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Joint DOA and Frequency Estimation
with Sub-Nyquist Sampling

Liang Liu and Ping Wei

Abstract—In this paper, to jointly estimate the frequency equal to or larger than the Nyquist sampling rate which is
apd the direction-of-arrivaI(DOA) Of. the na(rowband far-fi eld considered as a bottleneck for wideband Signa| procesyng b
signals, a novel array receiver architecture is presented Yo the CRs. For instance, it leads to prohibitive Nyquist sampling
concept of the sub-Nyquist sampling techniques. In particiar, . ' . .
our contribution is threefold. i) First, we propose a time- rate and massive ;ampllng data to be processed if the spectru
space union signal reception model for receiving array sigals, Nneeded to be monitored from 300 MHz to several GHz [1]-[5].
where the sub-Nyquist sampling techniques and arbitrary aray To deal with the problem of high sampling rate, recently,
geometries are employed to decrease the time-domain sammdi  the sub-Nyquist sampling technique has been proposed to
rate and improve the DOA estimation accuracy. A better joint  yoconsiryct a multiband signal from the data obtained under
estimation is obtained in the higher time-space union space ) . . .

i) Second, two joint estimation algorithms are proposed fo the Nyquist sampling ratel [11]=[14]. .Inlsp|red. by_the idea,
the receiving model. One is based on a trilinear decomposiin  S0Me methods were presented for the joint estimation of DOA
from the third-order tensor theory and the other is based on and carrier frequency based on sub-Nyquist sampling rates.
subspace decomposition. iii) Third, we derive the correspwling  The authors of[[15] suggested a new structure, where each
Crameér-Rao Bound (CRB) for frequency and DOA estimates. In 4,4t of g linear array is carried out through the multietos
the case of the branch number of our architecture is equal to . L .
the reduction factor of the sampling rate, it is observed tha the sampling. In [[15,] the minimum redundancy array (MRA) is
CRB is robust in terms of the number of signals, while the CRB €mployed to estimate the DOA of more uncorrelated sources
based on the Nyquist sampling scheme will increase with respt  than sensors. In this way, the wide-sense stationary szl

to the number of signals. In addition, the new steer vectors o he compressed in both the time domain and the spatial domain.
the union time-space model are completely uncorrelated uret The frequency and DOA estimation accuracy are limited by

the limited number of sensors, which improves the estimatio th . Iof block | th and t .
performance. Furthermore, the simulation results demonstate e reciprocal of block length and array aperture, respelgti

that our estimates via the receiver architecture associatewith And it need a two-dimensional (2D) peak searching to get the
the proposed algorithms closely match the CRB according tohte  frequency and DOA estimation from the 2D power spectrum.

noise levels, the branch number and the source number as well To simplify the hardware complexity, an additional ideatic
delayed channel for each antenna is suggested in [16]. terei
Index Terms—Direction-of-arrival estimation, frequency esti- the problem of pairing ambiguity will arise using an under-

mation, sub-Nyquist sampling, Crarmér-Rao Bound. lying uniform linear array (ULA). And then[[17] proposed
a structure, which has the same hardware complexity as that
[. INTRODUCTION of [16]. In [18], the authors proposed the so-called spave-t

OINT estimation of carrier frequency and direction ofirray to jointly estimate frequency and DOA when the number

arrival (DOA) for multiple signals is desired in manyOf sources is more than the number of sensors. However, those
practical applications. For example, Cognitive Radio (CRyethods in[[1F7],[[18] are limited to ULA because they make
technique might be a good way to cope with the probleHf€ of the rotation invariance property of ULA. More recgntl
of the spectral congestiohl[1[2[5]. One of the most impdrtafvo joint DOA and carrier frequency recovery approaches
functions of CRs is to detect locally idle spectrum and theased on the L-shaped ULAs are presented_in [19]. However,
make the spectrum access from the concept of spectréthof these papers did not give a unified signal receptionehod
sensing. Generally, there are three dimensions of spectr{fhthe array receivers.
space, i.e., time, frequency and space. With the developmenPealing with the problem of joint frequency and DOA
of array processing techniques [6]-[8], the spatial spectr €stimation, it is widespread that the spatial samplings are
or DOA of a signal can be thought as a new approach less because of limited sensors number, and the temporal
improve the performance of CRs. Therefore, more effort hag@mplings are enough. A kind of very natural viewpoint is
been spent on how to jointly estimate carrier frequenciédntly considering in both time domain and space domain. If
and their DOAs of multiple signal$ ][9] T10]. Unfortunatgly We unite time and space domain through elaborately modeling
both of them exist at least two shortcomings. One is the paf¢ Will have more chances to classify targets. Because the
matching problem for the carrier frequencies associatétl whifferences between vectors from not only spatial space but

the DOAs. The other is that time domain sampling rate @lso temporal space will be reserved in the new union space,
besides, the differences between vectors in the new union
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the time-space union space in this paper. Because the nelere x (t) = [x1 (¢), -,z (¢)] is the measurement
vectors in the union space have bigger differences and lesstor, s (t) = [sy(t),---,sx (t)]" is the vector of all
correlation, we can better classify the targets based on #ignal values, where the signals are uncorrelaieft) =
differences from not only frequency domain but also spatiét, (¢),--- ,na (t)]" is the zero-mean complex spatially
domain. and temporarily white Gaussian noise vector, whose vari-
In this paper, a new array receiver architecture is proposeghce isc2. As the most widely used array, who also de-
Associated with two sub-Nyquist sampling based methods, wige many non-uniform linear array, the ULA is taken into
simultaneously estimate the frequencies and DOAs of melticonsideration. The array manifold matrix has the form as

narrowband far-field signals impinging on a array, wherA=[a(¢;), --,a(¢x)], where array steel vectar (¢x) =
signals’ carrier frequencies spread around the whole wigt&p (j$0),--- ,exp (jor (M —1))]", and spatial phase
spectrum. It is noteworthy that the array is not limited toAJL wdsin (05) fr

The other arrays can be applied to gain their advantage asich bk = Ny )

MAR can achieve a higher estimation accuracy than ULA with ) ) )
same sensor number. Since the reception model of our recefyfere d is the distance between two consecutive antennas

makes use of the result on Kronecker product, the joint DOR half-wavelengths corresponding to the Nyquist sampling
and frequency estimation will benefit from it. In additiohet "at€ fv, 0k and fj, are the DOA and the center frequency
Cramér-Rao Bound (CRB) for spatial phase estimation is al@f & (), respectively. The sensor position vectords =
derived based on this model. It is proven that the CRB is ngb 1" » M — 1]d. Note that the array is not limited to ULA
affected by the signal number when the branch number for our receiver architecture and algorithms in the next few
our architecture is equal to the sampling rate reductiotofac S€Ctions. _ _

while the CRB using Nyquist sampling will increase accogdin  1he frequency domain output can be written as

to the signal number. In other words, our model's CRB is X(f)=AS(f)+N(f), (3)

lower than the CRB which employs Nyquist sampling. Finally, T

the simulations confirm the above conclusion on CRB aj'g_‘ere X = T (X1 (f), - X (N, S (f) P

the superior performance of the proposed methods from thrgé ()= S (F] and_N (f) = [Nl (f)s-- Nar (f)]
the frequency domain expression oft), s(t), n(t),

aspects: noise level, the number of branch, and the numbefbt i ; !
source as well respectively.X,, (f) is the Fourier transform of,, (¢).
This paper is organized as follows: in Section Il, we degcri

. . . o Objective statement
the basic array signal model and point out the objective of o ] ) ] )
this paper. In Section II, the proposed receiver architect The objective of this paper is to simultaneously estimage th

is presented, and a new signal reception model is derived.GffTier frequency’; and DOAG; of multiple signalssy (t). To

Section IV, two joint DOA and frequency estimation methodachieve t_h|s goal, we will introduce the novel methods under

for the receiver architecture are proposed. In Section V, Wee Nyquist sampling rate as follows.

deduce the corresponding CRB and demonstrate the result o

CRB. Section VI carries out the simulation experiment and

finally the conclusions of this paper are given in Section. VII
The following notations are used in the pager. , ()", and

(-} denote the transpose, Hermitian transpose, and Moo
Penrose pseudo-inverse, respectivély.) stands for the ex-
pectation operator; is the jth entry of a vectox. A;, A7,
and A;; are theith row, thejth column, and, j)th entry of
a matrix A, respectively®, ©, and* denote the Kronecker o Receiver architecture
product, Hadamard product, and Khatri-Rao product, respec
tively. I, stands for anV/ x M identity matrix.

PROPOSED RECEIVER ARCHITECTURE AND SIGNAL
RECEPTION MODEL

Now, we modify the traditional array signal receiver ar-
chitecture and introduce the sub-Nyquist sampling teamiq
[0 the architecture to reduce sampling rate. In this eacti
a novel architecture is presented and the correspondinglsig
reception model is derived.

Our receiver architecture is shown in [Elg.1. We apply the
multi-coset sampling([14] in Figll as representative of-sub
Nyquist sampling technology. In Figl 1, there avé sensors
and every sensor is followed bk delay branches. All the

In this section, we will give the array signal model and\DCs are well-synchronized and sample at a sub-Nyquist
fundamental assumptions as well as the objective of thispagsampling rate offs,, = fn/L, where fy = 1/Ty is the

Nyquist sampling rate and is the sampling rate reduction

A. Array signal model factor, whereTy is Nyquist sampling interval. The constant

ConsiderK narrowband far-field signals impinging on arp€lC = la1, -+, cpl is referred to the sampling pattern where
<e¢ <cg<---<cp < L—1.ymp[n] denotes the sampled

array composed ol (M > K) sensors. It is assumed that . )
y b (M > K) signal corresponding to theth sensorpth branch.

the signals’ center frequencies are separate widely. Tthes, The average sampling rate of the multi-coset sampling is
narrowband far-field signals can be modeled as multiband
signals in [14]. The array output can be written s [6] f = Pfn (4)
L )
x(t) = As(t) +n (1), (1) which is lower than the Nyquist ratgy when P < L.

Il. SIGNAL MODEL AND OBJECTIVE
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Then, combining alln can result in

Y [”]
Ty » _ .
T Y(f)=(A®B)S(f)+TueB)N() (10
: N A ag S
(1) yp ] SGS()+IsN(f).f € F, (11)
1 - _
Cpin
T A~
yMl[n] W/tjere Y(f)/\: [YT;F(f)va]r{{[(f)} ’ N(f) =
il /4 ) [NIT (f), -, N (f)} . Actually, Y (f) in (IQ) is the ma-
trix form of the output of all branches of all sensors.
: nLTy Becausesy, (t) is a narrowband signal, there is only one
Ty (t) j( Yup [n] frequency band which is occupied 8y, (f). Further,S; (f)
G- — > is a sparse vector of length when k& is fixed and there is
only one index ( marked as), which is activated. Since it is
Fig. 1. Proposed receiver architecture. assumed that those signals’ carrier frequencies are faeket,
any two signals are not in the same sub-band. Naniglig
not equal tol; for any i # j. Q = [l1,--- ,lx] denotes the
B. Signal reception model activated index set 08y, (f) and B. Further,S(f) is a K-

According to the conclusion of [14], the relationship beSParse vector of length'Z. The support indes§ of S (f) and
tween the discrete-time Fourier transfoirf,, (e72"/7~) of G is determined as
the signaly,,,,, [n] and the Fourier transfordy,, ( f) of x, (¢)

is as follows. Sk=(k—1)L+ . (12)
1 & o
J2mfTnY Juiad
Yoy (e ) LTy ;eXp (‘7 L C”l) Xt (£), With the knowledge ofS, (I1) can be written as
0<p<PfeF2I0,fou)- (5) s
Y (f) =GsS™ (f) +1sN(f) (13)

The matrix form of [b) is expressed as s R
=(AxBqo)S (f)+IsN(f),feF.  (14)

where Y,,, (f) = [V (e/27T) oo Yop (eﬂ"fTN)}T, Remark 1. It is clear that [(6) and[{7) are the sub-Nyquist
X () = [Xoa(f), -, XmL (f)]T, X (f) = sampling model and DOA model, respectively. If we just sev-
X (f+(=1) fow), Ba = —exp(j3Fel). For erally consider the frequency estimation and DOA estinmatio

convenience, we multiply both sides of](6) byLTy in (®) and [T), we will meet the match problem and can not
to normalize the row vectors ofB. Then redefine comprehensively classify the targets. The target claasibio
B; £ LL exp (j%”cil), Youp (f) £ \/ETNYmp (erﬂfTN)' can be jointly handleq in a union space based on eq_u@n (13)
From [3), where the compressive sampling can be applied in time and
R space domain, respectively. As shown in [Hig.2 and explained
Xt (f) = AnSi (f) + Nou (f),1 <1< L, f€F, (7) in section |, we have more chances and better performance to
classify the targets in the time-space union domain. In $erm

Q T
where S;(f) = [Su(f), - Sxi(NH]" Su(f) = of the performance, we will further study in Section V. On
Sk (f "‘_ (= 1) fsup)y N (f) = Ni (f + (1 = 1) foup)- the contrary, [[15] gives the 2D power spectrum instead of
In matrix form, [7) can be expressed as reception model. In[[16],[T17], the sub-Nyquist sampling is

e _ S 3 Iso applied to array receiver, but only separate models are
X, (f) =1, ®A,,)S N, (f), .8 & ; e
(f) = (I ® Am) S (f) + (f).fer ® given. Besides, those methods[inl[17].][18] are limited toAUL

A = a T because they make use of the rotation invariance property of
_ T ... QT _
where S(f) = [S% (f):-. 81 (f)} » N () = ULA. Their receiver can not employ other particular array to
(N1 (f) 5+ s Net ()] make use of those arrays’ advantages.
Substituting [B) into[{6), we get In (@Q), since the Khatri-Rao product is used to unify the
Y. (f)=B(I,®A,) S (f) + Bﬁm (f) frequency domain and spatial domain into a two-dimensional

matrix form, this equation can be viewed from the perspectiv
of third-order tensor. We will discuss the third-order tens
in the next section. On the other handdf is regarded as a

_ . T _ special array manifold, the subspace decomposition thesry
where S(f) = LSI (f)-- Sk (f)} o Sk(f) = pe employed. Of course, the different perspectives wilivder
[Skr (), Sk (f)] - different methods, which will be analyzed in detail.

=(An®@B)S(f)+BN,, (f),f€F,1<m< M,
9)
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IV. JOINT DOA AND FREQUENCY ESTIMATION TABLE |
ALGOR|THM ALGORITHM JDFTD
A. Algorithm based on trilinear decomposition 1) ObtainA, B, andS (f) using RALS according td15);
2) Gain gy, applying [16) or[(1F) toA;
It is easy to expres§ (I13) in element form as 3)  Determine(2;, according to[(IB); _ -
4)  Getsy (t) and f,, by applying IFFT, [IB) toS (f), sk (¢),

K consecutively;
5) Computef;, through [I9);
Yinp (f) = Z Ak Bpu, Sk, (f), f € F. (15) 6) Calculate@lzC through [2);

k=1

From [153),Y.., (f) can be regarded as a third-order tensd. Algorithm based on subspace decomposition

[20], [21]. This problem is different from the standarditiéar gecomposition theory(]7]. The covariance matrix Wi(f),
decomposition problem sinc® is known here. Even so, ¢ ¢ r s given by

we do not know which columns are activated. So, we can - - )

use the standard trilinear decomposition algorithm, sugh a R=E (Y ()Y (f)) =GsRgGg + o Lup, (20)
alternating least squares (ALS) [22] and regularized aéter whereRg, 021, p are the source and noise covariance matrix,
ing least squares (RALS) [23]._[24], where some sufficiemgspectively. [[20) makes use df;p = IgIE. In actual

conditions for uniqueness up to permutation and scalings gifuation, we can obtain the estimate of the autocovariance
the decomposition are provided. After the decompositiod, wnatrix through

can obtainA, B, andS (f). /L
Since not only every column vector 0% but also every R = 1 Zy(f)YH (f) (21)
row vector ofs () (the inverse discrete-time Fourier transform T/L =1

of S(f)) can be viewed as a single tone, periodogram {§hen 7 the snapshots of observation are sufficient.

applied on every column vector A or every row VeC-  appiving the singular value decomposition (SVD) R
tor of s(t) to achieve¢ or f maximum likelihood (ML) (esyits’in

estimation [[25]. The periodogram is briefly introduced in

the following. For anN-length single frequency sine wave R = UsDsUj + UyDy Uy, (22)
z(n) = exp (jwon),n = 1,2,---, N, the ML estimation for whereUg and Uy are signal subspace and noise subspace,
wo is realized through respectively. Since the signal subspace and the noise at#sp
N are orthogonal,
wp = arg Ir[10a§< : Z z (n)exp (—jwn)|. (16) a;(¢) LUy (23)
we (0,27
n=1 holds, wherea; (¢) = a(¢) x B;. Computing the pseudo-
Similarly, for an arbitrary array fornz = a(¢,), the ML spectra .
timation f i lized b _
estimation forgy is realized by (1, ¢) = . _ (24)
A ) Jalf (@)U
¢o = arg d)g[loi?;(ﬂ) ‘a (¢)Z" A7) and applying a peak search algorithe),, [, are obtained.

Further, we haveA, Q. %inceS can be solved by[{12), the
We determing through comparing the correlation coeffideast square solution @& (f) is given by
cient of the column betweeB andB as =S

ST (f)=GLY (f),f€F, (25)
(f;k)HBj whereGs = A = Bg. Similarly, f; andé, can be calculated
Qp = argmaxry; = |p—7—|,j=1,---,L. (18) through the step 4)-6) of Tablg I. We outline the main steps
J HB’“H IB7]| of this method named joint algorithm based on subspace
decomposition (JDFSD) in tablg II.
The received signal’s frequency estimatifnis obtained by V. CRAMER-RAO BOUND

applying periodogram tey, (¢). Besides, there is a relationship

i o oo In this section, we derive the CRB on the covariance matrix
betweenf, and the original signal’'s frequendf:

of any unbiased estimator of. If the signal autocorrelation

v = matrices are defined as
And then, oncep, and f; are known,f, can be acquired f=1
by (2). We outline the main steps of this method named joint A1 ME o _gH
algorithm based on trilinear decomposition (JDFTD) in ¢abl Rg = T/L S (Hs () (27)
Il f=1
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TABLE II whereRg is the covariance matrix of origindl” signals,u is
ALGORITHM JDFSD cross-correlation vector between the increased signaltlamd
. original signals,v is average power of the increased signal.
1) CalculateR according to[(2lL); R). d tes theth ord incinal mi det . t of
2)  GainUy by applying SVD toR; (R), denotes order principal minor determinant o
3) ComputeP (I, ¢) through [2%); R.
4)  Acquire ¢y, 1), by peak search algorithm, further, we hate Making use of the nested structure Af, and the matrix
2, andGs; inversion lemmal[27],

5) DetermineS” (f) according to[(2b);

6) Execute the step 4)-6) of Talile I. A+AT = AAT + U, (32)

holds after some matrix manipulations, whefd =
and accordmg to the exchangeability of summing and tw (I-AAT) )((I—AAT)a)H > 0 since

definition of S” (f), (I- AAT) is a projection matrix.
1 Taking [32) and the nested structureldf. into T leads to
Rs = —Rg (28) -
L (T4)x =T —-D"UD. (33)
holds. . H .
Based on the form oB, Rg = Iglg® = I,;p holds. Ir;t E easy to proof thaD"UD = 0 with U > 0. We thus
According to model[(7l0), the log- I|keI|hood function of the
dataY (f), f € F is given by (T+), =T -DYUD < T. (34)

T/L

InL = const — — Z ( G5§S (f))H (29)

To proceed, we give a proposition.
Proposition 1. For a Hermitian matridM, € C(K+DE+1)
if M =0, then(M;") . = (My)) "
' (Y (f) - GsS (f)) Proof: SinceM_ > 0 it can be decomposed ad, =

Comparing[[29) with APPENDIXE (E.1) iri[26], and makingtl+H, whereH.,. € C*** [27]. Dividing H.. into blocks
use of the conclusion of Section IV equation (4.6)(in [26p thaS H+ = [H, k] results in

CRB of our model is given by M HEH HYp M  HHp 35
o2 " - e { WH  hfh } {HHh hHh } (35)
CRBsup = R((E"Pg.E) ©ORg _ o .
b 2T/L( ( csE) ©Rg)) Making use of the matrix inversion lemma27],
2 - _ _ _ —
ST (R((E'PeE)oRE) T (0 (M) =M UEVEMT = (M) (@9)

_ i _ 1 —1HL T (V-1 HH
where Pg, = I - GsGl, whereGl, = (GHGs) G, holds sinceV = prgggry (M™"H'h)~ (M™'H"A)

|y

dGs,
E = [Ey,--- ,Ex], E; = —5=. For comparing, the CRB _ H (1 ¥
which employs the Nyquist sampllng (marked as GRB[26] Note thatTy = Dy (I AJF.A*) D, =0, R_f = 0,
is rewritten here. R (T ®RY) = 0 holds. Making use of propositidd 1, we
52 ) then obtain
H H\\ ™
CRByy =g (R(DTPAD)ORS)) G (1, 0Ry) ™) = (T, 0B,

Whl\?:(tp %vei \}wl_l ?h%j/v ]t)hatC[]I;L)]g |sDIg\}ve]r) thar?g;nB = (T QRS))_I

st Y = (R(TORs)) (37)

when the branch number of our architecture is equal to the
sampling rate reduction fac_torP(z _L). At this pc_>int, on Considering CRR/,+ _ %(% (T+ @RE))*1
the one hand, the sub-Nyquist sampling and Nyquist sampll%%B (T o RH)) 1

obtain equal snapshot in the same time, on the other hand Ny = 2T

, We get

received data by sub-Nyquist sampling can just be viewed as _o? Hyy —1

the rearrangement of the received data by Nyquist sampling. (CRBwy+) ke = o ((8% (T+ ©RY)) )K

The proof will carry out in two steps: first, CRB, will o2 vy —1

increase with the number of souré€; secondly,CRB;,; is = ﬁ(% (T © RS)) =CRByy,.  (38)

not influenced by the number of source, and €¢iRB;,; is (38) shows that the estimate performance for —

equal to the minimum value of CRE,. ¢1,---,¢K] in the scene where there are only signals
For convenience, let us introduce the following notationyoy « is petter than that in the scene where there are both

A; =[A,d, Dy = [D,d, T, = DY (I - A+A+) D., theK signals from¢ and the increased signal frop ;1. In

T = D" (I- AAT) D, whereaq is the steer vector corre- other words, the increase of the number of DOA will degrade

sponding to the increased angle 1, d = dqul R, = the performance of DOA estimate. It is simplistic to coneud
Rs 1] . ) ) ) that the estimation variance is lowest when there is only one

[ i } is the covariance matrix of alk’ + 1 signals, gjgnal. After calculation, the lowest estimation variarise
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“Z(? % b, ¢ = a, b, b, VI. SIMULATION
a E_bg ¢, = ay % by Z’Z,bl In this section, we present some numerical simulations to
¢ illustrate the performance of the proposed algorithms.un o
‘E_C; AQZE =C @ examples, we consider some complex-valued narrowband far-
@) o) field non-coherent signals with equal power impinging on a
ULA composed ofM = 8 sensors which are separated by
Fig. 2. 2D union space. a half wavelength corresponding to Nyquist sampling rate,
which would probably be the signal highest frequency. In the
simulations, we fix the number of snapshotsiat 4000 for
Ww—l)' where signal-to-noise ratio (SNR) is definedNyqu?st sampl_ingTsub = T/ L for sub-Nyquist sampli_ng, the
asSNR — (E(|s(t)|2)/02). Nyquist sampling rate afy = 10 GHz, and the sampling rate

However, the performance of DOA estimation based Jﬁduction factor atL = 20.

the proposed model will not degrade with the increase ofThe root-mean-square error (RMSE)2 of DOA is defined as

the number of DOAs. It's easy to g8 = D * By since RMSE = \/Nm#K S ST, (05 — 0%) ", where the super-

Gs = A « Bg. We further hold that scripti refers to theth trial, V,,, denotes the number of Monte
Carlo tests. And the definitions of RMSE of spatial phase and
G3Gs = (A"A) ® (BGBg), (39) frequency are similar to that of DOA.
EHE — (DHD) o (BSBQ). (40) Later on, we will study the performance versus different

noise levels, different branch number, or different source
Thus, GEGs = (AHA) o 1, EFE = (AHA) © I hold number. We will compare our methods with ST-Euler-ESPRIT

when P = L. Based on above results and after some matri [18]. The receiver configuration parameters of ST-Euler-
manipulations, we know that the the estimation variancetbas=SPRIT are the same with ours. The delay is Nyquist sampling

on our model maintains %W(Mtl) all the time when interval Ty = 1/fxy. Hereon, we give the reasons why we
P = L. Consequently, whel = P, we have choose ST-Euler-ESPRIT: i) I [1L5], both frequency and DOA

estimation accuracy are low since they are limited by the
reciprocal of block length and the array aperture, respelgti

i) In terms of the hardware complexity, [17] and__[16] is
the simplified version[[18], and [18] has the same hardware
Remark 2. We can view [(4lL) from the physical perspectivegomplexity with our receiver. For the sake of fair, we congar
If we study the cross-correlatian; betweenB* andB’, i.e. our methods with[[18]. 20000 Monte Carlo trials for each

CRBsw = CRByy,whenK =1,

CRB,y; < CRBy,,whenk > 1. (41)

8ij = ’(Bi)HBJ",i £ 4, it will be easy to obtain example are implemented in this section.
{ §ij <1,P<L (42) A. Performance with noise
oij =0,P=1L "~ In this subsection, it will be shown that our model can be

solved by the proposed algorithm in different noise levéls.
add an array construction MRA to prove the validity of the
algorithm in this subsection. The MRA is composediéf= 8
sensors which are located at= [0, 1, 4, 10, 16, 22, 28, 30] d.

Since [39) and(42) hold, the cross-correlation of the nearst
vectorsGgs is lower than that of the primary steer vectaks

no matter whethel” is equal toL or not. Specifically, the
new steer vectors are completely uncorrelated when: L However ST-Euler-ESPRIT will be feasible only when ULA
in spite of the primary steer vectors are correlated. At thg employed

time, the new DOA estimation is equivalent to execution one In this subsection, we set the branch number= L.

by one in a scene where there is only one signal. This is : - Pfxn
. T anwhile, the average sampling rafte = —& is equal to
explanation why the performance of DOA estimation base[ 9 pling rate L d

del will not d d ih the | . f th e Nyquist sampling rate. We consider that the signal numbe
on our modet will not degrade wi € Increasing o = 3, and signals are from@ = [0, 02, 05], whereb,, 0,
DOA number while the performance of DOA estimation base . o o o o to o 5
. . U3 are subject td—12.5°, —7.5°], [-2.5°,2.5°], [7.5°,12.5°]
on the primary model will degrade. From the perspectiv

geometry, this situation is corresponding to Fig.2 (a). rehe niformly distribution, respectively. And the signal darrfre-
as long a{s the vectors in spaBeare orthogonal .vectoyrs in qyeqcyf = [f1 f2, fi] are S.UbJeCt t¢0'5’915] GHz uniformly
’ .distribution, and any two signals are not in the same sulatban

spaceC will be orthogonal no matter whether the vectors in Fig[3-FiglB depict the RMSE versus SNR in terms of spatial

spaceA are orth(_)gonal, even hf they are same. A more gene_rEl\ase, frequency, and DOA estimation, respectively.[Fig.3
case i.eP < L, is corresponding to Fig.2 (b), where even i hows that the phase estimation performance of algorithms

the vectors in space neithet nor 5 are orthogonal, vectorsJDFTD and JDFSD improves with SNR and achieves the
in spaceC will be Igss correlated, i.e., the angle betwgen_t RB.., when ULA or MRA is employed. Although ST-Euler-
Vectors in space is Iarger than before. In an Slij(?Ct.'veESPRIT has a similar trend, the performance is inferior to
sense, the cross-correlation of steer vectors reflectdasityi JDFTD and JDFSD when ULA is employed. And we also find
and identifiability of the DOA. The lower cross-correlatioh that the phase estimation performance of JDFTD and JDFSD
steer vectors, the easier they are to be distinguished. will improve obviously when MRA is employed since the
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=3 CRBg,p(MRA) 5} - soFTDULA)
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Y g

ucj ~~~~~ § X CRB,,(MRA)

[ Lo A A S U - -~ = JDFTD(MRA)
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.....
107
S *
.,
0 5 10 15 20 25 30 0 5 10 15 20 25 30
SNR (dB) SNR (dB)

Fig. 3. RMSE of phase estimates versus SNR. Fig. 4. RMSE of frequency estimates versus SNR.

MRA widens the array aperture. But ST-Euler-ESPRIT can
not employ the MRA as explained previously. As expected,
Fig[3 shows that CRB,, is lower than CRB;, whenL = P
and K > 1. This illustrates that our algorithms for the new
model can obtain a better phase estimation than the Nyquist
sampling structure.

Fig[4 demonstrates that the frequency estimation perfor-
mance of JDFTD and JDFSD can achieve the CRBBut
the frequency estimation performance of ST-Euler-ESPRIT i
obviously worse than JDFTD and JDFSD. From the view of
frequency estimation, employing the array receiving isatm . . " -
enhancing the SNR. So the frequency estimation performance SNR (dB)
is the same when the sensor number is the same whether the ]
array is ULA or MRA. Combined with the conclusion EHZS],F'Q' 5. RMSE of DOA estimates versus SNR.
the CRB,;, and CRBy, for frequency estimation are given
as follow whenT is sufficiently large.

CRB, (ULA)
3 CRB, (ULA)
+ JDFTD(ULA)
)¢+ IDFSD(ULA)
= ST-Euler-ESPRIT(ULA)
CRB, (MRA)
CRBg,, (MRA)
= JDFTD(MRA)

=€« IDFSD(MRA)

RMSE of DOA (°)

L L
20 25 30

Fig[@ shows that the phase (DOA) estimation performances

5 of algorithm JDFTD and JDFSD improve with the branch
1 6 1 f3%L

CRB,, = _ _— —INZ 43) number and reach the CRB when P is relatively large.
b (f) 12 SNRMT;’ P &5 JDFTD is slightly worse than JDFSD or CRRB. This is
CRBy, (f) = 161 f_N (44) because that the cross-correlation of the column vectdssisf
‘ Ar* SNR M T3 obviously great wherP is remarkably small and this leads to
It is particularly obvious thatCRB,; (f) = CRByy, (f) trilinear decomposition slow convergence. It is not sisipg
when L = P according to[(4B3). that the CRB,,; is lower than CRB;, when L = P. But

Comparing Figb with Figl3, it is concluded that the peme notice that this phenomenon still exists evén= 0.2L.
formances of DOA estimation and phase estimation have thhis illustrates that the benefit from the decrease of thesero
same trend. Because the sampling numtdein space domain correlation of steer vectors frorh (42) is much larger tham th
is much less than the sampling numfem time domain, the loss caused by the decrease of samplings. Namely, we can
phase estimation is worse than the frequency estimatissedarealize a much better phase and DOA estimation performance
on (), we know that the performance of DOA estimation iwith much less samplings. Fig.6 also shows that both JDFTD
mainly influenced by the phase estimation. Because of tlés, wnd JDFSD are superior to ST-Euler-ESPRIT with any branch
will only give the phase estimation simulation result rathenumbers, especially with small numbers.
than the DOA estimation simulation result in the following Fig[7 shows that the frequency estimation performances of

simulations. algorithm JDFTD and JDFSD are improved with the branch
. . number and achieve the CRB when P is relatively large.
B. Performance with various branch number The performances of JDFTD and JDFSD are slightly worse

In this subsection, we will investigate the estimation perf than the CRBy;. Obviously, CRB,; is higher than CRE,,
mance in the case of different branch number. The simulatiekcept P = L. However, the frequency estimation perfor-
conditions are the same with that in subsecfion VI-A exceptance of ST-Euler-ESPRIT is obviously worse than JDFTD
that the branch numbe?P changes from 4 to 20 at 2 intervaland JDFSD no matter how many branches there are.

- that is, the average sampling rafg = % changes from  We notice that when the average sampling rate is lower
0.2fn to fn at0.1fy interval. In this simulation, we employ than the Nyquist sampling rate whefe < L, the CRB for
a random sampling patteid. our model is lower than the conventional CRB in terms of
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C. Performance with various signal number

In this subsection, we will investigate the estimation per-
formance when the signal number changes. The simulation
conditions are the same with subsection VI-A except that
the signal numberK changes from 1 to 5 one by one
and only ULA is considered. We sat = [, 05, - -, 5],
where ¥; is subject to[105 — 2.5°,105 + 2.5°] uniformly
distribution, where; = -2, —-1,---,2, j = =2, —1,---,2
andi has no corresponding relationship withWe set DOA
0 = 91,99, -, 9k]. Letv = [v1,v2,--- ,v5] are subject to
[0.5,9.5] GHz uniformly distribution, at the same time any two
signals are not in the same one sub-band. The signal carrier
frequency is set af = [v1,ve, -+, Uk].

Fig[9 shows that the phase (DOA) estimation performances
of algorithm JDFTD and JDFSD are not influenced by the sig-
nal number and maintain CRE,. However, CRBy, increases
with the signal number, and increases faster than expaienti

DOA or spatial phase estimation, and the opposite happensifction of the signal number. Besides, CRBis equal to
terms of frequency estimation. However, the performance gkp_, only whenK = 1, otherwise CRR, is higher than
DOA or spatial phase estimation is usually far worse thaSrp . These results meet the analysis in sediion V. As for
that of frequency estimation because bf < T'. S0, We gT.pyler-ESPRIT, although it is also negligible effected b
care more about the performance improvement of DOA Qg signal number, its phase (DOA) estimation performasce i
spatial phase estimation than that of frequency estimatiQp,rse than JDFTD and JDFSD.

Namely, comparing with the performance improvement of g1 shows that the frequency estimation performances of

DOA or spatial phase estimation, the performance deg@uaty g orithm JDFTD and JDFSD are not influenced by the signal
of frequency estimation is insignificant.

RMSE of DOA (%)
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number and can reach CRRB. At the same time, CRB, is
equal to CRB,;, becauseP = L. The frequency estimation
performance of ST-Euler-ESPRIT is particularly worse than
that of JIDFTD and JDFSD as before.

VII. CONCLUSIONS

In this paper, for the scenario where several narrowband
far-field signals whose carrier frequencies are far sepdrat
impinging on an array, we designed an array receiver archi-
tecture by introducing the sub-Nyquist sampling technglog
We derived a time-space union signal reception model with
taking the spatial sampling and sub-Nyquist sampling into
consideration simultaneously. Meanwhile, we can decréeese
time-domain sampling rate and improve the DOA estimation
accuracy.

We proposed two joint DOA and frequency estimation algo-
rithms for this model, one is based on trilinear decompositi
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