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Abstract

This paper considers the problem of simultaneously learning the Sensing Matrix and Sparsifying Dictionary (SMSD) on a large
training dataset. To address the formulated joint learning problem, we propose an online algorithm that consists of a closed-form
solution for optimizing the sensing matrix with a fixed sparsifying dictionary and a stochastic method for learning the sparsifying
dictionary on a large dataset when the sensing matrix is given. Benefiting from training on a large dataset, the obtained compressive
sensing (CS) system by the proposed algorithm yields a much better performance in terms of signal recovery accuracy than the
existing ones. The simulation results on natural images demonstrate the effectiveness of the suggested online algorithm compared
with the existing methods.
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1. Introduction

Sparse representation (Sparseland) has led to numerous suc-
cessful applications spanning through many fields, including
image processing, machine learning, pattern recognition, and
compressive sensing (CS) [1] - [6]. This model assumes that
a signal xxx ∈ ℜN can be represented as a linear combination
of a few columns, also known as atoms, taken from a matrix
ΨΨΨ ∈ℜN×L (referred to as a dictionary):

xxx = ΨΨΨθθθ+ eee, (1)

where θθθ ∈ ℜL has few non-zero entries and is the representa-
tion coefficient vector of xxx over the dictionary ΨΨΨ and eee ∈ℜN is
known as the sparse representation error (SRE) which is not nil
in general case. The signal xxx is called K-sparse in ΨΨΨ if ‖θθθ‖0≤K
where ‖θθθ‖0 is used to count the number of non-zeros in θθθ.

The choice of dictionary ΨΨΨ depends on specific applications
and can be a predefined one, e.g., discrete cosine transform
(DCT), wavelet transform and a multiband modulated discrete
prolate spheroidal sequences (DPSS’s) dictionary [7] etc. It is
also beneficial and recently widely-utilized to adaptively learn
a dictionary ΨΨΨ, called dictionary learning, such that a set of
P training signals {xxxk,k = 1,2, · · · ,P} is sparsely represented
by optimizing a ΨΨΨ. There exist many efficient algorithms to
learn a dictionary [3] and the most two popular methods among
them are the method of optimal directions (MOD) [4] and the
K-singular value decomposition (KSVD) algorithm [5]. In par-
ticular, we prefer to use an over-complete dictionary [5], N < L.

CS is an emerging framework that enables to exactly recover
the signal xxx, in which it is sparse or sparsely represented by
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a dictionary ΨΨΨ, from a number of linear measurements that
is considerably lower than the size of samples required by the
Shannon-Nyquist theorem [6]. Generally speaking, researchers
tend to utilize a random matrix ΦΦΦ∈ℜM×N as the sensing matrix
(a.k.a projection matrix) to obtain the linear measurements

yyy = ΦΦΦxxx = ΦΦΦΨΨΨθθθ+ΦΦΦeee, (2)

where M�N. Abundant efforts have been devoted to optimize
the sensing matrix with a predefined dictionary resulting in a
CS system that outperforms the standard one (random matrix)
in various cases [8] - [15].

Recently, researchers realize simultaneously optimizing
sensing matrix and dictionary for the CS system yields a higher
signal reconstruction accuracy than the classical CS systems
which only optimize sensing matrix with a fixed dictionary
[14, 15]. The main idea underlying in [14, 15] is to consider
the influence of SRE in learning the dictionary (see Section 3
for the formal problem). Alternating minimization methods are
introduced to jointly design the sensing matrix ΦΦΦ and the dic-
tionary ΨΨΨ in [14, 15]. Compared to [14], closed-form solutions
for updating the sensing matrix and the dictionary are derived in
[15] which hence obtains a better performance in terms of sig-
nal recovery accuracy. The disadvantage of the method in [15]
is that it involves many singular value decompositions (SVDs)
making their algorithm inefficient in practice.

Although the method for jointly optimizing the sensing ma-
trix and the dictionary in [14, 15] works well for a small-scale
training dataset (e.g., N = 64 and P = 104), it becomes ineffi-
cient (and even impractical) if the dimension of the dictionary is
high or the size of training dataset is very large (say with more
than 106 patches in natural images situation) or for the case in-
volving dynamic data like video stream. It is easy to see that the
methods in [14, 15] require heavy memory and computations to
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address such a large scale optimization problem because they
have to sweep all of the training data in each dictionary updat-
ing procedure. Inspired by [18, 19], an online algorithm with
less complexity and memory is introduced to address the same
learning problem shown in [14, 15] but on a large dataset.1 We
use a toy example to briefly explain the benefit of training on
a large-scale dataset. Assume that the dimension of the dic-
tionary is 64× 100 and the number of non-zeros in the sparse
vector θθθ is 4. Then the number of subspaces in this dictionary
attains

(100
4

)
≈ 3.9× 106. Thus, we see such a dictionary pro-

vides a rich number of subspaces which motives us to train the
dictionary on a large-scale dataset to explore the dictionary to
represent the signal of interests better. One can still imagine
that along with the increase of the dimension of the dictionary,
the number of subspaces will become much richer and we can
expect such a dictionary may yield many interesting properties.
Indeed, the benefit of learning a dictionary on a large dataset
or a high dimension (without training the sensing matrix) has
been experimentally demonstrated in [25, 26, 29]. Moreover,
the simulations shown in this paper also indicate the merit of
learning the CS system (both the dictionary and the sensing ma-
trix) on a large-scale dataset.

Note that, in each step, the sensing matrix is either up-
dated with an iterative algorithm in [14] or an alternating-
minimization method2 in [15], both requiring many times of
SVDs. To overcome this issue, we suggest an efficient method
to optimize the sensing matrix which is robust to the SRE. The
proposed method is inspired by the recent results in [10, 11, 13]
for robust sensing matrices, but it differs from these works in
which there is no need to tune the trade-off parameter and hence
it is more suitable for online learning and dynamic data. The ex-
periments on natural images demonstrate that jointly optimiz-
ing the Sensing Matrix and Sparsifying Dictionary (SMSD) on
a large dataset has much better performance in terms of signal
recovery accuracy than with the ones shown in [14, 15]. Notice
that in this paper we want to design a CS system for the appli-
cations where the SRE exists in which is the case for the natural
images.

The rest of this paper is organized as follows. In Section 2, a
novel model is proposed to design the sensing matrix to reduce
the coherence3 between each two columns in ΦΦΦΨΨΨ and over-
come the influence of SRE. Moreover, a closed-form solution is
derived to obtain the optimized sensing matrix which is param-
eter free and then more suitable for the following joint learn-
ing SMSD method. A joint optimization algorithm for learning
SMSD on a large dataset is suggested in Section 3. For learn-
ing the sparsifying dictionary on a large dataset efficiently, an
online method is introduced to consider such a large training
data.4 Some experiments on natural images are carried out in

1In this paper, large or large-scale dataset means this dataset contains a large
amount of training data, i.e., P is very large.

2Though each step has a closed-form solution, it requires one SVD in each
iteration.

3The coherence between two vectors aaa,bbb ∈ℜM is defined as aaaT bbb
‖aaa‖2‖bbb‖2

.
4Actually, the training data is only involved in (13). So the developed online

algorithm is only for updating dictionary. For brevity, we call the whole joint
algorithm as online SMSD.

Section 4 to demonstrate the effectiveness of the proposed algo-
rithm and the advantage of training on a large dataset comparing
with other methods. Conclusion and future work are given in
Section 5.

2. An Efficient Method for Robust Sensing Matrix Design

In this section, we present an efficient method to design a
robust5 sensing matrix. To begin, we note that one of the ma-
jor purposes in optimizing the sensing matrix is to reduce the
coherence between each two columns of the equivalent dictio-
nary ΦΦΦΨΨΨ. This leads to the work [8, 9] which demonstrates that
the optimized sensing matrix such that the equivalent dictionary
with small mutual coherence yields much better performance
than the one with a random sensing matrix for the exactly sparse
signals (i.e., eee = 000 for the signal model (1)). See also [20, 21]
for directly minimizing the mutual coherence of the equivalent
dictionary. However, it was recently realized [10, 11, 13] that
such a sensing matrix is not robust to SRE and thus the cor-
responding CS system results in poor performance in practice,
like sampling the natural images, where the SRE exists even
when we represent the images with a well designed dictionary.
Alternatively, the average mutual coherence (i.e., the coherence
on a least square metric instead of the infinity norm) rather than
the exact mutual coherence is suggested in [10, 11] for design-
ing an optimal robust sensing matrix. Specifically, a robust
sensing matrix is attained by solving [10, 11]:

min
ΦΦΦ

‖IIIL−ΨΨΨ
T

ΦΦΦ
T

ΦΦΦΨΨΨ‖2
F +λ‖ΦΦΦEEE‖2

F (3)

where ‖ · ‖F denotes the Frobenius norm and IIIL represents an
identity matrix with dimension L.6 According to the recent re-
sult shown in [13], it suggests replacing the penalty ‖ΦΦΦEEE‖2

F by
‖ΦΦΦ‖2

F (which is independent of the training data) since ‖ΦΦΦ‖2
F

has the same effectiveness as ‖ΦΦΦEEE‖2
F when the SRE is mod-

elled as the Gaussian noise and P→∞. Thus, the robust sensing
matrix is developed via addressing [13]:

min
ΦΦΦ

f (ΦΦΦ) = ‖IIIL−ΨΨΨ
T

ΦΦΦ
T

ΦΦΦΨΨΨ‖2
F +λ‖ΦΦΦ‖2

F (4)

Numerical experiments with natural images show that the op-
timized sensing matrix through solving (4) with a well-chosen
λ yields state-of-the-art performance in CS-based image com-
pression [13]. However, we note that it is nontrivial to choose
an optimal λ for (4) since the two terms ‖IIIL−ΨΨΨ

T
ΦΦΦ

T
ΦΦΦΨΨΨ‖2

F
and ‖ΦΦΦ‖2

F have different physical meanings: the formal repre-
sents the average mutual coherence of the equivalent dictionary
ΦΦΦΨΨΨ, while the later is the energy of the sensing matrix ΦΦΦ. For

5Following the terminology used in [10, 13], a robust sensing matrix refers
to a sensing matrix who yields robust performance for signals whether exist
SRE, eee , 0.

6MATLAB notations are adopted in this letter. In this connection, for a
vector, vvv(k) denotes the k-th component of vvv. For a matrix, QQQ(i, j) means the
(i, j)-th element of matrix QQQ, while QQQ(k, :) and QQQ(:,k) indicate the k-th row and
column vector of QQQ, respectively. EEE(:, i) = eeei, i = 1, · · · ,P, and λ is a trade-
off parameter that balance the coherence of the equivalent dictionary and the
robustness of the sensing matrix to the SRE.
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off-line applications when the dictionary is fixed, it is suggested
to choose a λ by searching a given range and looking at the per-
formance of the resulted sensing matrices [10, 11, 13] on the
testing dataset. However, this strategy becomes very inefficient
for online applications when the dictionary ΨΨΨ is evolving which
belongs to the case in this paper. To avoid tuning the parame-
ter λ, we suggest designing the robust sensing matrix with the
following two steps: find a set of solutions which minimize
‖IIIL −ΨΨΨ

T
ΦΦΦ

T
ΦΦΦΨΨΨ‖2

F (i.e., solve (4) without the term ‖ΦΦΦ‖2
F ),

and then locate a ΦΦΦ among these solutions that has smallest en-
ergy. Thus, we consider the following optimization problem to
design the sensing matrix which is slightly different from (4):

min
ΦΦΦ∈S

‖ΦΦΦ‖2
F

S = arg min
Φ̃ΦΦ∈ℜM×N

g(Φ̃ΦΦ) = ‖IIIL−ΨΨΨ
T

Φ̃ΦΦ
T

Φ̃ΦΦΨΨΨ‖2
F

(5)

Let UM,N̄ :=
{

UUUM,N̄ : UUUT
M,N̄UUUM,N̄ = IIIN̄

}
denote the set of M×

N̄ orthonormal matrices for N̄ ≤M. When N̄ = M, to simplify
the notation, we use UM to denote the set of M×M orthonormal
matrices. The following result establishes a set of closed-form
solutions for (5):

Theorem 1. Let ΨΨΨ = UUUΨΨΨΛΛΛVVV T
ΨΨΨ

be an SVD of ΨΨΨ, where
Rank(ΨΨΨ) = N̄ ≤ N, ΛΛΛ = diag(λ1,λ2, · · · ,λN̄) > 0 with λ1 ≥
λ2 ≥ ·· · ≥ λN̄ , and UUUΨΨΨ and VVV ΨΨΨ are N× N̄ and L× N̄ orthonor-
mal matrices, respectively. When N̄ ≥M, a set of optimal solu-
tions for (5) is specified by

W1 :=
{

ΦΦΦ : ΦΦΦ =
[
UUUM 000

]
ΛΛΛ
−1UUUT

ΨΨΨ
,UUUM ∈UM

}
(6)

On the other hand, when N̄ < M, a set of optimal solutions for
(5) is specified by

W2 :=
{

ΦΦΦ : ΦΦΦ =UUUM,N̄ΛΛΛ
−1UUUT

ΨΨΨ
,UUUM,N̄ ∈UM×N̄

}
(7)

Proof. We first rewrite g(ΦΦΦ) as

g(ΦΦΦ) = ‖IIIL−VVV ΨΨΨΛΛΛUUUT
ΨΨΨ

ΦΦΦ
T

ΦΦΦUUUΨΨΨΛΛΛVVV T
ΨΨΨ
‖2

F

= ‖IIIN̄−ΛΛΛUUUT
ΨΨΨ

ΦΦΦ
T

ΦΦΦUUUΨΨΨΛΛΛ‖2
F +L− N̄

Thus, minimizing g(ΦΦΦ) is equivalent to

min
ΦΦΦ

h(ΦΦΦ) = ‖IIIN̄−ΛΛΛUUUT
ΨΨΨ

ΦΦΦ
T

ΦΦΦUUUΨΨΨΛΛΛ‖2
F . (8)

We proceed by considering the following two cases.
case I: N̄ ≥M. Noting that rank(ΛΛΛUUUT

ΨΨΨ
ΦΦΦ

T
ΦΦΦUUUΨΨΨΛΛΛ) = M ≤ N̄

and utilizing the Eckart-Young-Mirsky theorem [22], we have
that h(ΦΦΦ)≥ N̄−M and it achieves its minimum when7

ΛΛΛUUUT
ΨΨΨ

ΦΦΦ
T

ΦΦΦUUUΨΨΨΛΛΛ =UUU N̄,MUUUT
N̄,M,

where UUU N̄,M is an arbitrary N̄×M orthonormal matrix. The set
of ΦΦΦ that satisfies the above equation is given by

ΦΦΦ ∈ S =
{

UUUT
N̄,MΛΛΛ

−1UUUT
ΨΨΨ

: UUUT
N̄,MUUU N̄,M = IIIM

}
. (9)

7One can check that ‖IIIN̄ −UUU N̄,MUUUT
N̄,M‖

2
F = N̄−Tr(UUU N̄,MUUUT

N̄,M) = N̄−M.

With this, we turn to find ΦΦΦ such that it has the smallest ‖ΦΦΦ‖2
F .

To that end, we rewrite

‖ΦΦΦ‖2
F = Tr

(
ΦΦΦ

T
ΦΦΦ

)
= Tr

(
UUU N̄,MUUUT

N̄,MΛΛΛ
−2
)
=

N̄

∑
i=1

αi

λ2
i

where αi is the i-th diagonal of UUU N̄,MUUUT
N̄,M . It is clear that 0≤

αi ≤ 1 and ∑
N̄
i=1 αi = M since UUU N̄,M is an N̄×M orthonormal

matrix. Therefore, we have ∑
N̄
i=1

αi
λ2

i
≥ ∑

M
i=1

1
λ2

i
and it achieves

the minimum value when α1 = · · ·= αM = 1 and αM+1 = · · ·=

αN̄ = 0. The last condition implies that UUU N̄,M =

[
UUUM

000

]
with

UUUM is an arbitrary M×M orthonormal matrix.
case II: N̄ < M. We first note that h(ΦΦΦ) ≥ 0 and it achieves

its minimum when

ΦΦΦ ∈ S =
{

UUUM,N̄ΛΛΛ
−1UUUT

ΨΨΨ
: UUUT

M,N̄UUU N̄,M = IIIN̄

}
.

where UUUM,N̄ is an arbitrary M×N̄ orthonormal matrix. For such
ΦΦΦ, we have

‖ΦΦΦ‖2
F = Tr

(
ΦΦΦ

T
ΦΦΦ

)
= Tr

(
ΛΛΛ
−2
)
=

N̄

∑
i=1

1
λ2

i

which implies that each ΦΦΦ has the same energy.

We remark that [9, Theorem 2] also gives the set of optimal
solutions that minimizes g(ΦΦΦ) for the case Rank(ΨΨΨ) = N̄ ≥
M, i.e., S =

{[
UUUM 000

]
ΛΛΛ
−1UUUT

ΨΨΨ
,UUUM ∈UM

}
. By noting that[

UUUT
M

000

]
∈UN̄,M , it is clear that S = S where S is given in (9).

When Rank(ΨΨΨ) = N̄ ≥ M (which is true for most of appli-
cations), (6) gives a set of optimal solutions for (5) and implies
that there exists some degrees of freedom to choosing UUUM . The
following result investigates the performance of the sensing ma-
trices with different UUUM .

Lemma 1. Compressive sensing systems with the same dictio-
nary ΨΨΨ and different ΦΦΦ ∈W1 (which is defined in (6)) have the
same performance.

Proof. Suppose we have two compressive sensing systems
with the same dictionary ΨΨΨ and the sensing matrices ΦΦΦ =[
UUUM 000

]
ΛΛΛ
−1UUUT

ΨΨΨ
and ΦΦΦ =

[
UUUM 000

]
ΛΛΛ
−1UUUT

ΨΨΨ
, respectively,

where UUUM,UUUM ∈ UM . For any xxx ∈ ℜN , the two CS systems
obtain the measurements as yyy = ΦΦΦxxx, yyy = ΦΦΦxxx and respectively
attempt to recover xxx via

min
θ
‖yyy−ΦΦΦΨΨΨθθθ‖2, s.t. ‖θθθ‖0 ≤ K

and
min

θ
‖yyy−ΦΦΦΨΨΨθθθ‖2, s.t. ‖θθθ‖0 ≤ K

The proof is completed by noting that the above two equations
have the same solution since

‖yyy−ΦΦΦΨΨΨθθθ‖2 = ‖UUUMUUUT
M (yyy−ΦΦΦΨΨΨθθθ)‖2 = ‖yyy−ΦΦΦΨΨΨθθθ‖2

3



Lemma 1 implies that we can choose a ΦΦΦ in (6) with UUUM
as an identity matrix and it has the same performance as other
ΦΦΦ ∈W1. Moreover, by choosing an identity matrix for UUUM ,
we can save computations in learning the dictionary and the
solution for (5) becomes

ΦΦΦ = φ(ΨΨΨ), ΛΛΛ
−1
M UUUΨΨΨ (:,1 : M)T (10)

where ΛΛΛM = ΛΛΛ(1 : M,1 : M). Clearly, ΛΛΛM is a diagonal matrix
and the calculation of its inverse is cheap. In effect, one time
SVD of the dictionary ΨΨΨ dominates the main complexity in the
sensing matrix updating procedure.8 Compared with the meth-
ods shown in [14, 15] which need to perform the eigenvalue
decomposition or SVD many times, our proposed method al-
ready saves significant computations.

We end this section by comparing (10) with gradient descent
solving (4) in terms of the computational complexity, though
we note that our main purpose to use (10) is to avoid tuning the
parameter λ in (4). The gradient of f (ΦΦΦ) is given as follows

∇ΦΦΦ f (ΦΦΦ) = 2λΦΦΦ−4ΦΦΦΨΨΨΨΨΨ
T +4ΦΦΦΨΨΨΨΨΨ

T
ΦΦΦ

T
ΦΦΦΨΨΨΨΨΨ

T .

Suppose ΨΨΨΨΨΨ
T is precomputed and then evaluating the gradient

∇ΦΦΦ f (ΦΦΦ) requires O(MN2) computations. Thus, the gradient
descent has at least O(MN2) computational complexity, though
we are not ensured9 how fast the gradient descent converges. As
indicated by (9), our closed-form solution only needs to com-
pute the first M eigenvectors and corresponding eigenvalues of
ΨΨΨΨΨΨ

T , which has computational complexity of O(MN2). We
also note that in the dictionary updating procedure (see (18) in
Section 3), it is required to compute (IIIN + 1

γ
ΦΦΦ

T
ΦΦΦ)−1, which

can be directly obtained through (10) (the SVD form of ΨΨΨ). If
we utilize the gradient descent method to update ΦΦΦ, then we still
need to compute such an inverse when updating the dictionary
and this can be saved if we utilize (10).

3. Online Learning SMSD Simultaneously

We begin this section by considering the problem of jointly
optimizing the SMSD on a very large training dataset first.
Moreover, the corresponding joint optimization problem is
solved via the alternating-minimization based approach. In or-
der to reduce the complexity of learning a dictionary on such a
large training data, an online algorithm with the consideration
of the influence of the projected SRE, i.e., ‖ΦΦΦeee‖2, is developed.

3.1. Online Joint SMSD Optimization
Given a set of P training signals XXX(:,k) = xxxk, k = 1,2, · · · ,P,

our purpose here is to jointly design the SMSD. To this end,

8In effect, we only needs the previous largest M singular values and the
corresponding left orthogonal matrices. So the computation can be reduced
further by utilizing power method.

9Though (4) is nonconvex, the recent work on low-rank optimization [23]
indicates gradient descent can converge to the global solution for a set of low-
rank optimizations. The convergence is also experimentally verified for (4) in
[13], though there is no theoretical guarantee about the convergence rate (i.e.,
how fast it converges to the global solution).

a proper framework is required. Classical dictionary learning
attempts to minimize the following sparse representation error
(SRE):

min
ΨΨΨ∈C ,ΘΘΘ

‖XXX−ΨΨΨΘΘΘ‖2
F , s.t. ‖θθθk‖0 ≤ K, ∀k (11)

where ΘΘΘ(:,k) = θθθk, ∀k contains the sparse coefficient vectors
and C is a constraint set to avoid trivial solutions.

Note that in CS, we obtain the linear measurements yyy as in
(2) and then recover the signal from yyy by first recovering the
sparse coefficients θθθ and then obtain xxx via ΨΨΨθθθ. Therefore, a
smaller ΦΦΦeee is also preferred. This implies that besides reducing
the SRE ‖XXX−ΨΨΨΘΘΘ‖2

F , giving a sensing matrix ΦΦΦ, the dictionary
is also expected to reduce the projected SRE ‖ΦΦΦ(XXX −ΨΨΨΘΘΘ)‖2

F
[14]-[17]. Now the sensing matrix and the sparsifying dictio-
nary are jointly optimized by [14, 15]

min
ΨΨΨ∈C ,ΘΘΘ,ΦΦΦ

γ‖XXX−ΨΨΨΘΘΘ‖2
F +‖ΦΦΦXXX−ΦΦΦΨΨΨΘΘΘ‖2

F

s.t. ΦΦΦ = φ(ΨΨΨ),‖θθθk‖0 ≤ K, ∀k
(12)

where φ(ΨΨΨ) is given in (10) and γ ∈ [0,1] is a trade-off param-
eter to balance the SRE and the projected SRE. The value of
γ can be determined through grid search to receive the highest
signal recovery accuracy on the testing dataset.
Remark 3.1:
• We first note that the projected SRE ‖ΦΦΦ(XXX −ΨΨΨΘΘΘ)‖2

F also
involves the sensing matrix ΦΦΦ and hence this term should
also be considered in designing the sensing matrix. As we
explained in Section 2, the sensing matrix φ(ΨΨΨ) given in
(10) already incorporates the projected SRE. This suggests
the advantages of our proposed method for designing the
sensing matrix compared with the ones utilized in [14, 15]
where the projected SRE is not considered.
• Compared with a separate approach that (usually) first

learns the dictionary by (11) and then designs the sens-
ing matrix with the learned dictionary, jointly learning the
SMSD via (12) is expected to yield a better CS system as
the projected SRE is also minimized sequentially. We re-
fer [14, 15] for more discussions regarding the advantages
of this joint approach.

Similar to [14, 15], we utilize the alternating-minimization
based method for solving the above joint optimization problem
(12). The main idea is to alternatively update the sensing matrix
(when the dictionary and sparse coefficients are fixed) by (10)
which is cheap and update the dictionary and the sparse coef-
ficients by minimizing the objective function in (12) when the
sensing matrix is fixed, i.e.,

min
ΨΨΨ∈C ,ΘΘΘ

σ(ΨΨΨ,ΘΘΘ), γ‖XXX−ΨΨΨΘΘΘ‖2
F +‖YYY −ΦΦΦΨΨΨΘΘΘ‖2

F

s.t. ‖θθθk‖0 ≤ K, ∀k
(13)

where YYY = ΦΦΦXXX . As we suggest utilizing a large training dataset
to learn the dictionary, an online algorithm is proposed in next
subsection to fit such a large-scale case. We depict the de-
tailed steps for solving (12) in Algorithm 1. Compared with the
methods in [14, 15], Algorithm 1 is more suitable for working
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on a large training dataset as it utilizes (10) for optimizing the
sensing matrix and an online method (in next subsection) which
is independent to the size of training dataset for learning the
dictionary. As we stated before, the disadvantage of the meth-
ods in [14, 15] for solving (13) is that they have to sweep all
of the training data in each iteration which requires extremely
high computations and memory if the training dataset becomes
large. Also, the sensing matrix updated in [14, 15] is an iter-
ative algorithm that requires computing many SVDs which is
not suitable for online case. The simulation results in the next
section illustrate the effectiveness of Algorithm 1.

Algorithm 1 Online Joint Optimization of SMSD
Initialization:

Initial dictionary ΨΨΨ0, number of iterations Itersendic.
Output:

The sensing matrix ΦΦΦ and the sparsifying dictionary ΨΨΨ.
1: for i = 1 to Itersendic do
2: Update the sensing matrix ΦΦΦi with fixed ΨΨΨ = ΨΨΨi−1 by

φ(ΨΨΨ) (which is specified in (10)) and compute the two
matrices ΞΞΞ1 and ΞΞΞ2

3: Solve (13) through (16) by Algorithm 2 to update the
dictionary ΨΨΨ with fixed ΦΦΦ = ΦΦΦi

4: end for
5: return ΦΦΦ and ΨΨΨ

3.2. Online Dictionary Learning with Projected SRE
In this subsection, we suggest an online algorithm (Algo-

rithm 2) to overcome the disadvantages of the methods in
[14, 15] for solving (13) when the dataset is large. The on-
line method for solving (13) contains two main stages: firstly,
the sparse coefficient vectors in ΘΘΘ are computed with a fixed ΨΨΨ

and then the sparsifying dictionary ΨΨΨ is updated with a fixed
ΘΘΘ.10 The detailed steps of the online algorithm are summarized
in Algorithm 2.

For simplicity, similar to [14, 15], Algorithm 2 utilizes Or-
thogonal Matching Pursuit (OMP) for addressing the sparse
coding problem (14) to update ΘΘΘ. In the dictionary updating
procedure, we are going to solve the following surrogate func-
tion in t-th iteration instead of considering (13) directly:

min
ΨΨΨ

σt(ΨΨΨ),
1
2

t

∑
i=1

(
γ‖XXX i−ΨΨΨΘΘΘi‖2

F +‖YYY i−ΦΦΦΨΨΨΘΘΘi‖2
F
)

(15)

Clearly, (15) is equivalent to the following problem:

min
ΨΨΨ

σ̂t(ΨΨΨ),
1
2

Tr
(

ΨΨΨ
T

ΩΩΩΨΨΨAAAt

)
−Tr

(
ΨΨΨ

T
ΩΩΩBBBt

)
(16)

where AAAt = ∑
t
i=1 ΘΘΘiΘΘΘ

T
i , BBBt = ∑

t
i=1 XXX iΘΘΘ

T
i , ΩΩΩ = IIIN + 1

γ
ΦΦΦ

T
ΦΦΦ

and Tr(·) denotes the trace operator. Here, we intend to utilize
the block-coordinate descent algorithm to update the dictionary

10Note that only randomly part of the training data is sampled during each
iteration in our case which is different from the methods shown in [14, 15].

Algorithm 2 Online Dictionary Learning with Projected SRE
Initialization:

Training data XXX ∈ℜN×P, trade-off parameter γ, initial sens-
ing matrix ΦΦΦ and dictionary ΨΨΨ0, batch size η≥ 1, the spar-
sity level K, the power parameter ρ, number of iterations
Iterdic.

Output:
Dictionary ΨΨΨ.

1: AAA0← 000, BBB0← 000, i← 1
2: for t = 1 to Iterdic do
3: if i+η≤ P then
4: XXX t ← XXX(:, i : i+η−1), YYY t ←ΦΦΦXXX t

i← i+η

5: else
6: Shuffle XXX , i← 1
7: XXX t ← XXX(:, i : i+η−1), YYY t ←ΦΦΦXXX t

i← i+η

8: end if
9: Sparse coding

ΘΘΘt = argmin
Θ̃ΘΘt

∥∥∥∥[√γXXX t
YYY t

]
−
[√

γ ΨΨΨt−1
ΦΦΦΨΨΨt−1

]
Θ̃ΘΘt

∥∥∥∥2

F
s.t. ‖Θ̃ΘΘt(:,k)‖0 ≤ K,∀k

(14)

10: AAAt ← (1− 1
t )

ρAAAt−1 +
1
η

ΘΘΘtΘΘΘ
T
t

11: BBBt ← (1− 1
t )

ρBBBt−1 +
1
η

XXX tΘΘΘ
T
t

12: Compute ΨΨΨt using Algorithm 3 with ΨΨΨt−1 as the initial
value, so that

ΨΨΨt = arg min
ΨΨΨ∈C

σ̂t(ΨΨΨ)

13: end for
14: return ΨΨΨIterdic (learned dictionary)

column by column.11 Specially, the gradient of (16) with re-
spect to j-th column of ΨΨΨ is

∂σ̂t(ΨΨΨ)

∂ψψψ j
= ΨΨΨaaa j−bbb j +

1
γ

ΦΦΦ
T

ΦΦΦΨΨΨaaa j−
1
γ

ΦΦΦ
T

ΦΦΦbbb j (17)

where ψψψ j, aaa j and bbb j are the j-th column of the matrices ΨΨΨ, AAAt
and BBBt , respectively. Forcing (17) to be zero, the j-th column of
ΨΨΨ should be updated as in (19) while keeping the others fixed.
The matrices ΞΞΞ1 and ΞΞΞ2 are equivalent to ΩΩΩ

−1, and ΩΩΩ
−1

ΦΦΦ
T

ΦΦΦ,
respectively. Due to the special structure of ΦΦΦ shown in (10),

11Here we choose block-coordinate descent because 1) it is parameter-free
and does not require tuning any learning rate which is required by stochsatic
gradient descent; and 2) there is no need to calculate the inversion of some
matrices and only some simple algebra operations are involved.
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the matrices ΞΞΞ1 and ΞΞΞ2 can be evaluated simply by:

ΞΞΞ1 = UUUΨΨΨ

[(
γ−1ΛΛΛ

−2
M + IIIM

)−1
000

000 IIIN−M

]
UUUT

ΨΨΨ

ΞΞΞ2 = UUUΨΨΨ

[(
γ−1IIIM +ΛΛΛ

2
M

)−1
000

000 000

]
UUUT

ΨΨΨ

(18)

Although we still need to compute the inverse of matrices in
(18), the computational burden becomes cheap here because
the related matrices are diagonal matrices. The detailed steps of
updating the dictionary are proposed in Algorithm 3. Each col-
umn of the dictionary is then normalized to have a unit `2 norm
to avoid the trivial solution. Following, we suggest several re-
marks which is useful in practice to improve the performance
of Algorithm 2.
Remark 3.2:
• When the training dataset has finite size (though it maybe

very large), we suggest simulating the random sampling of
the data by cycling over a randomly permuted dataset, i.e.,
Steps 3 to 8 shown in Algorithm 2.
• As introduced before, we sample one example from the

training dataset instead of swapping all of the data during
each iteration. A typical strategy which can be used to ac-
celerate the algorithm is to sample a relatively large exam-
ples instead of only one example (η > 1). This belongs to
a classical heuristic strategy in stochastic gradient descent
method [24] called mini-batch which is also useful in our
case. Another useful strategy to accelerate the algorithm
is to add the history into AAAt and BBBt as we already shown
the formulation of AAAt and BBBt through the accumulation of
ΘΘΘt and XXX t . Meantime, we can imagine that the dictionary
will approach to a stationary point after necessary itera-
tions.12 So the latest ΘΘΘt is more important than the old
one. According to such an observation, a forgetting factor
is added in AAAt and BBBt to deemphasize the older information
in AAAt and BBBt because we want the latest one to dominate
the information in AAAt and BBBt . To reach such a purpose, we
set the forgetting factor to be (1− 1

t )
ρ in updating AAAt and

BBBt . The detailed formulation can be found in Steps 10 and
11 in Algorithm 2. Typically, ρ is set to be larger than 1.
• In practical situation, the dictionary learning technique

will lead to a dictionary whose atoms are never (or very
seldom) used in sparse coding procedure, which happens
typically with a not well designed initialization. If we en-
counter such a phenomenon, one training example is ran-
domly sampled to replace such an atom in this paper.

3.3. Convergence Analysis

Although the logic in our algorithm (Algorithm 1) is rela-
tively simple, it is nontrivial to prove the convergence of Al-
gorithm 3 because of its stochastic nature, the non-convexity
and two different objective functions ((5) and (13)). In what

12Following, we will see that such an observation is compatible with our
convergence analysis.

Algorithm 3 Dictionary Update
Initialization:

AAAt−1 = [aaa1, · · · ,aaaL] , BBBt−1 = [bbb1, · · · ,bbbL], ΞΞΞ1, ΞΞΞ2,
ΨΨΨt−1 = [ψψψ1, · · · ,ψψψL].

Output:
Dictionary ΨΨΨl .

1: repeat
2: for j = 1 to L do
3: Update the j-th column to optimize (16):

uuu j ← ΞΞΞ1

[
bbb j−ΨΨΨt−1aaa j
AAAt−1( j, j) +ψψψ j

]
+

ΞΞΞ2

[
bbb j

AAAt−1( j, j)γ +
1
γ
ψψψ j−

ΨΨΨt−1aaa j
AAAt−1( j, j)

]
ΨΨΨt−1(:, j) ← uuu j

‖uuu j‖2
(19)

4: end for
5: until
6: return ΨΨΨt−1 (updated dictionary)

follows, we provide the convergence analysis for each step in
Algorithm 3. To that end, notice that Algorithm 3 contains
two parts: optimizing the sensing matrix and learning the spar-
sifying dictionary to decrease the coherence of ΦΦΦΨΨΨ and to min-
imize the sparse representation error, respectively. Separately,
we claim both of these two steps are convergent.13 For the sens-
ing matrix updating procedure, we attain the minimum with one
step because of the closed-form solution. Following, we need
to investigate whether the updating procedure in dictionary is
also convergent. In fact, such a convergence is hold by the fol-
lowing assumptions and propositions which are originally from
[18, 19].
Assumptions:
(1). The data admits a distribution with compact support K.
(2). The quadratic surrogate functions σ̂t (defined in (16)) are

strictly convex with lower-bounded Hessians. Assume that
the matrix AAAt is positive definite. In fact, this hypothesis
is in practice verified experimentally after a few iterations
of the algorithm when the initial dictionary is reasonable.
Specially, all of atoms will be chosen at least once in the
sparse coding procedure during the whole iterations. The
Hessian matrix of σ̂t is ΩΩΩ⊗ 2AAAt where ⊗ represents the
kronecker product. Clearly, the eigenvalues of ΩΩΩ⊗2AAAt is
the product of ΩΩΩ and AAAt ’s eigenvalues. This indicates that
the Hessian matrix of σ̂t is positive definite because ΩΩΩ is a
positive definite matrix which results in the fact that σ̂t is
a strictly convex function.

(3). A particular sufficient condition for the uniqueness of the
sparse coding solution is satisfied. Considering our sparse
coding mission (14), we see it exactly shares the same
structure as in [18, 19]. So this assumption is also satis-
fied in our case.

13The simulation result shown in the next section indicatesAlgorithm 3 is
convergent. However, we left the whole proof for future work.
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Proposition 1. [19, Propostion 2] Assume the assumptions (1)
to (3) are hold, then we have

1. σ̂t(ΨΨΨt) convergences almost surely;
2. σ(ΨΨΨt)− σ̂t(ΨΨΨt) converges almost surely to 0;
3. σ(ΨΨΨt) converges almost surely.

Proposition 2. [19, Propostion 3] Under assumptions (1) to
(3), the distance between ΨΨΨt and the set of stationary points of
the dictionary learning problem converges almost surely to 0
when t tends to infinity.

Obviously, these assumptions are also hold in our case. Con-
clude that the dictionary updating procedure in our case is also
convergent. This verifies what we argue at the second term
in Remarks 1 that the dictionary will approach to a stationary
point after enough iterations. Though we have not rigorously
proved the convergence of Algorithm 1, the convergence of
the two parts in Algorithm 1 indicates that the proposed algo-
rithm at least is stable because both of these two steps (updating
the sensing matrix and the dictionary) are convergent and de-
crease the value of the corresponding objective functions. The
experiment in the following section also demonstrates such a
statement. We note that such convergence is not discussed in
[14, 15], where the sensing matrix is updated with an iterative
algorithm rather than as here with a closed-form solution. The
only convergence analysis we are aware of jointly designing
sensing matrix and dictionary is in [16], where both the sensing
matrix and the dictionary are optimized in the same framework,
but the training algorithm is not customized for large-scale ap-
plications. As for the convergence of Algorithm 1, we defer
this to the future work.

4. Simulation Results

Some experiments on natural images are posed in this sec-
tion to illustrate the performance of the proposed Algorithm
1, denoted as CSAlg3. We also compare our method with the
ones given in [14, 15] which also share the same framework
as ours but are based on the batch method (sweep the whole
training data in each iteration). Although [15] developed the
closed-form solutions for each updating procedures, it is still
inefficient for the case when the training dataset is large. The
methods given in [14, 15] are denoted as CSS−DCS and CSBL, re-
spectively. Both training and testing data are extracted from the
LabelMe database [27]. All of the experiments are carried out
on a laptop with Intel(R) i7-6500 CPU @ 2.5GHz and RAM
8G.

The signal reconstruction accuracy is evaluated in terms of
Peak Signal to Noise Ratio (PSNR) given in [2]

ρpsnr , 10× log10

[
(2r−1)2

ρmse

]
dB

with r = 8 bits per pixel and ρmse defined as

ρmse ,
1

N×P

P

∑
k=1
‖x̃xxk− xxxk‖2

2

where xxxk is the original signal, x̃xxk = ΨΨΨθ̃θθk stands for the recov-
ered signal and P is the number of patches in an image or testing
data. The training and testing data are obtained through the fol-
lowing method.

Training data A set of 8× 8 non-overlapping patches is ob-
tained by randomly extracting 400 patches from each of the im-
ages in the whole LabelMe training dataset, with each patch of
8× 8 arranged as a vector of 64× 1. A set of 400× 2920 =
1.168×106 training samples is received for training.

Testing data The testing data is extracted from the LabelMe
testing dataset. Here, we randomly extract 15 patches from 400
images and each sample is an 8×8 non-overlapping patch. Fi-
nally, we obtain 6000 testing samples.

8× 104 and 6× 103 patches are randomly chosen from the
1.168×106 Training data for CSS−DCS and CSBL, respectively,
because these two methods cannot stand too large training
patches. In order to show the advantage of designing the SMSD
on a large training dataset, the same 6× 103 patches which
is prepare for CSBL are also utilized by CSS−DCS. For conve-
nience, this case is called CSS−DCS − small. The parameters
in these two methods are chosen as recommended in their pa-
pers. To keep the same dimensions in ΦΦΦ, ΨΨΨ and sparsity level
as given in [15], M, L and K are set to 20, 256 and 4 in CSAlg3,
respectively. The parameters γ, η, Iterdic and Itersendic are set to
1

32 , 128, 1000 and 10 in the proposed Algorithm 1. The initial
sensing matrix and dictionary for [14, 15] are a random Gaus-
sian matrix and the DCT dictionary, respectively. The initial
sparsifying dictionary in the proposed algorithm is randomly
chosen from the training data and the corresponding sensing
matrix is obtained through the method shown in Section 2.14

The signal recovery accuracy of the aforementioned methods
on testing data is shown in Fig. 1. The corresponding CPU
time of the four cases in seconds are given in Table 1.

Table 1: The CPU Time Of The Four Different Cases. (Seconds)
CSS−DCS− small CSS−DCS CSBL CSAlg3

2.79×101 1.32×103 4.33×104 1.54×102

Benefiting from the large training dataset, CSS−DCS yields
a better performance in terms of σpsnr than CSS−DCS− small.
This indicates that enlarging the training dataset leads to a bet-
ter CS system. Compared with CSS−DCS− small, CSBL has a
higher ρpsnr which meets the observation shown in [15]. How-
ever, CSBL needs many SVDs in the algorithm which makes it
inefficient and hard to extend to the situation when the train-
ing dataset is large. This concern can be observed from Table
1 that CSBL needs much more CPU time even for only 6000
training patches. Although CSBL has a better performance than
CSS−DCS− small, this advantage will disappear if we enlarge
the size of the training dataset in CSS−DCS. It can be seen from
Fig. 1 that CSS−DCS has a similar performance with CSBL, but

14According to our experiments, using the initial value in such a case in our
method results in a slightly better performance compared with the initial setting
suggested in [14, 15].
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Figure 1: The σpsnr of the four different cases versus the iteration number on
testing data.

it requires a shorter training time, see Table 1. CSAlg3 has a
best performance in terms of ρpsnr compared with other meth-
ods. Meantime, CSAlg3 has a relatively shorter CPU time but
has the largest training dataset. It indicates that Algorithm 1
is suitable for training the SMSD on a large training dataset.
Moreover, we observe that training on a large dataset can ob-
tain a better SMSD and the proposed Algorithm 1 belongs to
a good choice which takes the efficiency and effectiveness into
account simultaneously.

Additionally, we also investigate the performance of the four
different CS systems mentioned in this paper on ten natural im-
ages. The Structural Similarity Index (SSIM) [28] is also in-
volved in comparing the recovered natural images by the differ-
ent methods. As the results shown in Table 2, we see the pro-
posed Algorithm 3 yields the highest PSNR and SSIM. Com-
pared with CSS−DCS− small, CSS−DCS has a higher PSNR and
SSIM on all of the ten testing natural images. This meets the
argument in this paper that enlarging the size of the training
dataset is significant in practice. This can also be illustrated
by the methods between CSBL and CSS−DCS. Note that CSBL
works better than CSS−DCS − small when they have the same
small size of training dataset. However, the performance of
CSS−DCS will exceed CSBL when the size of the training data
is enlarged. All of these imply that training the sensing matrix
and the corresponding sparsifying dictionary on a large dataset
is preferred. Moreover, the proposed Algorithm 3 is a good
choice to stand such a mission. To examine the visual effect
clearly, the recovered performance of two natural images, i.e.,
‘Lena’ and ‘Mandril’ in Fig. 2, are shown in Fig.s 3 and 4.

Now, we come to experimentally check the convergence of
our proposed algorithm. In this experiment, we run another
sufficient large iterations on dictionary updating after running
Algorithm 1 to see whether the dictionary can converge. The

(a) ‘Lena’ (b) ‘Mandrill’

Figure 2: The original testing images.

(a) CSS−DCS− small (b) CSS−DCS

(c) CSBL (d) CSAlg3

Figure 3: The recovered testing image ‘Lena’.

testing error versus iteration on testing data is shown in Fig. 5.15

Clearly, even if the testing error is not monotonically decreas-
ing, it is asymptotically decreasing which meets the property
of our online algorithm (Proposition 1) because we randomly
sample part of the training data to update the dictionary at each
iteration. We can also observe that the recovery accuracy in
terms of ρpsnr on testing data is also increasing along the num-
ber of iterations growing. As seen from the sub-figure in Fig.
5, the recovered PSNR increases dramatically after the 1000-th
iteration, in which we update the sensing matrix again. More-
over, we see that the PSNR still increases as the iteration goes,
which demonstrates the significance of our algorithm to simul-
taneously optimize the sensing matrix and the dictionary. We
also display the difference of the dictionary between each iter-

15Although we train our ΦΦΦ and ΨΨΨ on training data, we only care about the
performance on the testing data. So we prefer to see the value of objective
function on testing data. Note that the iteration here refers to the total of Iterdic
as shown in Algorithm 2.
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Table 2: Performance Evaluated With Four Cases Shown In This Paper. (Left: PSNR, Right: SSIM. The highest is marked with bold.)

CSS−DCS− small CSS−DCS CSBL CSAlg3
Lena 33.0566 0.9089 33.7859 0.9184 33.3059 0.9111 333444...666555555777 000...999222888111
Elaine 32.3990 0.8073 32.6903 0.8145 32.4076 0.8043 333333...111777555666 000...888222444444
Man 31.1978 0.8738 31.8509 0.8866 31.4686 0.8782 333222...555999444111 000...888999999999
Mandrill 23.4291 0.7598 23.8411 0.7823 23.8221 0.7746 222444...333777555333 000...888000000777
Peppers 28.9462 0.8877 29.6975 0.9005 29.4145 0.8925 333000...666888555999 000...999111666999
Boat 29.7350 0.8561 30.3488 0.8679 30.1027 0.8580 333111...222888555888 000...888888333777
House 31.5166 0.8842 32.0602 0.8985 32.0707 0.8956 333333...000111444666 000...999111555888
Cameraman 26.2240 0.8581 26.8272 0.8716 26.4545 0.8673 222777...444222555444 000...888888777777
Barbara 25.6148 0.8239 25.9153 0.8316 25.5165 0.8168 222666...000888333555 000...888333999333
Tank 30.7233 0.8252 30.8210 0.8369 31.1403 0.8361 333111...777888111888 000...888555777666
Averaged 29.2842 0.8485 29.7838 0.8609 29.5703 0.8534 333000...555000777888 000...888777555444

(a) CSS−DCS− small (b) CSS−DCS

(c) CSBL (d) CSAlg3

Figure 4: The recovered testing image ‘Mandrill’.

ation in Fig. 6. As observed from Fig. 6(a), there exist many
oscillations which are caused by the fact that we update the
dictionary through the stochastic method which only utilizes a
part of training data in each iteration. If we check Fig. 6(b),
the envelop of Fig. 6(a), we see it is convergent and coincides
with the Proposition 2 that the stationary point can be attained.
Note that all of the observations meet our previous statements
in Section 3 regarding the convergence analysis of the proposed
Algorithm 1. However, the whole investigation of the conver-
gence analysis for Algorithm 1 is out of the scope in this paper
and belongs to future work.

5. Conclusion

In this paper, an efficient algorithm for jointly learning the
SMSD on a large dataset is proposed. The proposed algorithm
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Figure 5: Objective value σ(ΨΨΨt ,ΘΘΘt) and σpsnr versus iteration on testing data
through Algorithm 3.

optimizes the sensing matrix with a closed-form solution and
learns a sparsifying dictionary with a stochastic method on a
large training dataset. Our experiment results show that train-
ing the SMSD on a large dataset yildes a better performance and
the proposed method which considers the efficiency and effec-
tiveness simultaneously is a suitable choice for such a task.

One of the possible directions for future research is to de-
velop an accelerated algorithm to make the proposed method
more efficient. Involving the Sequential Subspace Optimiza-
tion (SESOP) in the algorithm may belong to one of the possi-
ble methods to realize the accelerated purpose [29].
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