the second experiment, we vary the sparsity level T and set m = 18, n = 180

and d = 90 when D is the Gaussian random matrix, m = 15, n = 180 and d = 180300

when D is the DCT matrix and m = 12, n = 100 and d = 100 when D is the matrix

learned by K-SVD. Figure 8, 9 and 10 show the average relative reconstruction error

and support recovery rate as a function of the sparsity level T (m is fixed). The CS per-

formance also improves as T decreases. Also, our DMCM-P consistently outperforms

random projection and other deterministic projection optimization methods. This is305

due to the low mutual coherence of PD thanks to our optimized projection method as
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Figure 9: Signal reconstruction error and support recovery rate v.s. sparsity, where D is the DCT matrix.
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Figure 10: Signal reconstruction error and support recovery rate v.s. sparsity, where D is learned by K-SVD.
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Figure 11: Signal reconstruction error and support recovery rate v.s. measurement in the noisy case, where

D is the Gaussian random matrix.

verified in the previous experiments.

We also test the noisy case. We add Gaussian random noise with 0 mean and 0.01

variance to each element of the observation y and then recover the true signal from this

noisy y. This time we test with D in another different distribution and another choice310

of the ratio n/d. We generate elements of D by a uniform distribution on [0,1]. We

choose m = [6 : 2 : 16], d = 40 and n = 60. Besides the sensing matrices constructed

via optimization, we also compare DMCM-P with the the random binary matrix and

Fourier matrix with random selected rows. Figure 11 shows the performance compari-

son based on the relative reconstruction error and support recovery rate v.s. the number315

of measurements. It can be seen that our method also achieves the best performance

in almost all cases. The improvement of our method over the random sensing matrices

(using Fourier matrix with random selected rows or the random binary matrices) are

significant.

5. Conclusions320

This paper focuses on optimizing the projection matrix in CS for reconstructing

signals which are sparse in some overcomplete dictionary. We develop the first model

which aims to find a projection P by minimizing the mutual coherence of PD directly.

We solve the nonconvex problem by alternating minimization and prove the conver-
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gence. Simulation results show that our method does achieve much lower mutual co-325

herence of PD, and also leads to better CS performance. Considering that mutual

coherence is important in many applications besides CS, we expect that the proposed

construction will be useful in many other applications as well, besides CS.

There is some interesting future work. First, though we give the first solver with

convergence guarantee in Algorithm 1 for (16), the obtained solution is not guaran-330

teed to be globally optimal due to the nonconvexity of the problem. It is interesting

to investigate when the obtained solution is globally optimal. Second, currently the

proposed method is not efficient, and it is valuable to find faster solvers. For example,

we may consider solving (16) and (22) by Alternating Direction Method of Multiplier

(ADMM) after introducing some auxiliary variables, which may be more efficient than335

our current solvers. But proving its convergence for nonconvex problems, (16) and

(22), will be challenging.

Appendix

In this section, we give the proof of Theorem 3.

Definition 2. [25, 26] Let g be a proper and lower semicontinuous function.340

1. For a given x ∈ dom g, the Frechét subdifferential of g at x, written as ∂̂g(x), is

the set of all vectors u ∈ Rn which satisfies

lim inf
y 6=x,y→x

g(y)− g(x)− 〈u,y − x〉
‖y − x‖

≥ 0.

2. The limiting-subdifferential, or simply the subdifferential, of g at x ∈ Rn, written

as ∂g(x), is defined through the following closure process

∂g(x) := {u ∈ Rn : ∃xk → x, g(xk)→ g(x),

uk ∈ ∂̂g(xk)→ u, k →∞}.

Proposition 1. [25, 26] The following results hold:

1. In the nonsmooth context, the Fermat’s rule remains unchanged: If x ∈ Rn is a

local minimizer of g, then 0 ∈ ∂g(x).345
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2. Let (xk,uk) be a sequence such that xk → x, uk → u, g(xk) → g(x) and

uk ∈ ∂g(xk). Then u ∈ ∂g(x).

3. If f is a continuously differentiable function, then ∂(f+g)(x) = ∇f(x)+∂g(x).

Proof of Theorem 3: First, (25) can be rewritten as

Mk+1

= arg min
M
〈∇fρ(Mk),M−Mk〉+

1

2α
‖M−Mk‖2F

+
1

2β
‖M−PkD‖2F + h(M).

By the optimality of Mk+1, we have

h(Mk+1) + 〈∇fρ(Mk),Mk+1 −Mk〉

+
1

2α
‖Mk+1 −Mk‖2F +

1

2β
‖Mk+1 −PkD‖2F

≤h(Mk) +
1

2β
‖Mk −PkD‖2F . (31)

From the Lipschitz continuity of∇fρ(M), we have

F (Mk+1,Pk)

=fρ(Mk+1) +
1

2β
‖Mk+1 −PkD‖2F

≤fρ(Mk) + 〈∇fρ(Mk),Mk+1 −Mk〉 (32)

+
1

2ρ
‖Mk+1 −Mk‖2F +

1

2β
‖Mk+1 −PkD‖2F .

Add (31) and (32), we have

h(Mk+1) + F (Mk+1,Pk)

≤h(Mk) + fρ(Mk)−
(

1

2α
− 1

2ρ

)
‖Mk+1 −Mk‖2F

+
1

2β
‖Mk −PkD‖2F (33)

=h(Mk) + F (Mk,Pk)−
(

1

2α
− 1

2ρ

)
‖Mk+1 −Mk‖2F .
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Note that F (Mk+1,P) = 1
2β ‖Mk+1 − PD‖2F is 1

βσ
2
min(D)-strongly convex, where

σmin(D) denotes the smallest singular value of D and it is positive since D is of full350

rank. Then by Lemma B.5 in [27] and the optimality of Pk+1 to (26), we have

F (Mk+1,Pk+1) ≤ F (Mk+1,Pk)− 1

2β
σ2

min(D) ‖Pk+1 −Pk‖2F . (34)

Combining (33) and (34) leads to

h(Mk+1) + F (Mk+1,Pk+1)

≤h(Mk) + F (Mk,Pk)−
(

1

2α
− 1

2ρ

)
‖Mk+1 −Mk‖2F −

1

2β
σ2

min(D) ‖Pk+1 −Pk‖2F .

(35)

Second, by the optimality of Mk+1, we have

0 ∈∂h(Mk+1) +∇fρ(Mk) +
1

α
(Mk+1 −Mk)

+
1

β
(Mk+1 −PkD). (36)

Thus, there exists Wk+1 ∈ ∇MF (Mk+1,Pk+1) + ∂h(Mk+1), such that

Wk+1 ∈∇fρ(Mk+1) +
1

β
(Mk+1 −Pk+1D) + ∂h(Mk+1)

=∇fρ(Mk) +
1

β
(Mk+1 −PkD) + ∂h(Mk+1) (37)

+ (fρ(Mk+1)− fρ(Mk)) +
1

β
(Pk −Pk+1)D.

Then, combining (36) and (37) leads to

‖Wk+1‖F ≤
∥∥∥∥∇fρ(Mk) +

1

β
(Mk+1 −PkD) + ∂h(Mk+1)

∥∥∥∥
F

+ ‖fρ(Mk+1)− fρ(Mk)‖F +
1

β
‖(Pk −Pk+1)D‖F (38)

≤ 1

α
‖Mk+1 −Mk‖F +

1

ρ
‖Mk+1 −Mk‖F +

1

β
‖D‖2 ‖Pk −Pk+1‖F ,

(39)

where (39) uses the property that ∇fρ(M) is Lipschitz continuous with the Lipschitz

constant 1/ρ. Also, by the optimality of Pk+1, we have

0 = ∇PF (Mk+1,Pk+1) = (Mk+1 −Pk+1D)DT . (40)
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Third, note that F (M,P) is coercive, i.e., F (M,P) is bounded from below and355

F (M,P)→ +∞ when ‖[M,P]‖F → +∞. It can be seen from (35) that F (Mk,Pk)

is bounded. Thus {Mk,Pk} is bounded. Then there exists an accumulation point

(M∗,P∗) and a subsequence {Mkj ,Pkj} such that (Mkj ,Pkj ) → (M∗,P∗) as

j → +∞. Since F (M,P) is continuously differentiable, we have F (Mkj ,Pkj ) →

F (M∗,P∗). As h(Mk) = 0 for all k and the set {M : ‖Mi‖2 = 1, i = 1, · · · , n} is360

closed, we have h(M∗) = 0 and F (Mkj ,Pkj ) + h(Mkj )→ F (M∗,P∗) + h(M∗).

�
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