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Abstract

This paper proposed a bias-compensated normalized maximum correntropy cri-

terion (BCNMCC) algorithm charactered by its low steady-state misalignment

for system identification with noisy input in an impulsive output noise environ-

ment. The normalized maximum correntropy criterion (NMCC) is derived from

a correntropy based cost function, which is rather robust with respect to im-

pulsive noises. To deal with the noisy input, we introduce a bias-compensated

vector (BCV) to the NMCC algorithm, and then an unbiasedness criterion and

some reasonable assumptions are used to compute the BCV. Taking advantage of

the BCV, the bias caused by the input noise can be effectively suppressed. Sys-

tem identification simulation results demonstrate that the proposed BCNMCC

algorithm can outperform other related algorithms with noisy input especially

in an impulsive output noise environment.
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1. Introduction

Recently, bias-compensated adaptive filtering algorithms (BCAFAs) [1, 2, 3,

4] based on the unbiasedness criterion (UC) are paid attention to in several signal

processing applications in a noisy input case, that is, a bias-compensated vector

(BCV) is introduced to reduce the bias caused by the input noise. In particular,5

the bias-compensated normalized least mean square (BCNLMS) algorithm is

popular due to its simplicity and effectiveness [1]. In [2], the bias-compensated

affine projection algorithm (APA) was developed to reduce the performance

degradation caused by highly correlated input. The bias-compensated normal-

ized subband adaptive filter algorithm was proposed in [3], which has a better10

performance and does not require input-output variance ration advance. The

bias-compensated normalized least mean fourth (NLMF) was presented in [4],

which can offer a faster convergence rate and a lower steady-state misalignment

in a certain case. Furthermore, the BCNLMS with L1-norm was proposed in [5]

to address the noisy input problem in sparse system identification. At present15

in [6, 7], the convergence analysis of the BCNLMS has been performed based

on some suitable assumptions. All the above BCAFAs have been successfully

utilized to solve the noisy input problem in different applications. However,

they are sensitive to output noise with impulsive characters.

In order to improve the robustness with respect to output noise, some im-20

proved adaptive filtering algorithms (AFAs) have been proposed to eliminate

the bad influence of the output noise in different literatures [8, 9, 10, 11, 12].

Particularly, different kinds of AFAs based on maximum correntropy criterion

(MCC) were developed [13, 14], such as sparse MCC [15], diffusion MCC [16],

kernel MCC [17] and so on. Although the MCC based AFAs can improve the25

robustness in non-Gaussian signal processing, a noisy input case is however not

considered in these solutions and thus they are sensitive to the scaling of input

signals.

Considering the drawbacks of the existing BCAFAs and the MCC based

AFAs, we take advantage of the UC and robust property of the MCC to develop30
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a novel bias-compensated normalized MCC (BCNMCC) algorithm in this study

in order to eliminate the influence of the input noise and the impulsive output

noise.

The rest of this paper is structured as follows. In Section 2, the NMCC algo-

rithm is briefly reviewed. In Section 3, we develop the bias-compensated NMCC35

algorithm. In Section 4, simulation experiments are conducted to demonstrate

the performance of the new method. Finally, the paper is concluded in Section

5.

2. Review of the NMCC algorithm

For an adaptive filter under a common system identification (SI) framework,

the desired signal is generally denoted by

d(i) = uT (i)wo + v(i) (1)

where wo = [wo
1, w

o
2 , ...w

o

L
]
T
denotes an unknown system parameter vector with

L-tap to be estimated, and the perturbation signal v(i) is the output noise at

time index i. u(i) = [u1(i), u2(i), ..., uL(i)]
T denotes the input vector. In [10],

the update of the MCC based AFA is given by

w(i + 1) = w(i) + µ exp(−
e2(i)

2σ2
)e(i)u(i) (2)

where w(i) = [w1(i), w2(i), ...wL(i)]
T

denotes the tap-coefficients vector of an

adaptive filter which is employed to find an estimate of wo from the observed

input-output data. µ is the step size and σ denotes the kernel bandwidth, which

is a positive parameter that induces a trade-off between convergence speed and

steady-state accuracy. e(i) = d(i) − uT (i)w(i) denotes the ith instantaneous

error. Considering the MCC and the idea of the normalized least mean square,

the normalized MCC (NMCC) updating equation can be represented as

w(i + 1) = w(i) + µ exp(−
e2(i)

2σ2
)

e(i)u(i)

uT (i)u(i) + ε
(3)

where ε is a regularization parameter.40
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3. Bias-compensated NMCC

In this section, we focus on developing the bias-compensated NMCC algo-

rithm based on UC and the NMCC algorithm in (3) for system identification

problem in a noisy input and output environment. Considering the input noise,

we define the input vector as

ū(i) = u(i) + η(i) (4)

where η(i) = [η(i), η(i − 1), ...η(i − L+ 1)]T is the noise vector, and ηl(i)(l ∈

[1, L]) is with zero-mean Gaussian and variance σ2
in
. One can rewrite the filtered

output error as

ē(i) = d(i)− ūT (i)w(i)

= d(i)− (u(i) + η(i))
T
w(i)

= u(i)
T
w̃(i) + v(i)− η(i)

T
w(i)

= ew(i) + v(i)− η(i)
T
w(i)

(5)

where ew(i) = uT (i)w̃(i) is the priori error and the weight-error vector is de-

noted as w̃(i) = wo −w(i). To compensate the bias caused by the input noise,

we introduce a bias-compensation vector B(i) into (5), and replace u(i) and e(i)

with ū(i) and ē(i) simultaneously. The equation (5) is improved as

w(i + 1) = w(i) + µf(ē(i))
ē(i)ū(i)

ūT (i)ū(i) + ε
+B(i) (6)

where f(ē(i)) is a non-linear function of the estimation error, which is defined

as

f(ē(i)) = exp

(

−
ē2(i)

2σ2

)

= exp

(

−
(ew(i) + v(i)− ηT (i)w(i))

2

2σ2

)

(7)

Then, combining (6) and the definition of the w̃(i), one can obtain

w̃(i + 1) = w̃(i)− µf(ē(i))
ē(i)ū(i)

ūT (i)ū(i) + ε
−B(i) (8)

Now, we employ the unbiasedness criterion in (9) to get the bias-compensated

vector.

E(w̃(i + 1) |ū(i) ) = 0 whenever E(w̃(i) |ū(i) ) = 0 (9)
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Taking expectation on both sides of (8) with the given ū(i) and using crite-

rion (9), one can obtain

E [w̃(i+ 1) |ū(i) ] =

E [w̃(i) |ū(i) ]− µE

[

f(ē(i))
ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

]

− E [B(i) |ū(i) ]
(10)

According to (9) and (10), the following equation is obtained

E [B(i) |ū(i) ] = −µE

[

f(ē(i))
ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

]

(11)

In order to calculate the gradient of the BCNMCC algorithm, the following

commonly-used assumptions [18, 19, 20] are given:

Assumption 1: The background noise v(i) is zero-mean α-stable distribu-

tion noise and input noise η(i) is zero-mean white Gaussian noise.45

Assumption 2: The signals v(i), η(i), u(i) and w̃(i) are statistically inde-

pendent.

Assumption 3: The non-linear function of the estimation error f(v(i)),

η(i) and ē(i) are statistically independent.

To simplify the following analysis, we take the Taylor expansion of f(ē(i))

with respect to ew(i)− ηT (i)w(i) around v(i). Combining (5) one can obtain

f(ē(i)) ≈ f(v(i)) + f ′(v(i))[ew(i)− ηT (i)w(i)] + o
[

[ew(i)− ηT (i)w(i)]
2
]

(12)

From (11), the following approximation can be obtained

E

[

f(ē(i))
ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

]

≈ E

[

f(v(i))
ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

]

+ E

[

f ′(v(i))[ew(i)− ηT (i)w(i)]
ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

]

+ E

[

o
[

[ew(i)− ηT (i)w(i)]
2
] ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

]

(13)

In the steady-state, the priori error ew(i) converges to a small value which

is ignorable with respect to the environmental noise when the step size is small
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[20]. Considering the assumptions 1, 2 and 3, the second term of equation (13)

becomes

E

[

f ′(v(i))[ew(i)− ηT (i)w(i)]
ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

]

≈ −E

[

f ′(v(i))ηT (i)w(i)
ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

]

=0

(14)

Similarly the third term of equation (13) is

E

[

o
[

[ew(i)− ηT (i)w(i)]
2
] ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

]

=0 (15)

Combining (13), (14) and (15), and using assumption 3, we have

E

[

f(ē(i))
ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

]

≈ E

[

f(v(i))
ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

]

= E [f(v(i)) |ū(i) ]E

[

ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

] (16)

Considering the fact that ē(i) = e(i)− ηT (i)w(i)

E

[

ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(n)

]

=
E[ē(i)ū(i) |ū(i) ]

ūT (i)ū(i) + ε
(17)

E [ē(i)ū(i) |ū(i) ]

= E
[

[e(i)− ηT (i)w(i)][u(i) + η(i)] |ū(i)
]

= E [e(i)ū(i) |ū(i) ] + E [e(i)η(i) |ū(i) ]

− E
[

ηT (i)w(i)u(i) |ū(i)
]

− E
[

ηT (i)w(i)η(i) |ū(i)
]

(18)

E [e(i)ū(i) |ū(i) ]

= E
[

[v(i) + uT (i)w̃(i)][u(i) + η(i)] |ū(i)
]

= E [v(i)u(i) |ū(i) ] + E [v(i)η(i) |ū(i) ]

+ E
[

uT (i)w̃(i)u(i) |ū(i)
]

+ E
[

uT (i)w̃(i)η(i) |ū(i)
]

= 0

(19)

and

E[ηT (i)w(i)u(i) |ū(i) ] = 0 (20)

E[ηT (i)w(i)η(i) |ū(i) ] = σ2
in
E[w(i) |ū(i) ] (21)
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Combining (17-20) and (21) we can obtain

E

[

ē(i)ū(i)

ūT (i)ū(i) + ε
|ū(i)

]

= −E

[

σ2
in
w(i)

ūT (i)ū(i) + ε
|ū(i)

]

(22)

Then, we put (16) and (22) into (11)

E [B(i) |ū(i) ] = µE

[

exp

(

−
v2(i)

2σ2

)

|ū(i)

]

E

[

σ2
in
w(i)

ūT (i)ū(i) + ε
|ū(i)

]

(23)

Considering this condition and the stochastic approximation given in [1], we can

obtain the bias-compensated vector as

B(i) = µ exp

(

−
v2(i)

2σ2

)

σ2
in
w(i)

ūT (i)ū(i) + ε
(24)

By substituting (24) into (6) we have

w(i+ 1) =

(

1 + µ exp

(

−
v2(i)

2σ2

)

σ2
in

ūT (i)ū(i) + ε

)

w(i)

+ µ exp

(

−
ē2(i)

2σ2

)

ē(i)ū(i)

ūT (i)ū(i) + ε

(25)

Generally, the input noise variance is unknown in practice and it is supposed

to be estimated suitably. In recent years, several estimation methods have been

reported in [21, 22]. In this paper, we utilize the estimation method proposed

in [21] to estimate the input noise variance. The estimate equation is given as

σ2
in
(i) =

σ2
ē
(i)

Lσ2
w
(i) + κ+ σ2

ē
(i)L

ūT (i)ū(i)

(26)

where κ is input-output noise ratio, and it is assumed to be available.

σ2
ē(i) = aσ2

ē(i − 1) + (1− a)ē2(i) (27)

σ2
w
(i) = aσ2

w
(i− 1) + (1− a)

1

L
wT (i)w(i) (28)

where the parameter a is a forgetting factor.50

4. Simulation results

In this section, we perform simulations on SI to verify the performance of the

proposed BCNMCC algorithm compared to several existing algorithms includ-

ing LMS, NLMS, and BCNLMS with noisy input in non-Gaussian output noise
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environments. The input signal is Gaussian with mean 1.0 and unit-variance,

and the input noise is assumed to be a white zero-mean Gaussian random se-

quence. We consider that the output noise is generated by α-stable distribution

to show the robustness of the proposed algorithm. The characteristic function

of the α-stable distribution is defined by

f(t) = exp{jθt− γ|t|α[1 + jβsgn(t)S(t, α)]} (29)

in which

S(t, α) =











tan
απ

2
if α 6= 1

2

π
log |t| if α = 1

(30)

where α ∈ (0, 2] is the characteristic factor, -∞ < θ < +∞ is the location

parameter, β ∈ [−1, 1] is the symmetry parameter, and γ > 0 is the dispersion

parameter. The parameters vector of the characteristic function is defined as

Vα−stable(α, β, γ, θ). 200 Monte-Carlo trials are conducted to obtain the MSD

which is defined by

MSD = 10log10

(

E

(

||wo −w(i)||2

||wo||2

))

(31)

In order to investigate the convergence performance of the proposed BC-

NMCC, we elaborately select a special system defined by an optimum weight

vector wo=[−0.3,−0.9, 0.8,−0.7, 0.6]T . The parameter settings in the following

simulations are abide by to achieve optimal performance for each algorithm.55

The kernel bandwidth σ is 4. The input noise variance δ2 = 0.25, and the

output noise parameter vector is set as Vα−stable(1.3, 0, 0.2, 0) without special

instructions. The input-output noise ratio κ = 5, and the parameter ε = 0.001.

In the first example, we examine the convergence performance of different

algorithms in terms of MSD with time-varying non-Gaussian impulsive noise60

generated by different α. For the following two stages, the parameter α is set at

1.8 and1.3 respectively, which means the impulsive is increasing. In order to keep

fairness, we set a same initial condition for both stages. The convergence curves

are given in Fig.1. The step sizes for all algorithms are selected to keep the same

initial convergence speed showed in the legend of the Fig.1. One can clearly see65
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Figure 1: Convergence curves of all algorithms under different α (1.8, 1.3).

that all algorithms can converge while the BCNLMS and BCNMCC have lower

steady-state error compared with NLMS and NMCC due to the advantage of

the bias-compensated term. In the second stage (α = 1.3), we observe that

the LMS and BCNLMS do not converge while the MCC and BCNMCC still

converge. Further, the BCNMCC has higher steady state accuracy than MCC70

because of the introduced bias-compensated term.

In the second example, we only investigate the performance of the MCC

and the BCNMCC with two stages. The step sizes are denoted as µ1 and

µ2 in the first and second stage respectively. We maintain the same initial

convergence speed and the same steady-state accuracy. In Fig.2, one can see that75

the BCNMCC has better steady-state performance than MCC in the first stage,

while the convergence speed outperforms MCC at the second stage. This result

demonstrates again that the proposed BCNMCC has better performance to the

traditional MCC algorithm with noisy input in an impulsive noise environment.

80

In the third example, we conduct simulations with different kernel size (

σ = 3, 4, 5, 6 and 7) to evaluate the performance of the proposed method.
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Figure 2: Convergence curves of MCC and BCNMCC subject to the similar initial convergence

speed and the similar steady-state accuracy respectively.

Other parameters are set the same as the second example. The last 200 itera-

tions results at final stead-state are averaged to compute the steady-state MSD

(ssMSD), which is illustrated in Fig.3. It is obvious that the proposed algorithm85

outperforms traditional MCC algorithm under different σ.

In the final example, we examine the performance of the proposed BCNMCC

algorithm under different variances (0.15, 0.2, 0.25, 0.3, and 0.35) of the input

noise. The ssMSD results are shown in Fig.4. Although the ssMSD results be-

come worse with the variances increasing, we can observe that the performance90

of the BCNMCC algorithm is better than MCC algorithm under different vari-

ances, which is exactly what we expect.

5. Conclusion

The MCC based adaptive filter algorithms can offer better performance in

impulsive output noise environments compared to many other methods. How-95

ever, the input noise often exists in a real situation, which can significantly dam-

age the performance of the adaptive filters. In order to address this problem,
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Figure 3: Steady-state MSD with different values of σ.
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Figure 4: Steady-state MSD results versus different variances of the input noise.

we combine the unbiasedness criterion (which has been successfully employed

in several algorithms to address the bias caused by the input noise) and MCC

to develop a novel robust bias-compensated NMCC algorithm, which can re-100

duce the bad impact of the input noise, while maintaining the robustness of the

11



NMCC with respect to impulsive output noise. Simulation results demonstrate

that the proposed algorithm performs very well for SI problems with noisy input

in an impulsive output noise environment.
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