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Abstract

The spherically invariant random process (SIRP) clutter model is commonly used in scenarios where the radar clutter cannot

be correctly modeled as a Gaussian process. In this short communication, we devise a novel Maximum-Likelihood (ML)-based

iterative estimator for direction-of-departure and direction-of-arrival estimation in the Multiple-input multiple-output (MIMO) radar

context in the presence of SIRP clutter. The proposed estimator employs a stepwise numerical concentration approach w.r.t. the

objective function related to the marginal likelihood of the observation data. Our estimator leads to superior performance, as our

simulations show, w.r.t. to the existing likelihood based methods, namely, the conventional, the conditional and the joint likelihood

based estimators, and w.r.t. the robust subspace decomposition based methods. Finally, interconnections and comparison between

the Iterative Marginal ML Estimator (IMMLE), Iterative Joint ML Estimator (IJMLE) and Iterative Conditional ML Estimator

(ICdMLE) are provided.
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1. Introduction

Multiple-input multiple-output (MIMO) radar has found

wide application in the past decades. By means of waveform di-

versity, MIMO radar allows significant improvement of perfor-

mance to be made as compared with the conventional phased-

array radar [1]. There exist in the literature abundant works to

investigate algorithms for target localization or to evaluate their

performances in MIMO radar contexts [2, 3, 4] mostly under

the umbrella of Gaussian clutter. The validity of the Gaussian

clutter assumption is rooted in the central limit theorem and is

realistic in the case of sufficiently large number of independent

and identically distributed (i.i.d.) elementary scatterers. In ap-

plications of high-resolution radars, the radar clutter exhibits

non-stationarity, and a Gaussian modeling of the clutter, be it

white or colored, deviates heavily from the real data and thus is

inadequate [5].

Non-Gaussian clutter scenarios have been first studied

through α-stable distribution and mixture noise distributions.

Nevertheless, the so-called spherically invariant random pro-

cess (SIRP) has, thanks to its ability to describe different

scales of the clutter roughness and to incorporate various non-

Gaussian distributions, become a favorite distribution family in
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the radar context [5, 6]. The latter is a two-scale, compound

Gaussian process which is a product of two components: the

texture and the speckle. The texture, which accounts for lo-

cal power changes, is the square root of a positive scalar ran-

dom process, whereas the speckle, which accounts for a local

scattering, is a complex Gaussian process. Though abounding

works have been dedicated to the estimation algorithms in the

SIRP clutter context with zero mean observations [7, 8, 9, 10],

there are, to the best of our knowledge, few works dealing with

jointly parameterized mean and parameterized covariance ma-

trix in the context of SIRP clutter [11, 12, 13]. Among these

few works, we can, first, cite the robust MUSIC (MUSIC-

Tyler) based on a robust fixed point Tyler estimate of the covari-

ance matrix [14], the robust covariation-based MUSIC (ROC-

MUSIC) [15], adapted for α-stable distribution, in which MU-

SIC method is applied to the covariation matrix instead of the

estimated covariance matrix and the RG-MUSIC [16] based on

the random matrix theory (namely, it takes into account the

Marcenko-Pastur distribution of the eigenvalues of the covari-

ance matrix to rectify its estimation). On the other hand, the

ℓp-MUSIC [17] is based on ℓp norm minimization with p < 2

in order to take into account impulsive noise. Finally, some al-

gorithms rely on robust mixtures noise as [13, 18], in which the

authors proposed respectively, ML based method in the pres-

ence of a mixture of K-distributed and Gaussian noise [13] and

ML based method in non-Gaussian noise with Gaussian mix-

tures [18].

In this short communication, we focus on the direction-of-

departure (DOD) and/or direction-of-arrival (DOA) estimation
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problems in the presence of SIRP noise/clutter, under an ar-

ray processing model and a MIMO radar model. In [11, 12],

the authors designed estimators based on the Iterative Condi-

tional Maximum Likelihood Estimator (ICdMLE) and the Itera-

tive Joint Maximum Likelihood Estimator (IJMLE), which are,

based on the conditional likelihood of the observations on the

texture realizations, and the joint likelihood between the two,

respectively. As a consequence, these two estimators are both

eo ipso suboptimal.

To overcome the algorithm suboptimality and the model lim-

itations in [11, 12] (as the existence of only one Coherent Pulse

Interval (CPI), the fact that DOD and DOA are assumed to share

same values), we propose in this short communication an iter-

ative ML estimator that is based on the marginal (exact) obser-

vation likelihood for a general MIMO radar model under SIRP

clutter, named the Iterative Marginal ML Estimator (IMMLE).

As our derivations will show, the MIMO model in this paper af-

ter matched-filtering can be transformed into the same structure

as the array processing model considered in [11], meaning that

the proposed IMMLE is directly applicable to the latter model

without any further generalization.

2. Model setup

2.1. Observation model

Consider a MIMO radar system with linear and possibly non-

uniform arrays both at the transmitter and the receiver. Further

assume that K targets are illuminated by the MIMO radar, all

modeled as far-field, narrowband, point sources [1]. The radar

output for the lth pulse in a CPI, and after matched filtering in

the case of transmission of orthogonal waveforms [19], reads:

Z(l) = 1√
T

Y(l)SH = K∑
k=1

√
Tαke2 jπ fk la(R) (θ(R)k ) aT

(T ) (θ(T )k )
+ N(l), for l = 0, . . . , L − 1 (1)

where L denotes the number of radar pulses per CPI; αk and

fk denote a complex coefficient proportional to the radar cross

section (RCS) and the normalized Doppler frequency of the kth

target, respectively; T is the number of snapshots per pulse,

θ
(T )
k and θ

(R)
k represent the DOD and DOA of the kth tar-

get, respectively; the transmit and receive steering vectors are

defined as a(T )(θ(T )k
) = [e j

2π sin(θ(T )
k

)
λ

d
(T )
1 , . . . , e j

2π sin(θ(T )
k

)
λ

d
(T )
M ]T

and a(R)(θ(R)k
) = [e j

2π sin(θ(R)
k

)
λ

d
(R)
1 , . . . , e j

2π sin(θ(R)
k

)
λ

d
(R)
N ]T , in

which M and N represent the number of sensors at the trans-

mitter and the receiver, respectively; d
(T )
i and d

(R)
i denote the

distance between the ith sensor and the reference sensor for the

transmitter and the receiver, respectively; λ stands for the wave-

length; N(l) denotes the received clutter matrix at pulse l; and(⋅)T denotes the transpose of a matrix.

By stacking the output in Eq. (1) into an MN × 1 vector de-

noted by z(l), we further have:

z(l) = vec{Z(l)} = A (θ) v(l) + n(l), l = 0, . . . , L − 1, (2)

in which A (θ) = [a (θ(T )1 , θ
(R)
1 ) , . . . , a (θ(T )K , θ

(R)
K )] de-

notes the steering matrix after matched filtering, where θ =
[θ(T )1 , θ

(R)
1 , . . . , θ

(R)
K ]T is a vector parameter introduced to

incorporate all the unknown DODs and DOAs of the tar-

gets, and, a (θ(T )k , θ
(R)
k ) = vec{a(R) (θ(R)k ) aT

(T ) (θ(T )k )} =
(IM ⊗ a(R) (θ(R)k

)) a(T ) (θ(T )k
) , in which IM stands for the

identity matrix of size M, and⊗ denotes the Kronecker product;

v(l) = [√Tα1e2 jπ f1l, . . . ,
√

TαKe2 jπ fK l]T ; n(l) = vec{N(l)}
denotes the clutter vector after matched filtering at pulse l; and

vec{⋅} stands for the vectorization of a matrix.

2.2. Observation statistics

We model the clutter vectors n(l), l = 0, . . . , L − 1 as in-

dependent, identically distributed (i.i.d.) Spherically Invariant

Random Vectors (SIRVs), which can be formulated as the prod-

uct of two components statistically independent of each other:

n(l) = √τ(l)x(l), l = 0, . . . , L − 1, in which the texture terms

τ(l), are i.i.d. positive random variables; the speckle terms x(l)
are i.i.d. MN-dimensional circular complex Gaussian vectors

with zero mean and second-order moments E{x(i)xH( j)} =
δi jΣ where Σ denotes the speckle covariance matrix, E{⋅} is the

expectation operator, δi j is the Kronecker delta. To avoid the

ambiguity in the model arising from the scaling effect between

the texture and the speckle, we assume that tr{Σ} = MN, in

which tr{⋅} denotes the trace. In this paper, we mainly focus on

two kinds of SIRP clutters that are prevalent in the literature,

namely, the K-distributed and the t-distributed clutters. In both

cases the texture is characterized by two parameters, the shape

parameter a and the scale parameter b:

• K-distributed clutter, in which τ(l) follows a gamma

distribution (denoted by τ(l) ∼ Gamma(a,b)), namely,

p(τ(l); a,b) = 1
Γ(a)ba τ(l)a−1e−

τ(l)
b , in which Γ(⋅) denotes

the gamma function.

• t-distributed clutter, in which τ(l) follows an inverse-

gamma distribution (denoted by τ(l) ∼ Inv-Gamma(a,b)),
thus, p(τ(l); a,b) = b

a

Γ(a)
τ(l)−a−1e

− b
τ(l) .

2.3. Unknown parameter vector and likelihood function

Under the assumptions above, the unknown parameter vector

of our problem is given by:

ξ = [θT
,R{α}T

,I{α}T
, f

T
, ζ

T
,a,b]T , (3)

in which α = [α1, . . . , αK]T is a complex vector parameter in-

cluding the RCS coefficients of all K targets, f = [ f1, . . . , fK]T
contains the normalized Doppler frequencies of the targets, ζ is

a M2N2-element vector containing the real and imaginary parts

of the entries of the lower triangular part of Σ, R{⋅} and I{⋅}
denote the real and the imaginary part, respectively.

Let z = [zT (1), ..., zT(L − 1)]T denotes the full observation

vector after matched filtering, and τ = [τ(0), . . . , τ(L − 1)]T
2



represents the vector of texture realizations at all pulses. The

full observation likelihood conditioned on τ can be written as:

p (z ∣τ; ξ̄ ) = L−1∏
l=0

exp(− ∥ρ(l)∥2

τ(l)
)

∣πΣ∣ τMN(l) ; (4)

in which ξ̄ = [θT
,R{α}T

,I{α}T
, f T
, ζT ]T is the unknown

parameter vector that does not contain the texture parameters a

and b, ∥⋅∥ denotes the norm of a vector, and

ρ(l) = Σ−1/2 (z(l) − A (θ) v(l)) , (5)

which represents the clutter realization at pulse l with its
speckle spatially whitened. The conditional likelihood in
Eq. (4), multiplied by p(τ; a,b), leads to the joint likelihood
between z and τ:

p (z,τ; ξ) = p(z ∣τ; ξ̄ ) p(τ; a, b) = L−1∏
l=0

exp (− ∥ρ(l)∥2
τ(l) )

∣πΣ∣ τMN(l) p(τ(l); a, b).
(6)

Finally, the full observation marginal (exact) likelihood, w.r.t.

ξ, is obtained by integrating out τ from the joint likelihood in

Eq. (6), as:

p (z; ξ) = ∫ +∞

0
p (z,τ; ξ) dτ = L−1∏

l=0
∫ +∞

0

exp(− ∥ρ(l)∥2

τ(l)
)

∣πΣ∣ τMN(l)
× p(τ(l); a,b)dτ(l). (7)

3. Iterative marginal maximum likelihood estimator

The derivation procedure of the IMMLE is presented in
this section. To begin with, let Λ denote the marginal Log-
Likelihood (LL) function, which is obtained from Eq. (7), as:

Λ = ln p (z; ξ) = −LMN lnπ−L ln ∣Σ∣+L−1∑
l=0

ln gMN (∥ρ(l)∥2 , a, b) , (8)

in which

gMN (∥ρ(l)∥2
, a, b) = ∫ +∞

0

exp (− ∥ρ(l)∥2
τ(l) )

τMN(l) p(τ(l); a, b)dτ(l)

=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 ∥ρ(l)∥a−MN
Ka−MN (2 ∥ρ(l)∥ /b 1

2 )
b

MN+a
2 Γ(a) ,K-distr. clutter,

b
a
Γ(MN + a)

Γ(a) (∥ρ(l)∥2 + b)MN+a
, t-distributed clutter,

(9)

where Kn(⋅) is the modified Bessel function of the second kind

of order n (cf. [20] for more details).
To begin with, we look for the estimates of the clutter param-

eters, i.e., of the speckle covariance matrix Σ, and the texture

parameters a and b. Let Σ̂ denote the estimate of Σ when all the
other unknown parameters are fixed, which can be obtained by
solving the equation ∂Λ/∂Σ = 0, as [10]:

Σ̂ = 1

L

L−1

∑
l=0

hMN (∥ρ(l)∥2 , a, b)⋅(z(l) − A (θ) v(l)) (z(l) − A (θ) v(l))H
,

(10)

in which

hMN (∥ρ(l)∥2
, a, b) = −

∂gMN(∥ρ(l)∥2 ,a,b)
∂∥ρ(l)∥2

gMN (∥ρ(l)∥2
, a, b)

=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ka−MN−1 (2 ∥ρ(l)∥ /b 1
2 )

b
1
2 ∥ρ(l)∥Ka−MN (2 ∥ρ(l)∥ /b 1

2 ) ,K-distributed clutter,

MN + a

∥ρ(l)∥2 + b
, t-distributed clutter.

(11)

Note that Σ̂ in Eq. (10) has an iterative nature, as can be seen

from the expression of ρ(l) in Eq. (5).

We further need to normalize Σ̂ to fulfill the assumption that

tr{Σ} = MN. Let Σ̂n denote the normalized estimate Σ̂, which

is:

Σ̂n = MN
Σ̂

tr{Σ̂} . (12)

Similarly, the estimates of a and b when other unknown pa-

rameters are fixed, denoted by â and b̂, can be found by equating

∂Λ/∂a and ∂Λ/∂b to zero, respectively, i.e., by solving numer-

ically:

∂Λ

∂a
= L−1∑

l=0

jMN (∥ρ(l)∥2 ,a,b)
gMN (∥ρ(l)∥2 ,a,b) = 0 (13)

and

∂Λ

∂b
= L−1∑

l=0

kMN (∥ρ(l)∥2 ,a,b)
gMN (∥ρ(l)∥2 ,a,b) = 0, (14)

w.r.t. a and b, respectively, in which

jMN (∥ρ(l)∥2 , a, b) = ∂gMN (∥ρ(l)∥2 , a, b)
∂a

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

baΓ(a) ∫
+∞

0
exp(−∥ρ(l)∥2

τ(l) −
τ(l)

b
) τ(l)−MN+a−1

⋅ (ln( b

τ(l)) +Ψ(a)) dτ(l), K-distributed clutter,

−
ba
Γ(MN + a)(ln( ∥ρ(l)∥2

b
+ 1) −Ψ(MN + a) +Ψ(a))

Γ(MN) (∥ρ(l)∥2 + b)MN+a
,

t-distributed clutter,

(15)

where Ψ(⋅) denotes the digamma function, and

kMN (∥ρ(l)∥2 , a, b) = ∂gMN (∥ρ(l)∥2 , a, b)
∂b

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ba+2Γ(a) ∫
+∞

0
exp(−∥ρ(l)∥2

τ(l) −
τ(l)

b
)

⋅ τ(l)−MN+a−1 ⋅ (τ(l) − ab) dτ(l),K-distributed clutter,

− ab
a−1
Γ(MN + a) (−a ∥ρ(l)∥2 + MNb)
Γ(a + 1) (∥ρ(l)∥2 + b)MN+a+1

, t-distr. clutter.

(16)

Next, we consider the estimate v̂(l), by solving ∂Λ/∂v(l) =
0, which reads

v̂(l) = (Ã
H (θ) Ã (θ))−1

Ã
H (θ) z̃(l), (17)

3



in which Ã (θ) = Σ− 1
2 A (θ) , and z̃(l) = Σ−1/2 z(l), represent-

ing the steering matrix and the observation at pulse l, both pre-

whitened by the speckle covariance matrix Σ, respectively.

As the expressions in Eqs. (10), (13), (14) and (17) suggest,

the estimation of each of the parameters a, b, Σ and v(l) re-

quires the knowledge of all the others of them, and furthermore

the knowledge of the parameter vector θ. This mutual depen-

dence between the unknown parameters makes it impossible to

concentrate the LL function analytically, i.e., to obtain a closed-

form expression for the LL function concentrated w.r.t. each of

the aforementioned parameters that is independent of the other

ones. Instead, we resort to the so-called stepwise numerical

concentration approach.

This approach consists in concentrating the LL function it-

eratively, by assuming that certain parameters are known from

the previous iteration. For the task under consideration, we as-

sume, at each iteration, that Σ̂, â and b̂ are known and use them

to compute v̂(l), which is then used in turn to update the val-

ues of Σ̂ and â and b̂ to be used in the next iteration. This

sequential updating procedure is repeated until convergence or

a maximum iteration number is reached.

Next, we turn to the estimation of θ. The approach explained

above allows us to drop all the constant terms in the LL function

(including those terms that contain only Σ, a and b as unknown

parameters, as these are assumed to be known at each iteration).

Furthermore, by inserting the expression of v̂(l) in Eq. (17) into

what remains in the LL function, we obtain the estimate of θ,

denoted by θ̂, as:

θ̂ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg min
θ

⎧⎪⎪⎨⎪⎪⎩
L−1∑
l=0

((MN − a) ln (∥P�
Ã(θ)

z̃(l)∥)

− ln Ka−MN (2 ∥P�
Ã(θ)

z̃(l)∥/b
1
2 ))⎫⎪⎪⎬⎪⎪⎭,K-distr. clutter,

arg min
θ
{L−1∑

l=0

ln(∥P�
Ã(θ)

z̃(l)∥2

+ b)} , t-distributed clutter.

(18)

in which P�
Ã(θ)
= IMN − Ã(θ) (Ã

H(θ)Ã(θ))−1

Ã
H(θ) is the or-

thogonal projection matrix onto the null space of Ã(θ). Finally,

the whole procedure of the IMMLE is summarized in Table. 1.

Remark 1: Let us recall the expression of θ̂ for the Conven-

tional ML Estimator (CvMLE), which treats the clutter as uni-

form white Gaussian distributed, denoted by CvMLE-U,

θ̂CvMLE−U = arg min
θ

L−1∑
l=0

∥P�A(θ)z(l)∥2

, (19)

as well as for both of the ICdMLE and IJMLE that we proposed
in [11, 12], which, adapted to the model in question, has the
following expression,

θ̂ICdMLE/IJMLE = arg min
θ

L−1

∑
l=0

1

τ̂ICdMLE/IJMLE(l) ∥P
�
Ã(θ) z̃(l)∥2

. (20)

Expression of θ̂CvMLE−U shows that the CvMLE-U considers

simply the sum of ∥P�A(θ) z(l)∥2

(the square of the norm of

the projection of the observation at pulse l onto the null space

of the steering matrix), while the ICdMLE and IJMLE, as the

expression of θ̂ICdMLE/IJMLE shows, consider the modified sum

of these terms (pre-whitened by the speckle covariance ma-

trix, and weighted by the inverse of the texture realization at

each pulse). It is precisely because of this modification that

the ICdMLE and IJMLE gain their advantages in performance

over the CvMLE-U. An iterative version of the CvMLE-U with

no assumption on the covariance matrix, denoted by ICvMLE,

can be easily derived, for which, the aforementioned conclu-

sions remain valid for the ICvMLE. On the other hand, we can

see from Eq. (18) that the proposed IMMLE considers, instead

of direct or modified sum of the projections, the sum of their

logarithms (modified by some algebraic operations), which is

equivalent to the product of them. Since a sum is small only

if all its terms are small, while a product can be small even if

only very few of its terms are small enough, we can conclude

that underlying this contrast between summation and multipli-

cation is a difference in essentia, that the CvMLE-U, ICvMLE,

ICdMLE and IJMLE treat all the pulses “equally”, whereas the

IMMLE focuses only on the “best” pulses. Due to space limi-

tation, refer to Table. 2 for a concise comparison between the

IMMLE, IJMLE and ICdMLE.

Remark 2: As is clear from the procedure above, our algo-

rithm does not entail the estimation of the RCS coefficients αk,

and the normalized Doppler frequencies fk, of the targets, but

rather only involves estimating the vectors v(l), which are func-

tions of them. Indeed, in applications where the estimation

of those parameters are of interest, one can naturally find the

ML or LS estimates of them by respectively equating an ade-

quate cost function to zero, and then complement our algorithm

accordingly. This, however, deviates from our topic, i.e., the

DOD/DOA estimation, and due to space limitation, it is not to

be discussed in this paper.

Remark 3: The convergence of the LL function is guaranteed

by the fact that the value of the objective function to calculate

θ̂, Σ̂, â and b̂ at each step can either improve or maintain but

cannot worsen. As the simulations will show, the convergence

of the estimates of the unknown parameters in θ can be obtained

by few iterations (one to two).

Remark 4: IMMLE has a computational complexity sightly

higher than ICvMLE, ML-GM, IJMLE and CdMLE. Indeed,

all of them possess a highly non-convex minimization step over

a 2K-dimensional parameter space, which is the most time-

consuming stage compared to the updating steps of the speckle

covariance matrix, Σ and the vector v (both of them mainly

based on analytical expressions) and the potential numerical

solving. Generally, a MUSIC-based algorithm has a lower

complexity than the ML-based one, except for ℓp-MUSIC al-

gorithm where the signal/noise subspaces construction is time-

consuming due to the ℓp norm minimization.

4. Cramér-Rao bound expression

The CRB w.r.t. target direction parameters in a MIMO radar

context in the presence of SIRP clutter has been derived in our

previous works [21], where we used an element-wise approach

4



The IMMLE procedures

Initialization i = 0, set â(0), b̂(0) to be two arbitrary positive numbers and Σ̂
(0)

n = IMN

Step 1 Iteration i, calculate θ̂
(i)

from Eq. (18) using â(i), b̂(i) and Σ̂
(i)

n

Calculate v̂(i)(l) from Eq. (17) using θ̂
(i)

, â(i), b̂(i) and Σ̂
(i)

n

Step 2 Update â(i+1) from Eq. (13) using θ̂
(i)

, v̂(i)(l), Σ̂(i)n , and b̂(i)

Update b̂(i+1) from Eq. (14) using θ̂
(i)

, v̂(i)(l), Σ̂(i)n , and â(i+1)

Update Σ̂
(i+1)

n from Eqs. (10) and (12) using θ̂
(i)

, v̂(i)(l), â(i+1) and b̂(i+1)

Set i← i + 1

Step 3 Repeat Step 1 and Step 2 until convergence

Table 1: Summarization of the proposed algorithm

ICdMLE IJMLE IMMLE

Likelihood Conditional Joint Marginal

Texture modeling Deterministic Stochastic

Considers τ Yes No

Considers a and b No Yes

Numerical solution of

equations
No Yes

Numerical integration No Yes

Computational com-

plexity
Lowest

Higher

than

ICdMLE

Highest

Iteration(s) required Two One

Requires texture distri-

bution
No Yes

Can be used for texture

parameters estimation
No Yes

Table 2: Comparison between ICdMLE, IJMLE and IMMLE

to calculate the Fisher information matrix (FIM). For the model

considered in this paper, where the size of the unknown signal

parameter vector (hence the dimension of the resulting FIM)

is much larger, a block-wise expression for the CRB w.r.t. the

signal DODs and DOAs (denoted by CRB (θ)) is required, the

result of which is presented below. The 2K × 2K CRB matrix

w.r.t. θ in the presence of SIRP clutter is given by:

CRB (θ) = ( 2κ

MN
R{L−1∑

l=0

HH(l)D̃H
P�

Ã(θ)
D̃H(l)})

−1

= MN

2κL
(R{(D̃

H
P�

Ã(θ)
D̃)⊙ P̂

T})−1

, (21)

in which

κ =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫ +∞0 xMN+a−1 K
2
a−MN−1(x)

Ka−MN(x)
dx

2MN+a−2bΓ(MN)Γ(a) , K-distributed clutter,

MNa(a +MN)
b(a + MN + 1) , t-distributed clutter,

(22)

where Kn(x) is the modified Bessel functions of the second
kind of order n, H(l) = I2 ⊗ diag{[v(l)]1 , . . . , [v(l)]K}, J2

is the all-ones matrix of size 2, P̂ = 1
L

J2 ⊗∑L−1
l=0 v(l)vH(l), and

D̃ = Σ− 1
2 [D(T ), D(R)]

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(T ) =
⎡⎢⎢⎢⎢⎣
∂a(θ(T ) ,θ(R))

∂θ(T ) ∣
θ(T )=θ(T )

1
,θ(R)=θ(R)

1

, . . . ,

∂a(θ(T ) ,θ(R))
∂θ(T ) ∣

θ(T )=θ(T )
K
,θ(R)=θ(R)

K

⎤⎥⎥⎥⎥⎦
D(R) =

⎡⎢⎢⎢⎢⎣
∂a(θ(T ) ,θ(R))

∂θ(R) ∣
θ(T )=θ(T )

1
,θ(R)=θ(R)

1

, . . . ,

∂a(θ(T ) ,θ(R))
∂θ(R) ∣

θ(T )=θ(T )
K
,θ(R)=θ(R)

K

⎤⎥⎥⎥⎥⎦

5. Numerical simulations

For simulations, we consider a MIMO radar comprising M =
3 sensors at the transmitter and N = 4 at the receiver, both with

half-wave length inter-element spacing. The DOD and DOA of

the first source are respectively 18○ and 20○, and of the second

source are 45○ and 40○. The coefficients α1 and α2 are chosen to

be 2 + 3 j and 1− 0.5 j, and the normalized Doppler frequencies

f1 and f2 are 0.3 and 0.8. There are L = 15 pulses per CPI, and

each pulse contains T = 5 snapshots. For K-distributed clutter,

we choose a = 2 and b = 10; and for t-distributed clutter, a = 1.1

and b = 2. The entries of the speckle covariance matrix Σ are

generated by [Σ]m,n = σ20.9∣m−n∣e j π
2
(m−n), m,n = 1, . . . ,MN, in

which σ2 is a factor to adjust speckle power. Each point of the

MSE in the figures is generated by averaging the results of 500

Monte-Carlo trials. The signal-to-clutter ratio (SCR) [22] is

defined by SCR = 1
L

∑
L−1
l=0 (A(θ)v(l))H(A(θ)v(l))

E{τ(l)}tr{Σ}
, in which E{τ(l)}

is equal to ab for a K-distributed clutter and b/(a − 1) for a

t-distributed clutter (for a > 1).

Figs. 1 and 2 investigate the performance of the proposed

IMMLE estimator compared to the classical MUSIC method
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based on the Sample Covariance Matrix (MUSIC-SCM) as

well, its robust version based on the well-known Tyler estimate

of the covariance matrix [14] (MUSIC-Tyler). Others robust

MUSIC based algorithms are also considered such as the RG-

MUSIC [16], the ℓp-MUSIC [17] and the ROC-MUSIC [15]

as well the MKG algorithm proposed in [13] and the ML-GM

[18]. Finally, we consider the ICdMLE, the IJMLE and the

ICvMLE, as well the derived CRB.

In Fig. 1 and 2, the MSEs are plotted versus SCR with a fixed

L, respectively versus the pulse number L with a fixed SCR.

It can be noticed that MUSIC-based algorithms, even the ro-

bust versions, do not outperform the proposed algorithm due

to a small number of pulses, which is a typical scenario in

radar application. The MKG algorithm assumes a mixture of K-

distributed and Gaussian noise, both of them, with a covariance

matrix equals to the identity, which explains its poor perfor-

mance. Whereas, the robust ML-GM is based on, empirically

defined number of, Gaussian mixture with identity covariance

matrix assumptions. Since, it is a ML estimator (i.e., an esti-

mator based on a parametric model), its accuracy deteriorates

if we deviate from the assumed model distribution. Concern-

ing the ICdMLE, IJMLE and the ICvMLE, their performances

are below the proposed algorithm. Consequently, from Figures

1 et 2, we can assess that the IMMLE outperforms the afore-

mentioned algorithms. The same behavior is noticed under the

t-distributed clutter whether it is MSE versus SCR with fixed

L or versus L with fixed SCR. Finally, the reader is referred to

Table. 2 for a concise comparison between the IMMLE, IJMLE

and ICdMLE.

Remark 5: It is worth mentioning that, the proposed IMMLE

estimates are approximation of the true ML estimates due to

the iterative stepwise procedure, in which we have to solve nu-

merically at each step three equations for the update of the pa-

rameters of the texture distribution and the speckle covariance

matrix. Thus these latter, are not exact solutions either. Fur-

thermore, it is worth mentioning that a theoretical analysis of

the efficiency of the estimator on θ is beyond the scope of this

paper. Nevertheless, from our extensive simulations, we believe

that our proposed algorithm would not be statistically efficient

(i.e., its MSE does not attain the CRB).

6. Conclusion

This paper is dedicated to the design of the exact ML DOD

and DOA estimation for MIMO radar in the presence of SIRP

clutter. Specifically, our proposed iterative estimator is based

on the marginal likelihood for which its related cost function

is solved using stepwise numerical concentration approach. Fi-

nally, interconnections with the existing based likelihood meth-

ods, namely, the conventional, the conditional and the joint like-

lihood based estimators are investigated theoretically and nu-

merically.
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Figure 1: MSE vs. SCR under K-distributed clutter, L = 15
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Figure 2: MSE vs. L under K-distributed clutter, SCR = 15 dB
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