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Abstract

In this paper we study the recovery conditions of weighted l1 minimization for signal re-

construction from incomplete linear measurements when partial prior support information is

available. We obtain that a high order RIP condition can guarantee stable and robust recovery

of signals in bounded l2 and Dantzig selector noise settings. Meanwhile, we not only prove

that the sufficient recovery condition of weighted l1 minimization method is weaker than that

of standard l1 minimization method, but also prove that weighted l1 minimization method pro-

vides better upper bounds on the reconstruction error in terms of the measurement noise and

the compressibility of the signal, provided that the accuracy of prior support estimate is at least

50%. Furthermore, the condition is proved sharp.

Keywords: Compressed sensing, restricted isometry property, weighted l1 minimization.

1 Introduction

Compressed sensing is a new type of sampling theory that admits that high dimensional sparse

signals can be reconstructed through fewer measurements than their ambient dimension. The

central goal in compressed sensing is to recover a signal x ∈ R
N based on A and y from the

following model:

y = Ax+ z (1)
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where sensing matrix A ∈ R
n×N with n ≪ N , i.e., using very few measurements, y ∈ R

n is

a vector of measurements, and z ∈ R
n is the measurement error. In past decade, compressed

sensing has triggered considerable research in a number of fields including applied mathematics,

statistics, electrical engineering, seismology and signal processing. Compressed sensing is especially

promising in applications where taking measurements is costly, e.g., hyperspectral imaging [11], as

well as in applications where the ambient dimension of the signal is very large, e.g., medical image

reconstruction [18], DNA microarrays [20], radar system [1, 13, 23].

To reconstruct the signal x from (1), Candès and Tao [10] proposed the following constrained

l1 minimization method:

minimize
x∈RN

‖x‖1 subject to ‖y −Ax‖2 ≤ ǫ. (2)

It is well known that l1 minimization is a convex relaxation of l0 minimization and is polynomial-

time solvable. And it has been shown that l1 minimization is an effective way to recover sparse

signals in many settings [3–9, 19]. Cai and Zhang [6, 7] established sharp restricted isometry

conditions to achieve the exact and stable recovery of signals in both noiseless and noisy cases via

l1 minimization method.

Note that compressed sensing is a nonadaptive data acquisition technique and l1 minimization

method (2) is itself nonadaptive because no prior information on the signal x is used. In practical

examples, however, the estimate of the support of the signal or of its largest coefficients may

be possible to be drawn. For example, support estimation of the previous time instant may be

applied to recover time sequences of sparse signals iteratively. Incorporating prior information is

very useful for recovering signals from compressive measurements. Thus, the following weighted

l1 minimization method which incorporates partial support information of the signals has been

introduced to replace standard l1 minimization

minimize
x∈RN

‖x‖1,w subject to ‖y −Ax‖2 ≤ ǫ, (3)

where w ∈ [0, 1]N and ‖x‖1,w =
∑
i
wi|xi|. Reconstructing compressively sampled signals with

partially known support has been previously studied in the literature; see [2, 12, 14–17, 21]. Borries,

Miosso and Potes in [2], Khajehnejad et al. in [15], and Vaswani and Lu in [21] introduced the

problem of signal recovery with partially known support independently. The works by Borries

et al. in [2], Vaswani and Lu in [16, 21, 22] and Jacques in [14] incorporated known support

information using weighted l1 minimization approach with zero weights on the known support,

namely, given a support estimate T̃ ⊂ {1, 2, . . . , N} of unknown signal x, setting wi = 0 whenever

i ∈ T̃ and wi = 1 otherwise, and derived sufficient recovery conditions. Friedlander et al. in

[12] extended weighted l1 minimization approach to nonzero weights. They allow the weights

wi = ω ∈ [0, 1] if i ∈ T̃ . Since Friedlander et al. incorporated the prior support information
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and consider the accuracy of the support estimate, they derived the stable and robust recovery

guarantees for weighted l1 minimization which generalize the results of Candès, Romberg and Tao in

[9] stated below. Friedlander et al. [12] pointed out that once at least 50% of the support information

is accurate, the weighted l1 minimization method (3) can stably and robustly recover any signals

under weaker sufficient conditions than the analogous conditions for standard l1 minimization

method (2). In addition, the weighted l1 minimization method (3) gives better upper bounds on

the reconstruction error. Furthermore, they also pointed out sufficient conditions are weaker than

those of [21] when ω = 0.

To recover sparse signals via constrained l1 minimization, Candès and Tao [10] introduced the

notion of Restricted Isometry Property (RIP), which is one of the most commonly used frameworks

for compressive sensing. The definition of RIP is as follows.

Definition 1.1. Let A ∈ R
n×N be a matrix and 1 ≤ k ≤ N is an integer. The restricted isometry

constant (RIC) δk of order k is defined as the smallest nonnegative constant that satisfies

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22,

for all k−sparse vectors x ∈ R
N . A vector x ∈ R

N is k−sparse if |supp(x)| ≤ k, where supp(x) =

{i : xi 6= 0} is the support of x. When k is not an integer, we define δk as δ⌈k⌉, where ⌈k⌉ denotes

the smallest integer strictly bigger than k.

Candès, Romberg and Tao [9] showed that the condition δak+aδ(a+1)k < a−1 with a ∈ 1
kZ and

a > 1 is sufficient for stable and robust recovery of all signals using l1 minimization method (2). Cai

and Zhang [6] improved the result of Candès, Romberg and Tao [9] and proved that the condition

δtk <
√

t−1
t with t ≥ 4/3 can guarantee the exact recovery of all k−sparse signals in the noiseless

case and stable recovery of approximately sparse signals in the noise case by l1 minimization method

(2). Furthermore, Cai and Zhang proved that for any ǫ > 0, δtk <
√

t−1
t +ǫ fails to ensure the exact

reconstruction of all k−sparse signals and stable reconstruction of approximately sparse signals for

large k.

In [6], Cai and Zhang use the following l1 minimization

minimize
x∈RN

‖x‖1 subject to ‖y −Ax‖2 ∈ B, (4)

where B is a bounded set determined by the noise structure, and B is especially taken to be {0} in

the noiseless case. They consider two types of noise settings

Bl2(ε) = {z : ‖z‖2 ≤ ε} (5)

and

BDS(ε) = {z : ‖AT z‖∞ ≤ ε}. (6)
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In this paper, we adopt the corresponding weighted l1 minimization method:

minimize
x∈RN

‖x‖1,w subject to y −Ax ∈ B

with wi =

{
1, i ∈ T̃ c

ω, i ∈ T̃ .
(7)

where 0 ≤ ω ≤ 1 and T̃ ⊂ {1, 2, . . . , N} a given support estimate of unknown signal x. B is also a

bounded set determined by the noise settings (5) and (6). Our goal is to generalize the results of

Cai and Zhang [6] via the weighted l1 minimization method (7). We establish the high order RIP

condition for the stable and robust recovery of signals with partially known support information

from (1). We also show that the recovery by weighted l1 minimization method (7) is stable and

robust under weaker sufficient conditions compared to the standard l1 minimization method (4)

when we have the partial support information with accuracy better than 50%.

The rest of the paper is organized as follows. In Section 2, we will introduce some notations

and some basic lemmas that will be used. The main results are given in Section 3, and the proofs

of our main results are presented in Section 4.

2 Preliminaries

Let us begin with basic notations. For arbitrary x ∈ R
N , let xk be its best k−term approximation.

xmax(k) is defined as x with all but the largest k entries in absolute value set to zero, and x−max(k) =

x − xmax(k). Let T0 be the support of xk, i.e., T0 = supp(xk), with T0 ⊆ {1, . . . , N} and |T0| ≤ k.

Let T̃ ⊆ {1, . . . , N} be the support estimate of x with |T̃ | = ρk, where ρ ≥ 0 represents the ratio of

the size of the estimated support to the size of the actual support of xk (or the support of x if x is

k− sparse). Denote T̃α = T0 ∩ T̃ and T̃β = T c
0 ∩ T̃ with |T̃α| = α|T̃ | = αρk and |T̃β| = β|T̃ | = βρk,

where α denotes the ratio of the number of indices in T0 that were accurately estimated in T̃ to

the size of T̃ and α + β = 1. For arbitrary nonnegative number ξ, we denote by [[ξ]] an integer

satisfying ξ ≤ [[ξ]] < ξ + 1.

Cai and Zhang developed a new elementary technique which is a key technical tool for the proof

of the main result (see Theorem 3.1). It states that any point in a polytope can be represented as

a convex combination of sparse vectors ([6], Lemma 1.1). Another key technical tool for our proof

was Lemma 2.2 introduced by Cai and Zhang ([8], Lemma 5.3). The specific contents are presented

in Lemmas 2.1 and 2.2, respectively.

Lemma 2.1 ([6], Lemma 1.1). For a positive number α and a positive integer k, define the polytope

T (α, k) ⊂ R
d by

T (α, k) = {v ∈ R
d : ‖v‖∞ ≤ α, ‖v‖1 ≤ kα}.

4



For any v ∈ R
d, define the set of sparse vectors U(α, k, v) ⊂ R

d by

U(α, k, v) = {u ∈ R
d : supp(u) ⊆ supp(v), ‖u‖0 ≤ k,

‖u‖1 = ‖v‖1, ‖u‖∞ ≤ α},

where ‖u‖0 = |supp(u)|. Then any v ∈ T (α, k) can be expressed as

v =
N∑

i=1

λiui,

where ui ∈ U(α, k, v) and 0 ≤ λi ≤ 1,
N∑
i=1

λi = 1.

Lemma 2.2 ([8], Lemma 5.3). Assume m ≥ k, a1 ≥ a2 ≥ · · · ≥ am ≥ 0,
k∑

i=1
ai ≥

m∑
i=k+1

ai, then for

all α ≥ 1,
m∑

j=k+1

aαj ≤
k∑

i=1

aαi .

More generally, assume a1 ≥ a2 ≥ · · · ≥ am ≥ 0, λ ≥ 0 and
k∑

i=1
ai+λ ≥

m∑
i=k+1

ai, then for all α ≥ 1,

m∑

j=k+1

aαj ≤ k
(

α

√∑k
i=1 a

α
i

k
+

λ

k

)α
.

As we mentioned in the introduction, Cai and Zhang [6] provided the sharp sufficient condition

to recover sparse signals and approximately sparse signals via l1 minimization (4). Their main

result can be stated as below.

Theorem 2.1 ([6], Theorem 2.1). Let y = Ax + z with ‖z‖2 ≤ ε and x̂l2 is the minimizer of (4)

with B = Bl2(η) = {z : ‖z‖2 ≤ η} for some η ≥ ε. If

δtk <

√
t− 1

t
(8)

for some t ≥ 4/3, then

‖x̂l2 − x‖2 ≤ C0(ε+ η) + C1

2‖x−max (k)‖1√
k

, (9)

where

C0 =

√
2t(t− 1)(1 + δtk)

t(
√

(t− 1)/t − δtk)
,

C1 =

√
2δtk +

√
t(
√

(t− 1)/t− δtk)δtk

t(
√

(t− 1)/t − δtk)
+ 1. (10)
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Let y = Ax + z with ‖AT z‖∞ ≤ ε and x̂DS is the minimizer of (4) with B = BDS(η) = {z :

‖AT z‖∞ ≤ η} for some η ≥ ε. If δtk <
√

t−1
t for some t ≥ 4/3, then

‖x̂DS − x‖2 ≤ C ′
0(ε+ η) + C ′

1

2‖x−max (k)‖1√
k

, (11)

where

C ′
0 =

√
2t2(t− 1)k

t(
√

(t− 1)/t− δtk)
, C ′

1 = C1. (12)

Note that Theorem 2.1 always holds for t > 1, and the condition t ≥ 4/3 ensures that (8) is

sharp.

Friedlander et al. [12] used the prior support information to recover any signals by weighted l1

minimization (7). The following theorem was showed in [12].

Theorem 2.2 ([12], Theorem 3). Let x ∈ R
N be an arbitrary signal and y = Ax+z with ‖z‖2 ≤ ε.

Define xk be its best k−term approximation with supp{xk} = T0. Let T̃ ⊆ {1, . . . , N} be an

arbitrary set and define ρ ≥ 0 and 0 ≤ α ≤ 1 such that |T̃ | = ρk and |T̃ ∩ T0| = αρk. Suppose

that there exists an a ∈ 1
kZ with a ≥ (1 − α)ρ and a > 1. If the measurement matrix A has RIP

satisfying

δak +
a

γ2
δ(a+1)k <

a

γ2
− 1, (13)

where γ = ω+ (1− ω)
√
1 + ρ− 2αρ for some given 0 ≤ ω ≤ 1. Then the solution x̂ to (7) with (5)

obeys

‖x̂− x‖2 ≤ C ′′
0 (2ε) +C ′′

1

2
(
ω‖x− xk‖1 + (1− ω)‖xT̃ c∩T c

0
‖1
)

√
k

, (14)

where

C ′′
0 =

1 + γ√
a√

1− δ(a+1)k − γ√
a

√
1 + δak

,

C ′′
1 =

a−1/2
(√

1− δ(a+1)k +
√
1 + δak

)
√

1− δ(a+1)k − γ√
a

√
1 + δak

.

(15)

Remark 2.1 ([12], Remarks 3.3 and 3.4). If A satisfies

δ(a+1)k < δωa :=
a− γ2

a+ γ2
, (16)

where γ = ω + (1− ω)
√
1 + ρ− 2αρ, then Theorem 2.2 holds with same constants. If

δ2k <
(√

2γ + 1
)−1

, (17)

then weighted l1 minimization (7) with (5) can stably and robustly recover the original signal.
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3 Main results

Theorem 3.1. Suppose that x ∈ R
N be an arbitrary signal and xk be its best k−term approximation

supported on T0 ⊆ {1, . . . , N} with |T0| ≤ k. Let T̃ ⊆ {1, . . . , N} be an arbitrary set and denote

ρ ≥ 0 and 0 ≤ α ≤ 1 such that |T̃ | = ρk and |T̃ ∩ T0| = αρk. Let y = Ax+ z with ‖z‖2 ≤ ε and x̂l2

is the minimizer of (7) with (5). If the measurement matrix A satisfies RIP with

δtk < δωt :=

√
t− d

t− d+ γ2
(18)

for t > d, where γ = ω + (1− ω)
√
1 + ρ− 2αρ and

d =

{
1, ω = 1

1− αρ+ a, 0 ≤ ω < 1

with a = max {α, β}ρ. Then

‖x̂l2 − x‖2 ≤ D0(2ε) +D1

2
(
ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1
)

√
k

, (19)

where

D0 =

√
2(t− d)(t− d+ γ2)(1 + δtk)

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

,

D1 =

√
2δtkγ +

√
(t− d+ γ2)(

√
t−d

t−d+γ2 − δtk)δtk

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

+
1√
d
. (20)

Let y = Ax+ z with ‖AT z‖∞ ≤ ε. Assume that x̂DS is the minimizer of (7) with (6) and the

matrix A satisfies RIP (18). Then

‖x̂DS − x‖2 ≤ D′
0(2ε) +D′

1

2
(
ω‖xT c

0
‖1 + (1− ω)‖x

T̃ c∩T c

0
‖1
)

√
k

, (21)

where

D′
0 =

√
2(t− d)(t− d+ γ2)[[tk]]

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

, D′
1 = D1. (22)

Remark 3.1. In Theorem 3.1, every signal x ∈ R
N can be stably and robustly recovered. And if

B = {0} and x is a k−sparse vector, then Theorem 3.1 ensures exact recovery of the signal x.
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For Gaussian noise case, the above results on the bounded noise case can be directly applied

to yield the corresponding results by using the same argument as in [3, 5]. The concrete content is

stated as follows.

Remark 3.2. Let x ∈ R
N be an arbitrary signal and xk be its best k−term approximation supported

on T0 ⊆ {1, . . . , N} with |T0| ≤ k. Let T̃ ⊆ {1, . . . , N} be an arbitrary set and define ρ ≥ 0 and 0 ≤
α ≤ 1 such that |T̃ | = ρk and |T̃∩T0| = αρk. Assume that z ∼ Nn(0, σ

2I) in (1) and δtk <
√

t−d
t−d+γ2

for t > d. Let Bl2 = {z : ‖z‖2 ≤ σ
√

n+ 2
√
n log n} and BDS = {z : ‖AT z‖∞ ≤ σ

√
2 logN}. x̂l2

and x̂DS are the minimizer of (7) with Bl2 and BDS, respectively. Then, with probability at least

1− 1/n,

‖x̂l2 − x‖2 ≤ D0(2σ

√
n+ 2

√
n log n) +D1

2
(
ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1
)

√
k

,

and

‖x̂DS − x‖2 ≤ D′
0(2σ

√
2 logN) +D′

1

2
(
ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1
)

√
k

,

with probability at least 1−1/
√
π logN . Here d =

{
1, ω = 1

1− αρ+ a, 0 ≤ ω < 1
with a = max {α, β}ρ,

and γ = ω + (1− ω)
√
1 + ρ− 2αρ.

Theorem 3.2. Let d = 1 and t ≥ 1+

(
1−
√

1−γ2
)2

γ2+2
(
1−
√

1−γ2
) . For any ε > 0 and k ≥ 6

ε . Then there exists

a sensing matrix A ∈ R
n×N with δtk <

√
t−d

t−d+γ2 + ε and some k−sparse signal x0 such that

(1) In the noiseless case, i.e., y = Ax0, the weighted l1 minimization (7) can not exactly recover

the k−sparse signal x0, i.e., x̂ 6= x0, where x̂ is the solution to (7).

(2) In the noise case, i.e., y = Ax0+ z, for any bounded noise setting B, the weighted l1 minimiza-

tion (7) can not stably recover the k−sparse signal x0, i.e., x̂ 9 x0 as z → 0, where x̂ is the

solution to (7).

Proposition 3.1. (1) If ω = 1, then d = 1 and γ = 1. The sufficient condition (18) of Theorem

3.1 is identical to (8) in Theorem 2.1 and D0 = C0,D1 = C1,D
′
0 = C ′

0,D
′
1 = C ′

1. Moreover,

the condition is sharp if t ≥ 4
3 .

(2) If α = 1
2 , then d = 1, γ = 1. The sufficient condition (18) of Theorem 3.1 is identical to that

of Theorem 2.1 with (8) and D0 = C0,D1 = C1,D
′
0 = C ′

0,D
′
1 = C ′

1. Moreover, if t ≥ 4
3 , the

condition is sharp.
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(3) Assume that 0 ≤ ω < 1. If α > 1
2 , then d = 1 and γ < 1. The sufficient condition (18)

in Theorem 3.1 is weaker than (8) in Theorem 2.1 and (16) in Remark 2.1. Then D0 <

C0, D1 < C1, D0 < C ′′
0 , D1 < C ′′

1 . When t = 2, the sufficient condition (18) in Theorem

3.1 is weaker than (17) in Remark 2.1.

Fig. 1 illustrates how the sufficient conditions on the RIP constants given in (18) and the

stability constants given in (20) change with ω for different values of α in the case of weighted

l1 when t = 4. Note that (18) reduces to (8), and (20) reduces to (10) if ω = 1 or α = 0.5. In

Fig. 1 (a), we plot δωt versus ω with different values of α when t = 4. We observe that the bound

on RIP constant gets larger as α increases. That is to say, the sufficient condition on the RIP

constant becomes weaker as α increases. For example, if 90% of the support estimate is accurate

and ω = 0.4, we have δωt = 0.9330, however δ1t = 0.8660 of standard l1. Figs. 1(b) and 1(b′) show

that the constant D0 decreases as α increases with δtk = 0.1 and δtk = 0.6, respectively. But Fig.

1(c) demonstrates the constant D1 with α 6= 0.5 is smaller than that with α = 0.5 when δtk = 0.1.

Fig. 1(c′) illustrates that the constant D1 decreases as α increases with δtk = 0.6. From above

recovery results by standard l1 and weighted l1, we see that if the partial support estimate is more

than 50% accurate, i.e. α > 0.5, the measurement matrix A for signal recovery by weighted l1

satisfies weaker conditions than the analogous conditions for recovery by standard l1. Moreover,

we have better upper bounds when α > 0.5 than those of standard l1.

Fig. 2 compares the sufficient recovery conditions δωt in (18) and δωa in (16) as well as stability

constants in (20) and (15) with various α when t = 4, a = 3 and δtk = δ(a+1)k = 0.1. Here we

plot δωt and δωa as well as (20) and (15) versus ω with various α. Fig.2(d) illustrates δωt is larger

than δωa under the same support estimate. Moreover, Figs. 2(e) and 2(f) describe that constants

D0 and D1 are always smaller than C ′′
0 and C ′′

1 , respectively. These results state that the sufficient

condition (18) is weaker than (16), and error bound constants (20) in Theorem 3.1 are better than

those (15) in Theorem 2.2.

4 Proofs

Proof of Theorem 3.1. Firstly, we show the estimate (19). Let x̂l2 = x+ h, where x is the original

signal and x̂l2 is the minimizer of (7) with (5). Now assume that tk is an integer. We use the

following inequality which has been shown by Friedlander et al. (see (21) in [12]).

‖hT c

0
‖1 ≤ω‖hT0‖1 + (1− ω)‖h

T0∪T̃\T̃α
‖1 + 2

(
ω‖xT c

0
‖1 + (1− ω)‖x

T̃ c∩T c

0
‖1
)
. (23)

9



0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Weights(ω)

R
es

tr
ic

te
d 

Is
om

et
ry

 C
on

st
an

t (
R

IC
) 

δω t

 

 
α=0.1
α=0.3
α=0.5
α=0.7
α=0.9

(a) δωt versus ω

0 0.2 0.4 0.6 0.8 1
1.65

1.66

1.67

1.68

1.69

1.7

1.71

1.72

1.73

Weights(ω)

E
rr

or
 b

ou
nd

 n
oi

se
 c

on
st

an
t (

D
0)

 

 
α=0.1
α=0.3
α=0.5
α=0.7
α=0.9

(b) D0 versus ω

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

1.2

1.25

Weights(ω)

E
rr

or
 b

ou
nd

 c
om

pr
es

si
bi

lit
y 

co
ns

ta
nt

 (
D

1)

α=0.1

α=0.3

α=0.5

α=0.7

α=0.9

(c) D1 versus ω

0 0.2 0.4 0.6 0.8 1
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Weights(ω)

E
rr

or
 b

ou
nd

 n
oi

se
 c

on
st

an
t (

D
0)

 

 
α=0.1
α=0.3
α=0.5
α=0.7
α=0.9

(b′) D0 versus ω

0 0.2 0.4 0.6 0.8 1
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Weights(ω)

E
rr

or
 b

ou
nd

 c
om

pr
es

si
bi

lit
y 

co
ns

ta
nt

 (
D

1)

α=0.1
α=0.3
α=0.5
α=0.7
α=0.9

(c′) D1 versus ω

Figure 1: Comparison of the sufficient conditions for recovery and stability constants for weighted

l1 reconstruction with various α. In all the figures, we set t = 4 and ρ = 1. In (b) and (c), we fix

δtk = 0.1. In (b′) and (c′), we fix δtk = 0.6.
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Figure 2: Comparison between the bounds of sufficient recovery conditions δωt in (18) and δωa in (16)

as well as stability constants in (20) and (15) with various α. In all the figures, we set t = 4, a = 3

and ρ = 1. The solid describe our main results and the dotted describe the results of Friedlander

et al. [12]. In (e) and (f), we fix δtk = δ(a+1)k = 0.1 and δak = 0.05.
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Let T̃0 = T0\T̃α, and T1 indexes the ak largest in magnitude coefficients of h
T̃ c

0
, where |T1| = ak

and a = max{α, β}ρ. Denote

T01 =

{
T0, ω = 1,

T̃0 ∪ T1, 0 ≤ ω < 1.

Clearly, |T01| = dk where

d =

{
1, ω = 1

1− αρ+ a, 0 ≤ ω < 1
.

From (23) and d ≥ 1, it is clear that

‖h−max(dk)‖1 ≤ ω‖hT0‖1 + (1− ω)‖hT0∪T̃\T̃α
‖1 + 2

(
ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1
)
. (24)

Let

r =
1

k

[
ω‖hT0‖1 + (1− ω)‖hT0∪T̃\T̃α

‖1 + 2
(
ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1
) ]

.

We partition h−max(dk) into two parts, i.e., h−max(dk) = h(1) + h(2), where h(1)(i) equals to

h−max(dk)(i) if |h−max(dk)(i)| > r
t−d and 0 else, h(2)(i) equals to h−max(dk)(i) if |h−max(dk)(i)| ≤ r

t−d

and 0 else.

In view of the above definitions and (24),

‖h(1)‖1 ≤ ‖h−max (dk)‖1 ≤ kr.

Let

‖h(1)‖0 = m.

From the definition of h(1), it is clear that

kr ≥ ‖h(1)‖1 =
∑

i∈supp(h(1))

|h(1)(i)| ≥
∑

i∈supp(h(1))

r

t− d
=

mr

t− d
.

Namely m ≤ k(t− d). Moreover, ‖hmax (dk) + h(1)‖0 = dk +m ≤ dk + k(t− d) = tk, and

‖h(2)‖1 = ‖h−max(dk)‖1 − ‖h(1)‖1 ≤ kr − mr

t− d

= (k(t− d)−m) · r

t− d
,

‖h(2)‖∞ ≤ r

t− d
. (25)

By the definition of δk and the fact that

‖Ah‖2 ≤ ‖Ax̂l2 −Ax‖2 ≤ ‖y −Ax̂l2‖2 + ‖Ax− y‖2 ≤ 2ε, (26)
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we obtain

〈A(hmax (dk) + h(1)), Ah〉 ≤‖A(hmax (dk) + h(1))‖2‖Ah‖2
≤
√
1 + δtk‖hmax (dk) + h(1)‖2 · (2ε). (27)

Thus, using Lemma 2.1 and (25), we have h(2) =
N∑
i=1

λiui, supp(ui) ⊆ supp(h(2)), ‖ui‖1 = ‖h(2)‖1
and ‖ui‖∞ ≤ r

t−d , where ui is (k(t − d) −m)−sparse, namely, |supp(ui)| = ‖ui‖0 ≤ k(t − d) −m.

Thus,

‖ui‖2 ≤
√

‖ui‖0‖ui‖∞ ≤
√

k(t− d)−m‖ui‖∞

≤
√

k(t− d) · r

t− d
≤
√

k

t− d
r.

Take βi = hmax (dk) + h(1) + µui, where 0 ≤ µ ≤ 1. We observe that

N∑

j=1

λjβj −
1

2
βi = hmax (dk) + h(1) + µh(2) − 1

2
βi

=(
1

2
− µ)(hmax (dk) + h(1))− 1

2
µui + µh. (28)

Because hmax (dk) is dk−sparse, h(1) is m−sparse, and ui is k(t− d)−m−sparse, βi and
N∑
j=1

λjβj −
1
2βi − µh are tk−sparse. Let

X = ‖hmax (dk) + h(1)‖2,
γ = ω + (1− ω)

√
1 + ρ− 2αρ,

P =
2
(
ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1
)

√
kγ

.
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Due to |T0 ∪ T̃\T̃α| = (1 + ρ− 2αρ)k,

‖ui‖2 ≤
√

k

t− d
r

=

√
k

t− d
· 1
k

[
ω‖hT0‖1 + (1− ω)‖h

T0∪T̃\T̃α
‖1 + 2

(
ω‖xT c

0
‖1 + (1− ω)‖x

T̃ c∩T c

0
‖1
) ]

=
ω‖hT0‖1 + (1− ω)‖h

T0∪T̃\T̃α
‖1

√
k(t− d)

+
2
(
ω‖xT c

0
‖1 + (1− ω)‖x

T̃ c∩T c

0
‖1
)

√
k(t− d)

≤
ω
√
k‖hT0‖2 + (1− ω)

√
(1 + ρ− 2αρ)k‖h

T0∪T̃\T̃α
‖2

√
k(t− d)

+
2
(
ω‖xT c

0
‖1 + (1− ω)‖x

T̃ c∩T c

0
‖1
)

√
k(t− d)

≤
ω‖hmax (dk)‖2 + (1− ω)

√
1 + ρ− 2αρ‖hmax (dk)‖2√

t− d
+

2
(
ω‖xT c

0
‖1 + (1− ω)‖x

T̃ c∩T c

0
‖1
)

√
k(t− d)

=

(
ω + (1− ω)

√
1 + ρ− 2αρ

)
‖hmax (dk)‖2√

t− d
+

2
(
ω‖xT c

0
‖1 + (1− ω)‖x

T̃ c∩T c

0
‖1
)

√
k(t− d)

≤ γ√
t− d

‖hmax (dk) + h(1)‖2 +
2
(
ω‖xT c

0
‖1 + (1− ω)‖x

T̃ c∩T c

0
‖1
)

√
k(t− d)

=
γ√
t− d

(X + P ). (29)

We use the following identity (see (25) in [6])

N∑

i=1

λi

∥∥∥A
( N∑

j=1

λjβj −
1

2
βi

)∥∥∥
2

2
=

N∑

i=1

λi

4
‖Aβi‖22. (30)
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Combining (27) and (28), we can estimate the left hand side of (30)

N∑

i=1

λi

∥∥∥A
( N∑

j=1

λjβj −
1

2
βi

)∥∥∥
2

2

=
N∑

i=1

λi

∥∥∥A
[
(
1

2
− µ)(hmax (dk) + h(1))− 1

2
µui + µh

]∥∥∥
2

2

=

N∑

i=1

λi

∥∥∥A
[
(
1

2
− µ)(hmax (dk) + h(1))− 1

2
µui

]∥∥∥
2

2

+ 2

〈
A

(
(
1

2
− µ)(hmax (dk) + h(1))− 1

2
µh(2)

)
, µAh

〉
+ µ2‖Ah‖22

=
N∑

i=1

λi

∥∥∥A
[
(
1

2
− µ)(hmax (dk) + h(1))− 1

2
µui

]∥∥∥
2

2

+ µ(1− µ)〈A(hmax (dk) + h(1)), Ah〉

≤ (1 + δtk)

N∑

i=1

λi

∥∥∥(1
2
− µ)(hmax (dk) + h(1))− 1

2
µui

∥∥∥
2

2

+ µ(1− µ)
√

1 + δtk‖hmax (dk) + h(1)‖2 · (2ε)

= (1 + δtk)

N∑

i=1

λi

[
(
1

2
− µ)2‖hmax (dk) + h(1)‖22 +

µ2

4
‖ui‖22

]

+ µ(1− µ)
√

1 + δtk‖hmax (dk) + h(1)‖2 · (2ε).

On the other hand, in view of the expression of βi,

N∑

i=1

λi

4
‖Aβi‖22 =

N∑

i=1

λi

4
‖A(hmax (dk) + h(1) + µui)‖22

≥
N∑

i=1

λi

4
(1− δtk)‖hmax (dk) + h(1) + µui‖22

= (1− δtk)
N∑

i=1

λi

4

(
‖hmax (dk) + h(1)‖22 + µ2‖ui‖22

)
.
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It follows from the above two inequalities and (29) that

0 =

N∑

i=1

λi

∥∥∥A
( N∑

j=1

λjβj −
1

2
βi

)∥∥∥
2

2
−

N∑

i=1

λi

4
‖Aβi‖22

≤(1 + δtk)

N∑

i=1

λi

[
(
1

2
− µ)2‖hmax (dk) + h(1)‖22 +

µ2

4
‖ui‖22

]

+ µ(1− µ)
√

1 + δtk‖hmax (dk) + h(1)‖2 · (2ε)

− (1− δtk)

N∑

i=1

λi

4

(
‖hmax (dk) + h(1)‖22 + µ2‖ui‖22

)

=
N∑

i=1

λi

{(
(1 + δtk)(

1

2
− µ)2 − 1

4
(1− δtk)

)

· ‖hmax (dk) + h(1)‖22 +
1

2
δtkµ

2‖ui‖22
}

+ µ(1− µ)
√

1 + δtk‖hmax (dk) + h(1)‖2 · (2ε)

≤
[
(1 + δtk)(

1

2
− µ)2 − 1

4
(1− δtk) +

δtkµ
2γ2

2(t− d)

]
X2

+

[
µ(1− µ)

√
1 + δtk · (2ε) +

δtkµ
2γ2P

t− d

]
X +

δtkµ
2γ2P 2

2(t− d)

=
[
(µ2 − µ) +

(1
2
− µ+ (1 +

γ2

2(t− d)
)µ2
)
δtk

]
X2

+
[
µ(1− µ)

√
1 + δtk · (2ε) +

δtkµ
2γ2P

t− d

]
X +

δtkµ
2γ2P 2

2(t− d)
.

Taking µ =

√
(t−d)(t−d+γ2)−(t−d)

γ2 , we obtain

− t− d+ γ2

t− d
µ2

(√
t− d

t− d+ γ2
− δtk

)
X2

+

(
t− d+ γ2

t− d
µ2

√
t− d

t− d+ γ2

√
1 + δtk · (2ε) +

δtkµ
2γ2P

t− d

)
X +

δtkµ
2γ2P 2

2(t− d)
≥ 0.

Namely,

µ2

t− d

[
− (t− d+ γ2)

(√ t− d

t− d+ γ2
− δtk

)
X2

+
(√

(t− d)(t− d+ γ2)(1 + δtk) · (2ε)

+ δtkγ
2P
)
X +

δtkγ
2P 2

2

]
≥ 0,
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which is a second-order inequality for X. Hence, we have

X ≤
{(

2ε
√

(t− d)(t− d+ γ2)(1 + δtk) + δtkγ
2P
)

+
[(

2ε
√

(t− d)(t− d+ γ2)(1 + δtk) + δtkγ
2P
)2

+ 2(t− d+ γ2)
(√ t− d

t− d+ γ2
− δtk

)
δtkγ

2P 2
]1/2}

·
(
2(t− d+ γ2)

√
t− d

t− d+ γ2
− δtk)

)−1

≤
√

(t− d)(t− d+ γ2)(1 + δtk)

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

(2ε)

+

2δtkγ
2 +

√
2(t− d+ γ2)(

√
t−d

t−d+γ2 − δtk)δtkγ2

2(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

P.

From (23) and the representation of P , it is clear that

‖h−max(dk)‖1 ≤‖hmax(dk)‖1 + 2
(
ω‖xT c

0
‖1 + (1− ω)‖x

T̃ c∩T c

0
‖1
)

=‖hmax(dk)‖1 + P
√
kγ.

It follows from Lemma 2.2 that

‖h−max(dk)‖2 ≤ ‖hmax(dk)‖2 +
Pγ√
d
.
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Thus, we have the estimate of ‖h‖2 by the above inequalities

‖h‖2 =
√

‖hmax(dk)‖22 + ‖h−max(dk)‖22

≤
√

‖hmax(dk)‖22 +
(
‖hmax(dk)‖2 +

Pγ√
d

)2

≤
√
2‖hmax(dk)‖2 +

Pγ√
d

≤
√
2‖hmax(dk) + h(1)‖2 +

Pγ√
d

=
√
2X +

Pγ√
d

≤
√

2(t− d)(t− d+ γ2)(1 + δtk)

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

(2ε)

+

(√
2δtkγ

2 +

√
(t− d+ γ2)(

√
t−d

t−d+γ2 − δtk)δtkγ2

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

+
γ√
d

)
P

=

√
2(t− d)(t− d+ γ2)(1 + δtk)

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

(2ε)

+

(√
2δtkγ

2 +

√
(t− d+ γ2)(

√
t−d

t−d+γ2 − δtk)δtkγ2

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

+
γ√
d

)
2
(
ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1
)

√
kγ

=

√
2(t− d)(t− d+ γ2)(1 + δtk)

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

(2ε)

+

(√
2δtkγ +

√
(t− d+ γ2)(

√
t−d

t−d+γ2 − δtk)δtk

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

+
1√
d

)
2
(
ω‖xT c

0
‖1 + (1− ω)‖x

T̃ c∩T c

0
‖1
)

√
k

.

If tk is not an integer, taking t′ = ⌈tk⌉/k, then t′k is an integer and t < t′. Thus we have

δt′k = δtk <

√
t− d

t− d+ γ2
<

√
t′ − d

t′ − d+ γ2
.

Then we can prove the result the same as the proof above by working on δt′k. So, we obtain (19).

Next, we prove (21). The proof of (21) is similar to the proof of (19). We only need to replace

(26) and (27) with the following (31) and (32), respectively. We also can get (21).
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‖ATAh‖∞ = ‖ATA(x̂DS − x)‖∞
≤‖AT (Ax̂DS − y)‖∞ + ‖AT (y −Ax)‖∞
≤2ε, (31)

〈A(hmax (dk) + h(1)), Ah〉 = 〈hmax (dk) + h(1), ATAh〉
≤‖hmax (dk) + h(1)‖1‖ATAh‖∞
≤
√
tk‖hmax (dk) + h(1)‖2 · (2ε). (32)

This completes the proof of Theorem 3.1. �

Proof of Theorem 3.2. For d = 1, we have γ = ω + (1 − ω)
√
1 + ρ− 2αρ ≤ 1. Moreover, for all

ε > 0 and k ≥ 6
ε , we define

m′ =
1 +

√
1− γ2

γ2

(
t− 1 +

√
(t− 1)(t− 1 + γ2)

)
k

and N ≥ k + m′. Since t ≥ 1 +

(
1−
√

1−γ2
)2

γ2+2
(
1−
√

1−γ2
) , we obtain m′ ≥ k. Let m be the largest integer

strictly smaller than m′, then m < m′ and m′ −m ≤ 1. We take

x1 =
1√

k + mk2

m′2

(1, . . . , 1︸ ︷︷ ︸
k−αρk

,− k

m′ , . . . ,−
k

m′︸ ︷︷ ︸
ρk

, 1, . . . , 1︸ ︷︷ ︸
αρk

,− k

m′ , . . . ,−
k

m′︸ ︷︷ ︸
m−ρk

, 0, . . . , 0) ∈ R
N ,

if m > ρk; or take

x1 =
1√

k + mk2

m′2

(1, . . . , 1︸ ︷︷ ︸
k−αρk

,

m︷ ︸︸ ︷
− k

m′ , . . . ,−
k

m′ , 0, . . . , 0︸ ︷︷ ︸
ρk

, 1, . . . , 1︸ ︷︷ ︸
αρk

, 0, . . . , 0) ∈ R
N ,

if m ≤ ρk. It is easy to know ‖x1‖2 = 1. Define the linear map A : RN → R
N by

Ax =

√√√√1 +

√
t− d

t− d+ γ2
(x− 〈x1, x〉x1)

=

√

1 +

√
t− 1

t− 1 + γ2
(x− 〈x1, x〉x1),

for all x ∈ R
N . Then for any ⌈tk⌉−sparse vector x, we get

‖Ax‖22 =

(
1 +

√
t− 1

t− 1 + γ2

)(
‖x‖22 − |〈x1, x〉|2

)
.
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Hence, using Cauchy-Schwarz inequality and the fact that m′ ≥ k, m′ −m ≤ 1 and

m′2 + k2(t− 1)

m′2 +m′k
=

2
√
t− 1(

√
t− 1 + γ2 −

√
t− 1)

γ2
,

we have

0 ≤|〈x1, x〉|2 ≤ ‖x‖22 ·
∑

i∈supp(x)
|x1(i)|2

≤‖x‖22 · ‖x1,max (⌈tk⌉)‖22

=‖x‖22 ·
m′2 + k(⌈tk⌉ − k)

m′2 +mk

≤m′2 + k2(t− 1) + k

m′2 +mk
‖x‖22

=
m′2 + k2(t− 1) + k

m′2 +m′k
· m

′2 +m′k
m′2 +mk

‖x‖22

=
m′2 + k2(t− 1) + k

m′2 +m′k
· 1

1− k(m′−m)
m′2+m′k

‖x‖22

=
m′2 + k2(t− 1)

m′2 +m′k
· m

′2 + k2(t− 1) + k

m′2 + k2(t− 1)
· 1

1− k(m′−m)
m′2+m′k

‖x‖22

≤2
√
t− 1(

√
t− 1 + γ2 −

√
t− 1)

γ2
· (1 + 1

tk
) · 1

1− 1
2k

‖x‖22

≤2
√
t− 1(

√
t− 1 + γ2 −

√
t− 1)

γ2
· (1 + 3

k
)‖x‖22

≤
(
2
√
t− 1(

√
t− 1 + γ2 −

√
t− 1)

γ2
+

3

k

)
‖x‖22.
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Consequently,
(
1 +

√
t− 1

t− 1 + γ2
+ ε

)
‖x‖22

≥
(
1 +

√
t− 1

t− 1 + γ2

)
‖x‖22 ≥ ‖Ax‖22

≥
(
1 +

√
t− 1

t− 1 + γ2

)
·
(
1− 2

√
t− 1(

√
t− 1 + γ2 −

√
t− 1)

γ2
− 3

k

)
‖x‖22

=

[(
1 +

√
t− 1

t− 1 + γ2

)
·
(
1− 2

√
t− 1(

√
t− 1 + γ2 −

√
t− 1)

γ2

)

−
(
1 +

√
t− 1

t− 1 + γ2

)
3

k

]
‖x‖22

=

[
1−

√
t− 1

t− 1 + γ2
−
(
1 +

√
t− 1

t− 1 + γ2

)
3

k

]
‖x‖22

≥
(
1−

√
t− 1

t− 1 + γ2
− ε

)
‖x‖22,

which deduces δtk ≤
√

t−1
t−1+γ2 + ε. Next, we define

x0 = (

k−αρk︷ ︸︸ ︷
1, . . . , 1,

ρk︷ ︸︸ ︷
0, . . . , 0,

αρk︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) ∈ R

N ,

η0 = (0, . . . , 0︸ ︷︷ ︸
k−αρk

,
k

m′ , . . . ,
k

m′︸ ︷︷ ︸
ρk

, 0, . . . , 0︸ ︷︷ ︸
αρk

,
k

m′ , . . . ,
k

m′︸ ︷︷ ︸
m−ρk

, 0, . . . , 0) ∈ R
N , if m > ρk,

or η0 = (0, . . . , 0︸ ︷︷ ︸
k−αρk

,

m︷ ︸︸ ︷
k

m′ , . . . ,
k

m′ , 0, . . . , 0︸ ︷︷ ︸
ρk

, 0, . . . , 0︸ ︷︷ ︸
αρk

, 0, . . . , 0) ∈ R
N , if m ≤ ρk,

where ‖x0‖1,w = k, ‖η0‖1,w ≤ m · k
m′ < k. Obviously, x0 is k−sparse, x1 = 1√

k+mk2

m′2

(x0 − η0) and

‖η0‖1,w < ‖x0‖1,w. In view of Ax1 = 0, we have Ax0 = Aη0.

Thus, in the noiseless case y = Ax0, suppose that the weighted l1 minimization method (7) can

exactly recover x0, i.e., x̂ = x0. According to the definition of x̂ and y = Aη0, it contradicts that

‖η0‖1,w < ‖x0‖1,w = ‖x̂‖1,w.
In the noise case y = Ax0 + z, suppose that the weighted l1 minimization method (7) can

stably recover x0, i.e., lim
z→0

x̂ = x0. We observe that y − A(x̂ − x0 + η0) = y − Ax̂ ∈ B, thus
‖x̂‖1,w ≤ ‖x̂− x0 + η0‖1,w. As z → 0, ‖x0‖1,w ≤ ‖η0‖1,w. It contradicts that ‖η0‖1,w < ‖x0‖1,w.

Hence, the weighted l1 minimization method (7) fails to exactly and stably recover x0 based on

y and A. �
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