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Sensitivity-Based Region Selection in the Steered

Response Power Algorithm

Daniele Salvati, Carlo Drioli, Gian Luca Foresti

Department of Mathematics, Computer Science and Physics, University of Udine

Abstract

The steered response power (SRP) algorithm is a well-studied method for

sound source localization using a microphone array. Recently, different im-

provements based on the accumulation of all time difference of arrival (TDOA)

information have been proposed in order to achieve spatial resolution scala-

bility of the grid search map and reduce the computational cost. However,

the TDOA information distribution is not uniform with respect to the search

grid, as it depends on the geometry of the array, the sampling frequency, and

the spatial resolution. In this paper, we propose a sensitivity-based region

selection SRP (R-SRP) algorithm that exploits the nonuniform TDOA in-

formation accumulation on the search grid. First, high and low sensitivity

regions of the search space are identified using an array sensitivity estimation

procedure; then, through the formulation of a peak-to-peak ratio (PPR) mea-

suring the peak energy distribution in the two regions, the source is classified

to belong to a high or to a low sensitivity region, and this information is used

to design an ad hoc weighting function of the acoustic power map on which
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the grid search is performed. Simulated and real experiments show that the

proposed method improves the localization performance in comparison to the

state-of-the-art.

Keywords:

acoustic source localization, microphone array, SRP-PHAT, sensitivity

map, region selection

1. Introduction

Sound source localization using microphone arrays received significant

attention by the scientific community due to its importance in acoustic scene

analysis, signal enhancement, and speaker recognition and tracking [1, 2, 3,

4, 5, 6].

In general, the localization can be computed with indirect and direct

methods. The former are based on the computation of a set of time difference

of arrivals (TDOAs), obtained by measurements across various combinations

of microphones [7, 8], and on the estimation of the source position using geo-

metric reasoning [9, 10, 11]. Direct methods are based on the steered response

power (SRP) beamformers [12, 13, 14], on subspace algorithms [15, 16, 17],

or on maximum-likelihood estimators [18, 19, 20]. They are very attractive

for acoustic applications due to their robustness in noisy and reverberant

conditions.

The conventional SRP algorithm is based on the delay-and-sum beam-

forming technique [21]. Broadband SRP is typically implemented with the

phase transform (PHAT) pre-whitening [7], which provides a normalization

of narrowband SRPs and increases the spatial resolution [22]. This allows
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a better identification of direct path and early reflections in a reverberant

environment. SRP-PHAT has the advantage that it can be computed by con-

sidering the generalized cross-correlation (GCC) [7] between each microphone

pair, and by summing TDOA values related to the search space [13]. This

implementation is computationally more efficient if compared to methods

that require a computation of narrowband SRP maps and their fusion [22].

However, the search procedure can be very expensive. Thus, iterative volume-

search-based procedures have been recently proposed [23, 24, 25], which aim

at reducing the computational complexity of this step. These methods take

into account the accumulation of TDOA information [26, 24, 25] to achieve

the reduction of the spatial grid resolution without loss of information, and

uses sequentially volumetric refinement steps for increasing the localization

accuracy.

It has been demonstrated, using the geometrically sampled grid (GSG) al-

gorithm [27], that the accumulation of all TDOA values from GCC functions

is not uniform within the search space, and as a consequence the acoustic

map is characterized by high and low sensitivity regions. The advantage of

using all TDOA information is to obtain a robust localization in the high sen-

sitivity region with adverse noisy and reverberant conditions. If the sound

source is located in a low sensitivity region, however, its localization is more

prone to be unstable and affected by errors. This is due to the fact that

the acoustic map energy peak corresponding to the actual source position

might be lower than the peaks corresponding to noise and reverberation in

the high sensitivity region, emphasized by the prominent TDOA accumula-

tion. SRP-based methods that use all TDOA information were proposed in
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[26, 24, 27]. In [23], it was also proposed a SRP method that uses all TDOA

information, providing however a power normalization in each volume with

respect to the number of TDOA values. This approach mitigates the problem

due to the nonuniform TDOA accumulation, but also reduces the robustness

in the high sensitivity region. In [25], a SRP method based on the use of

two grids (a coarser one, and a finer one) was proposed. This method uses

an uniform TDOA accumulation in each volume, mitigating the problem of

nonuniform distribution, but it discards part of the information available,

reducing the TDOA accumulation that can be positively used in the high

sensitivity region.

In this paper, we consider the localization of a single source in noisy and

reverberant conditions. This scenario can be of interest in different practical

applications such as videoconferencing systems or in human-computer inter-

action systems. With the aim of using all the TDOA information from the

GCC functions and of exploiting the robustness in the high sensitivity re-

gion, we propose a sensitivity-based region selection SRP algorithm, named

R-SRP, which is organized in two steps: first, it establishes if the source

is positioned in a high or low sensitivity region, through the formulation of

a peak-to-peak ratio (PPR) measuring the peak energy distribution in the

high and low sensitivity regions of the array, determined through the GSG

algorithm. Then, it proceeds with the search of the acoustic source in the

selected region using, when opportune, the sensitivity function to weight the

power acoustic map and reduce the impact of noise. It will be shown that

this array sensitivity-informed method effectively reduces the localization er-

rors due to the nonuniform distribution of the TDOA accumulation in the
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power acoustic map.

2. Steered Response Power

Let us consider a reverberant room G, M microphones positioned at

coordinates rm = [xm, ym, zm]
T (m = 1, 2, . . . ,M), where (·)T denotes the

transpose operator, and a single source rs(k) = [xs(k), ys(k), zs(k)]
T active

at time k. The SRP-PHAT based on all the TDOA information can then be

expressed in terms of GCC functions as [13, 26, 23, 24, 27]

φ(r, k) =
M−1∑

m1=1

M∑

m2=m1+1

τmax
m1m2

(r)∑

τ=τmin
m1m2

(r)

Rm1m2
(τ, k), (1)

where r = [x, y, z]T ∈ G is a generic grid position with spatial resolution

∆, τmin
m1m2

(r) and τmax
m1m2

(r) denote the bounds of the accumulated TDOAs

between the microphone m1 and m2 for the position r, and the GGC-PHAT

[7] function is

Rm1m2
(τ, k) =

1

2π

∫ π

−π

Xm1
(w, k)X∗

m2
(w, k)

|Xm1
(w.k)X∗

m2
(w, k)|

ejwτdw, (2)

where τ is the time lag, w is the angular frequency, Xm(w, k) is the trans-

form of the signal observed at microphone m, (·)∗ denotes the complex con-

jugate, j denotes the imaginary unit, and | · | denotes absolute value. The

GCC-PHAT is computed in the frequency domain using the discrete Fourier

transform, and hence the SRP is computed on a block-by-block basis. If

τmin
m1m2

(r) = τmax
m1m2

(r), equation (1) represents the conventional SRP-PHAT

algorithm [13]. The accumulation limits can be determined with different
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strategies which can rely on the gradient of the inter-microphone time delay

function corresponding to each microphone pair in the M-SRP [26], on the

gradient of the inter-microphone time delay function exploiting the mean of

the accumulated GGC-PHAT values for each volume in the I-SRP [23], on

the surrounding cube taking into account vertices of the volume in the H-

SRP [24], or on discrete representations of the the hyperboloids related to

all possible TDOA values in the GSG-based method (G-SRP) [27].

Once the array steered response power funtion φ(r, k) is available, the

source position can be estimated by searching its maximum in the search

region

r̂s(k) = argmax
r

[φ(r, k)]. (3)

3. Geometrically Sampled Grid

The proposed R-SRP algorithm extends the G-SRP [27] algorithm by

including a region selection procedure. The G-SRP is based on the GSG

method, in which the search space is obtained by discretizing, with a given

spatial resolution, the hyperboloids representing the surface on which the

TDOAs are constant, and by finally computing a grid related to the inter-

sections between these discrete curves. It thus allows the accumulation of

the whole TDOA information provided by the GCC functions into the search

space, the design of an acoustically-coherent space grid, and the design of a

sensitivity map.

Let now consider the dicretization of the search space G with a spatial

resolution ∆. A discrete hyperboloid related to a microphone pair (m1,m2)

and a TDOA τm1m2
can be represented as a finite set Λτm1m2

of points in R
3,
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describing the hyperboloid when the x, y, and z-axis are discretized with spa-

tial resolution ∆ (for a detailed discussion on the hyperboloid discretization

procedure, see [27]).

In the implementation of the G-SRP, the discrete hyperboloids and the

TDOA information are stored in four look-up tables. The tables are com-

puted off-line, and then used on-line to estimate the acoustic energy and

computing the accumulation of the GCC-PHAT function information due to

all the sensor pairs involved. To each discrete hyperboloid point, we assign

an index q, so that we have a table γr(q) for the position, a table γp(q) for

the pair index, and a table γτ (q) for the TDOA. The last look-up table, δ(r),

is the GSG sensitivity map, which contains the number of all the discrete

surfaces intersecting in the position r. The sensitivity map provides informa-

tion on the distribution of TDOAs into the search space, and thus it defines

a measure of the localization accuracy of the array and a mean to identify

those areas for which it is more accurate.

If we call Tm1m2
= fix

(
||rm1

−rm2
||fs

c

)
the maximum TDOA in samples for

the sensor pair (m1,m2), where fix(·) denotes the round toward zero opera-

tion, fs is the sampling frequency, c is the speed of sound, and || · || denotes

Euclidean norm, we have (2Tm1m2
+ 1)M(M − 1)/2 discrete hyperboloids.

The procedure to build the GSG grid and the sensitivity map δ(r) is given

by the following steps:

1. Initialize δ(r) = 0 for all r ∈ G and of index q=0;

2. For each sensor pair (m1,m2) and for all TDOA values τm1m2
in the

range [-Tm1m2
,Tm1m2

], calculate the discrete hyperboloid Λτm1m2
, and

for each grid position r ∈ Λτm1m2
, fill the look-up tables γr(q), γp(q),
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Algorithm 1 GSG Algorithm
M : number of microphones
∆: spatial resolution
Initialization: for each grid position r ∈ G, δ(r) = 0, q = 0
for m1 = 1 to M − 1 do

for m2 = m1 + 1 to M do

for τm1m2
= −Tm1m2

to Tm1m2
do

Calculate the discrete hyperboloid Λτm1m2

for all r ∈ Λτm1m2
do

γr(q) = r, γp(q) = [m1,m2]
T , γτ (q) = τm1m2

δ(r) = δ(r) + 1
q=q+1

end for

end for

end for

end for

Apply the constraint δ(r) < µ ⇒ δ(r) = 0, ∀r ∈ G

Update γr(q), γp(q), and γτ (q),
Calculate the GSG grid Γr = {r : δ(r) 6= 0}.

and γτ (q), incremet by one the value of the look-up table δ(r), and

increment q by one;

3. After the geometric discrete analysis of the hyperboloids has termi-

nated, apply the constraint δ(r) < µ ⇒ δ(r) = 0, ∀r ∈ G, where

µ = 3 and µ = 2 in case of 3D and 2D localization, respectively.

The constraint has the goal of discarding those space grid points that

are useless for the localization. Finally, update the look-up tables

γr(q), γp(q), and γτ (q), and calculate the acoustically-coherent GSG

grid Γr = {r : δ(r) 6= 0}.

The GSC algorithm is summarized in Algorithm 1.
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Finally, we can write the G-SRP as

φ(r, k) =
M−1∑

m1=1

M∑

m2=m1+1

∑

z∈Zr,m1m2

Rm1m2
(γτ (z), k), (4)

where

Zr,m1m2
= {q : [γr(q) = r] ∧ [γp(q) = [m1,m2]

T ]}, (5)

are the look-up table indices corresponding to the TDOAs for the position

r ∈ Γr of the sensor pair (m1,m2).

4. Sensitivity-Based Region Selection

We model the power function φ(r, k) given by (1) as the sum of the

contribution of the source φs(r, k) and the contribution of noise φv(r, k). For

simplicity, we drop the time index k from now on. If we assume that the

noise component φv(r) has normal distribution N(0, σ2), we can write the

acoustic map as

φ(r) = φs(r) + φv(r) = φs(r) + σ2δ(r). (6)

Note that the noise component σ2 is related to the noise actually present in

the GCC-PHAT functions. If we consider that the source is not active, we

can write that Rm1m2
(τ) = σ2, and we can see from (1) that the accumulation

of TDOA values in each grid position is given by the number of sample values

from all sensor pairs, i.e the information contained in the sensitivity map δ(r),

resulting in φv(r) =
∑M−1

m1=1

∑M

m2=m1+1

∑τmax
m1m2

(r)

τ=τmin
m1m2

(r)
σ2 = σ2δ(r). According

to [27], we can divide the search space sensed by the array into two regions
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with different sensitivity:

H = {r ∈ G : δ(r) ≥ η},

L = {r ∈ G : δ(r) < η},
(7)

where H and L denote the high and low sensitivity region respectively, and

η is a threshold computed as

η =
max[δ(r)] + min[δ(r)]

2
, (8)

with max[·] and min[·] denoting the maximum value and the minimum value,

respectively. Based on the available data, i.e. the power function φ(r) and the

function δ(r), with r ∈ G, a rough region classification criterion would check

if the maximum of φ(r) was found in L or H, and assign the source to that

region. Figure 1 and 2 represent two qualitative examples of SRP functions

for the source in H and L, respectively. Due to the additive noise component,

this criterion would misclassify the region in those cases in which, even though

the source is located in L (i.e, φs(r)’s maximum is in L), the maximum of

φ(r) is found in H due to the additive noise component, amplified in H by

the function δ(r) (see Figure 2). The opposite situation, i.e. occurring when

the source is in H but the maximum of φ(r) is found in L, is very unlikely

since the function δ(r) is low-valued in this region and would hardly be

responsible for a high-energy noise peak able to affect the global maximum.

We thus aim at improving the baseline criterion by finding a more effective,

data-dependent threshold for the region selection. We define the following
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Source in H

Figure 1: A schematic representation of the SRP profile along x axis when the source is
positioned in the high sensitivity region.

peak-to-peak ratio

PPR =
max
r∈H

[φ(r)]

max
r∈L

[φ(r)]
, (9)

which is a measure of the difference between the maximum energy peak in

the high sensitivity region and the one in the low sensitivity region. The

baseline criterion would classify the source as belonging to L if PPR < 1,

and to H otherwise. Since this criterion can be assumed robust for PPR < 1

(and thus maximum of φ(r) in L), we will focus on the PPR ≥ 1 case in

what follows.

Let us call r̄ the position of φ(r)’s maximum, and let suppose now that

the source is actually positioned in the high sensitivity region H. From what
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Source in L

Figure 2: A schematic representation of the SRP profile along the x axis when the source is
positioned in the low sensitivity region and the maximum of the overall region is positioned
in the H region.

said so far, we can assume that r̄ will fall in H and thus restrict the maximum

search to the high sensitivity region, i.e. r̄ = argmax
r∈H

[φ(r)]. We can say in

this case that

max
r∈L

[φs(r) + σ2δ(r)] ≈ max
r∈L

[σ2δ(r)], (10)

i.e. the contribution of the source will be negligible in the computation of

the SRP maximum in L. We can thus write the PPR as

PPR =
max
r∈H

[φs(r) + σ2δ(r)]

max
r∈L

[σ2δ(r)]
=

φs(r̄) + σ2δ(r̄)

σ2max
r∈L

[δ(r)]
. (11)
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Since it is max
r∈L

[δ(r)] = η, equation (11) leads to the condition PPR ≥ δ(r̄)
η
.

We can now show that this threshold also correctly classifies the sensitivity

region when the source is located in L but the maximum of φ(r) is found in

H due to the effect of noise. In this case, we can write

max
r∈H

[φs(r) + σ2δ(r)] ≈ max
r∈H

[σ2δ(r)] = σ2δ(r̄), (12)

and the peak-to-peak ratio becomes

PPR =
σ2δ(r̄)

max
r∈L

[Φs(r) + σ2δ(r)]
<

δ(r̄)

η
. (13)

We can thus adopt the following L-H classification criterion:

r̂s ∈





L if PPR < 1,

L if 1 ≤ PPR < δ(r̄)
η
,

H if PPR ≥ δ(r̄)
η
.

(14)

We can now note that

1 ≤
δ(r̄)

η
≤

max[δ(r)]

η
. (15)

The threshold for the PPR region selection will be equal to 1 when δ(r̄) = η,

i.e when the maximum of the power response is positioned on the boundary

between the two regions. In this case, the amplification of the noise in the

high sensitivity region is ininfluent. On the other hand, we have a larger

noise amplification when δ(r̄) > η, which is ininfluent on the classification

if the source is in H, but might affect it if the source is in L. Therefore, a
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threshold value larger then 1 has the effect of compensating the amplification

of noise due to the sensitivity of the array and to improve the decision on

which is the region where the source should be searched.

When the PPR criterion selects the high sensitivity region as the searching

region, the source position is estimated as

r̂s = argmax
r∈H

[φ(r)]. (16)

On the other hand, when the PPR criterion indicates to search in the low

sensitivity region, the source is localized by searching the maximum of the

steered response power, uniformed through the array sensitivity map:

r̂s = argmax
r∈L

[φ(r)
δ(r)

]
. (17)

This equation provides a more robust sound localization in the region L, since

it permits to reduce the nonuniform accumulation and the ambiguity that

may arise when the maximum value for the L region is positioned close to the

boundary of the two regions. Figure 3 illustrates the situation in which the

L region maximum is positioned close to the boundary and it is larger than

the source maximum (continous line). Equation (17) provides an uniform

TDOA accumulation (dotted line) that allows the correct estimation of the

source position in this case. The proposed R-SRP increases the localization

accuracy in the low sensitivity region keeping an high accuracy in the high

sensitivity region due to the accumulation of all TDOA information. Note

that by using an uniform steered response power in the overall region, the lo-

calization performance in the high sensitivity region considerably degrades,
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Source in L

Figure 3: A schematic representation of the SRP profile along x axis when the source is
positioned in the low sensitivity region and the L region maximum is not positioned on
the source position.

since the mean operation attenuates the TDOA accumulation in the grid

points corresponding to the highest number of hyperboloid intersections. An

example of uniform steered response power in the overall region was pro-

posed in [23] (I-SRP), in which the normalization allows the reduction of the

problem due to nonuniform accumulation. However, it also discards part of

the information in the high sensitivity region that can be positively used to

improve the localization performance in that region [27].
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5. Region Selection Steered Response Power

The implementation of the R-SRP method can be divided in two steps. In

the off-line step, the sampled space grid is computed with the GSG method

(Algorithm 1) providing the look-up tables (γr(q), γp(q), γτ (q)), linking the

all TDOA values of the microphone pairs with the grid positions in space, and

the sensitivity function δ(r). From equation (7), the high- and low-sensitivity

regions cn be identified, providing two sets of discrete grid positions, H and

L, one for each region. In the on-line step, the G-SRP is computed on

a frame-by-frame basis to estimate the source position. For each analysis

frame, the R-SRP is computed through the following steps:

1. The values from the estimated GCC-PHAT functions are accumulated

in the grid map (4);

2. The maximum values of the SRP for the low and high sensitivity regions

are identified, and the PPR is estimated through equation (9);

3. By using the classification criterion in (14), the region selection is com-

puted to estimate the area in which the source is positioned;

4. The source position is finally estimated using (16) or (17), depending

on whether it was estimated to lie in the high or in the low sensitivity

region.

6. Experimental Results

Experiments for the 2D sound source localization on simulated data and

on real-world data are reported. We compare the performance of the pro-

posed R-SRP algorithm, with the following ones: SRP [13], M-SRP [26] ,
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I-SRP [23], H-SRP [24], and G-SRP [27]. Note that we not consider the

volumetric refinement steps of I-SRP and H-SRP, since we focus on the eval-

uation of localization performance with coarser grid. Hence, the same grid

resolution was used for all SRP methods. Specifically, the spatial resolution

∆ was set to 0.25 m and 0.5 m in two different experiments. We have used

a coarser grid since it allows the reduction of the computational cost, and

it may be used to compute a further volumetric refinement step for increas-

ing the localization accuracy [23, 24]. Performance is reported in terms of

root mean square error (RMSE) and of accuracy rate (AR) for the estimated

source that is inside the area surrounding the grid point given by the spatial

resolution ∆:

|x̂s(k)− xs(k)| ≤
∆

2
,

|ŷs(k)− ys(k)| ≤
∆

2
.

(18)

6.1. Simulation

The localization performance has been evaluated with several Monte

Carlo simulations, using 100 run trials for each condition test. The image-

source model was used to simulate reverberant audio data in room acoustics

[28, 29]. A room of (9 × 6 × 3) m was used. The tests were conducted

with different signal-to-noise ratios (SNRs), which were obtained by adding

mutually independent white Gaussian noise to each channel. A randomly

distributed sensor array of 8 microphones was used. The room setup, the

sensitivity map, and the high and low sensitivity regions with ∆=0.25 m

are shown in Figure 4. Both microphones and the source were positioned

at a distance from the floor of 1.3 m. A speech signal source was randomly

17
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Figure 4: The simulated room with the position of 8 microphones, the sensitivity map and
the high and low sensitivity regions with spatial resolution ∆ = 0.25 m.
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Figure 5: The power response maps for a source positioned in the high sensitivity region
for the R-SRP and I-SRP in a frame with RT60 = 0.7 s, SNR= 20 dB and spatial resolution
∆ = 0.25 m. R-SRP localizes correctly the source position.

located in each trial so that the minimum distance between walls was 0.4 m

and the minimum distance between source and microphones was 0.2 m. The

sampling frequency was 44.1 kHz and the analysis frame was 8192 samples.

Table 1 and Table 2 report the AR and the RMSE localization perfor-

mance for the whole search space Gs with spatial resolution ∆ = 0.25 m and

∆ = 0.5 m, respectively. The reverberant time (RT60) was set to 0.3 s. As

it can be observed, the R-SRP algorithm delivers a better performance than

other SRP-based methods. We can especially see the improvement due to

the region selection operation of the R-SRP in comparison with the G-SRP
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Figure 6: The power response maps for a source positioned in the low sensitivity region for
the R-SRP and G-SRP in a frame with RT60 = 0.7 s, SNR= 20 dB and spatial resolution
∆ = 0.25 m. R-SRP localizes correctly the source position.

Table 1: AR (%) and RMSE (m) localization performance in Gs with RT60 = 0.3 s and
spatial resolution ∆ = 0.25 m using simulated data.

SNR (dB) R-SRP G-SRP SRP M-SRP I-SRP H-SRP

20 AR 77.20 77.11 50.75 72.73 65.72 67.79
RMSE 0.147 0.296 0.628 0.244 0.330 0.261

10 AR 74.00 71.15 48.82 68.16 64.85 64.02
RMSE 0.356 0.607 0.816 0.526 0.351 0.534

0 AR 63.36 58.82 32.62 58.17 55.99 54.95
RMSE 0.891 1.135 1.798 1.051 0.928 1.018

when the SNR decreases.

Next, Table 3 and 4 show the results of two simulations with ∆ = 0.25

m and ∆ = 0.5 m for a RT60 of 0.7 s and a SNR of 20 dB. The tables

report also the AR an RMSE localization performance for the two regions

Hs (high sensitivity) and Ls (low sensitivity). R-SRP outperforms other

methods for both spatial resolutions in the overall region Gs. R-SRP has a

similar AR and RMSE in the Hs region if compared to other accumulated

TDOA methods (G-SRP, M-SRP, H-SRP), and a better AR in the Ls region
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Table 2: AR (%) and RMSE (m) localization performance in Gs with RT60 = 0.3 s and
spatial resolution ∆ = 0.5 m using simulated data.

SNR (dB) R-SRP G-SRP SRP M-SRP I-SRP H-SRP

20 AR 77.59 74.24 35.64 74.76 48.19 67.42
RMSE 0.342 0.562 1.169 0.541 0.825 0.528

10 AR 73.07 68.43 34.90 70.39 51.33 63.85
RMSE 0.532 0.786 1.384 0.733 0.776 0.709

0 AR 64.28 58.97 23.55 61.73 47.99 56.61
RMSE 0.946 1.115 2.219 1.022 1.120 0.996

if compared to the I-SRP, that, however, has a better RMSE in the Ls, but

it provides a minor localization performance in the Hs region since it uses an

uniform steered response power by computing the mean of the accumulated

GGC values for each volume. Figures 5 and 6 show the comparison of power

response maps, in which we can see the effective correct localization of the

source with the R-SRP. In Figure 5, we can observe how the uniform steered

response power in the I-SRP reduces the robustness in the high sensitivity

region. In Figure 6, we can see the localization improvement due to the

proposed region selection. In accordance to [26, 27], the conventional SRP

degrades the localization accuracy when a coarser grid is used due to the loss

of information of GCC functions, which are not linked with any grid position.

6.2. Real Data

Real-world tests have been computed in a room of dimensions (6.4× 3×

3.6) m, and a RT60 of 0.6 s. A grid resolution ∆ of 0.25 m was used for all

SRP methods. A distributed array of 6 microphones was positioned with a

distance from the floor of 0.88 m. Four source positions have been considered:

s1 and s4 located in the low sensitivity region, and s2 and s3 located in
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Table 3: AR (%) and RMSE (m) with RT60 = 0.7 s, SNR= 20 dB and spatial resolution
∆ = 0.25 m using simulated data.

Region R-SRP G-SRP SRP M-SRP I-SRP H-SRP

Gs AR 67.46 60.53 35.11 58.55 54.59 52.82
RMSE 0.948 1.445 1.746 1.297 1.017 1.302

Ls AR 44.30 30.86 29.86 29.01 36.06 24.69
RMSE 1.299 2.021 1.790 1.813 0.958 1.821

Hs AR 90.621 90.197 40.363 88.090 73.121 80.95
RMSE 0.329 0.309 1.702 0.280 1.073 0.279

Table 4: AR (%) and RMSE (m) with RT60 = 0.7 s, SNR= 20 dB and spatial resolution
∆ = 0.5 m using simulated data.

Region R-SRP G-SRP SRP M-SRP I-SRP H-SRP

Gs AR 62.48 55.01 23.32 58.00 37.62 51.80
RMSE 1.122 1.539 2.135 1.316 1.340 1.286

Ls AR 42.51 27.09 25.37 29.92 38.43 26.77
RMSE 1.433 2.112 2.242 1.815 1.060 1.766

Hs AR 82.45 82.93 21.27 86.07 36.81 76.83
RMSE 0.682 0.523 2.022 0.414 1.572 0.433

the high sensitivity region. A source speech signal was reproduced with a

loudspeaker at each position. Figure 7 depicts the room setup, the sensitivity

map, and the sensitivity regions calculated with the GSG algorithm with

∆ = 0.25 m. The result of localization performance are reported in Table 5

for the whole search space Gr. We can observe that the R-SRP algorithm

outperforms the other SRP methods, providing an accuracy rate of about

36% whereas the others reach a 26% accuracy rate at best.
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Figure 7: The real room with the position of 6 microphones and 4 sources, the sensitivity
map, and the high and low sensitivity regions with spatial resolution ∆ = 0.25 m.

Table 5: AR (%) and RMSE (m) with spatial resolution ∆ = 0.25 m using real data with
RT60=0.6 s.

Region R-SRP G-SRP SRP M-SRP I-SRP H-SRP

Gr AR 36.09 23.13 10.681 26.318 23.272 25.181
RMSE 1.334 1.671 1.788 1.576 1.818 1.824

7. Conclusions

A sensitivity-based region selection method for the SRP-PHAT using

GSG accumulated TDOA functions was presented. The proposed R-SRP

is based on a definition of a PPR between high and low sensitivity regions

calculated by the GSG algorithm. A classification criterion taking into ac-

count the sensitivity map was formulated. Our experiments demonstrate

that the error of localization can be reduced especially when the source is

positioned in the low sensitivity region.
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