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Abstract

In important applications involving multi-task networks with multiple objec-

tives, agents in the network need to decide between these multiple objectives

and reach an agreement about which single objective to follow for the network.

In this work we propose a distributed decision-making algorithm. The agents are

assumed to observe data that may be generated by different models. Through

localized interactions, the agents reach agreement about which model to track

and interact with each other in order to enhance the network performance. We

investigate the approach for both static and mobile networks. The simulations

illustrate the performance of the proposed strategies.

Keywords: Decentralized processing, decision-making, multi-task networks,

adaptive learning.

1. Introduction and Related Work

Bio-inspired systems are designed to mimic the behavior of some animal groups

such as bee swarms, birds flying in formation, and schools of fish [1, 2, 3, 4, 5,
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6]. Diffusion strategies can be used to model some of these coordinated types

of behavior, as well as solve inference and estimation tasks in a distributed

manner over networks [7, 8]. We may distinguish between two types of networks:

single-task and multi-task networks. In single-task implementations [7, 8], the

networks consist of agents that are interested in the same objective and sense

data that are generated by the same model. An analogy would be a school of

fish tracking a food source: all elements in the fish school sense distance and

direction to the same food source and are interested in approaching it. On the

other hand, multi-task networks [9, 10, 11, 12, 13, 14, 15, 16, 17] involve agents

sensing data arising from different models and different clusters of agents may

be interested in identifying separate models. A second analogy is a school of

fish sensing information about multiple food sources.

In the latter case, agents need to decide between the multiple objectives and

reach agreement on following a single objective for the entire network. In the

earlier works [18, 19], a scenario was considered where agents were assumed to

sense data arising from two models, and a diffusion strategy was developed to

enable all agents to agree on estimating a single model. The algorithm developed

in [18] relied on binary labeling and is applicable only to situations involving

two models. In this work, we propose an approach for more than two models.

We consider a distributed mean-square-error estimation problem over an N -

agent network. The connectivity of the agents is described by a graph (see

Fig. 1). Data sensed by any particular agent can arise from one of different

models. The objective is to reach an agreement among all agents in the network

on one common model to estimate. Two definitions are introduced: the observed

model, which refers to the model from which an agent collects data, and the

desired model, which refers to the model the agent decides to estimate. The

agents do not know which model generated the data they collect; they also do not

know which other agents in their neighborhood sense data arising from the same

model. Therefore, each agent needs to determine the subset of its neighbors that

observes the same model. This initial step is referred to as clustering. Since the

decision-making objective depends on the clustering output, errors made during
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the clustering process have an impact on the global decision. In this work, we

rely on the clustering technique proposed in[20] to reduce this effect.

The paper is organized as follows. The network and data model are described

in Section II. We illustrate the local labeling system and the decision-making

algorithm in Sections III and IV, respectively. A special case when the entire

network follows the model of a specific agent is studied in Section V. Simulation

results and discussion are presented in Sections VI and VII, respectively.

Notation. We use lowercase letters to denote vectors, uppercase letters for ma-

trices, plain letters for deterministic variables, and boldface letters for random

variables. E denotes the expectation operator and ‖·‖ the Euclidean norm. The

symbols 1 and I denote the all-one vector and identity matrix of appropriate

sizes, respectively. The k−th row (column) of matrix X is denoted by [X ]k,:

([X ]:,k).

2. Network and Data Model

Consider a collection of N agents distributed in space, as illustrated in Fig. 1.

We represent the network topology by means of an N ×N adjacency matrix E

whose entries eℓk are defined as follows:

eℓk =











1, ℓ ∈ Nk,

0, otherwise

(1)

where Nk is the set of neighbors of agent k (we denote its size by nk). We also

write N−

k to denote the same neighborhood excluding agent k.

Figure 1 shows the network structure where agents with the same color

observe the same model. We denote the unknown models by {z◦1 , . . . , z
◦
C}, each

of size M × 1 where C ≤ N . Each agent k observes data generated by one of

these C unknown models. We denote the model observed by agent k by w◦
k.

Figure 1 shows that agent k collects data from model z◦1 , in which case w◦
k = z◦1 .

For any other agent ℓ observing the same model z◦1 , it will hold that w◦
ℓ = z◦1 .
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We stack the {w◦
k} into a column vector:

w◦ , col {w◦
1 , w

◦
2 , · · · , w

◦
N}, w◦ ∈ R

MN×1. (2)

At every time instant i, every agent k has access to a scalar measurement

dk(i) and a 1 ×M regression vector uk,i. The measurements across all agents

are assumed to be generated via linear regression models of the form:

dk(i) = uk,iw
◦
k + vk(i). (3)

All random processes are assumed to be stationary. Moreover, vk(i) is a zero-

mean white measurement noise that is independent over space and has variance

σ2
v,k. The regression data uk,i is assumed to be a zero-mean random process,

independent over time and space, and independent of vℓ(j) for all k, ℓ, i, j. We

denote the covariance matrix of uk,i by Ru,k = E u
⊺

k,iuk,i.

Agents do not know which model is generating their data. They also do not

know which models are generating the data of their neighbors. Still, we would

like to perform a learning strategy that allows agents to converge towards one of

the models, while also learning which of their neighbors share the same model.

Using the algorithm proposed in [20], each agent k repeats the following steps

involving an adaptation step followed by an aggregation step:

ψk,i =ψk,i−1 + µku
⊺

k,i(dk(i)− uk,iψk,i−1) (4)

φk,i =

N
∑

ℓ=1

aℓk(i)ψℓ,i (5)

where µk is the step-size used by agent k. These updates generate two iterates

by agent k at time i, and which are denoted by ψk,i and φk,i, respectively. We

collect the estimated vectors across all agents into the aggregate vector:

φi , col {φ1,i,φ2,i, · · · ,φN,i}. (6)

In a manner similar to [20], we introduce a clustering matrix Ei. Its structure

is similar to the adjacency matrix E, with ones and zeros, except that the value

at location (ℓ, k) will be set to one if agent k believes at time instant i that its
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Figure 1: Example of a network topology, agents with the same color observe the same model.

neighbor ℓ belongs to the same cluster, i.e., observes the same model:

eℓk(i) =











1, if ℓ ∈ Nk and k believes that w◦
k = w◦

ℓ ,

0, otherwise.

(7)

These entries help define the neighborhood set N k,i, which consists of all neigh-

bors at time instant i that agent k believes share the same model. To learn the

matrix Ei over time, we apply the clustering technique proposed in [20] to cre-

ate the estimated clustering matrix F i of size N × N as follows: we initialize

ψk,−1 = 0 and B−1 = F−1 = E−1 = IN . Where the matrix Bi is of size

N ×N . Each entry eℓk(i) is designed using the following steps from [20], where

ℓ ∈ Nk:

bℓk(i) =







1, if ||ψℓ,i − φk,i−1||
2 ≤ α

0, otherwise
(8)

f ℓk(i) = ν × f ℓk(i− 1) + (1 − ν)× bℓk(i) (9)

eℓk(i) = ⌊f ℓk(i)⌉ (10)

where α > 0, 0 ≤ ν ≤ 1, and the notation ⌊·⌉ denotes rounding to the nearest

integer. Using the evolving neighborhoods N k,i, the entries {aℓk(i)} in (5) are
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non-negative scalars that satisfy

aℓk(i) = 0 for ℓ /∈ N k,i,

N
∑

ℓ=1

aℓk(i) = 1. (11)

Although there is a multitude of models generating the data that is feeding into

the agents, namely, {z◦1 , z
◦
2 , . . . , z

◦
C}, the objective is to develop a strategy that

will allow all agents to converge towards one of these models. We refer to this

particular choice as the desired model and denote it by z◦d.

In this way, an agent whose source (observed) model agrees with the desired

model, i.e., w◦
k = z◦d , will end up tracking its own source. On the other hand,

an agent whose source model is not the desired model, i.e., w◦
k 6= z◦d, will track

z◦d instead although it is sensing data generated by a different model.

We define the estimate vector of agent’s k desired model by wk,i. The reason

behind indicating wk,i as the estimate vector of agent’s k desired model instead

of the network’s desired model is that the agents may have different desired

models before convergence (steady-state). Once the agents reach agreement

among themselves on a single model, we can then refer to wk,i as the estimate

vector by agent k of the network’s desired model. For the initialization at time

instant i = 1, each agent assigns wk,0 = ψk,1 (i.e., at time instant i = 1,

the desired model of each agent is a rough estimate of its own source model).

The decision-making process drives the desired models of all agents to converge.

For example, if the agents observe C = 5 different models, the number of the

desired models in the network will decrease with iterations gradually form 5

models down to one model. This is achieved by switching the estimate wk,i of

some agents during the decision-making process according to some conditions

that are explained later. However, agents do not know which models are desired

by their neighbors at each time instant i. Thus, we need to develop a learning

strategy that allows the agents to distinguish the individual desired models of

their neighbors.

It turns out that in order for the objective of the network to be met, it is

important for agents to combine the estimates of their neighbors in a judicious

manner because, unbeknown to the agents, some of their neighbors may be
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wishing to estimate different models. If cooperation is performed blindly with

all neighbors, then performance can deteriorate with agents converging to non-

existing locations. For this reason, and motivated by the discussion from [18], we

add the step (12) below after (4) and (5), which involves two sets of combination

coefficients from two matrices Ȧi and Äi. There are two main ideas behind the

construction (12). First, it is meant to let each agent k cooperate only with

the subset of neighbors that share the same desired model as it does. Second,

it also lets each agent k combine φℓ,i if the desired model of agent k at time

instant i is the same as ℓ’s observed model:

wk,i =

N
∑

ℓ=1

ȧℓk(i)φℓ,i +

N
∑

ℓ=1

äℓk(i)wℓ,i−1. (12)

Note that the matrices Ȧi and Äi are not constructed from matrix Ai. The

selection of the non-negative coefficients {ȧℓk(i)} and {äℓk(i)} is explained in

Section IV.

We summarize the main five steps of the approach:

1. Learning the observed models of the neighbors. This step is performed by

building the matrix Ei in step (7). The information provided by each

entry eℓk(i) is whether the corresponding agents ℓ and k have the same

observed model or not.

2. Learning and labeling the desired model of the neighbors at each time in-

stant i. This step allows the agents to distinguish the individual desired

models of their neighbors at time instant i. The information provided by

this step is the number of different models that are desired by neighbors

and how many times each model is repeated at time i among neighbors.

3. Decision-making step by switching the desired model of some agents to let

the network converge to only one model.

4. Learning the desired models of the neighbors after the switching step. This

step is performed by building the matrixHi in step (19) in Section IV. The

information provided by each entry hℓk(i) is whether the corresponding

agents ℓ and k have the same desired model or not after the switching

step.

7



Figure 2: Example of an agent k and its neighborhood Nk. The inner color indicates the

observing model while the outer one indicates the current desired model.

5. Updating the estimate vectors {wk,i} by sharing data thoughtfully with

the subset of the neighbors that share the same desired model.

3. Local Labeling

Each agent needs to learn the desired models of its neighbors to proceed with

the decision-making process and let the network converge to only one model. In

this step, instead of only estimating whether two agents have the same desired

model or not, the construction involves a local labeling procedure that enables

every agent to estimate in real-time how many different models are desired by

its neighborhood.

For this purpose, we associate with each agent k an nk×nk matrix Y k
i with

entries {ykℓm(i)} given by:

ykℓm(i) =











1, if ‖wm,i−1 −wℓ,i−1‖
2 ≤ β,

0, otherwise

(13)

for some small threshold β > 0. Whenever ykℓm(i) = 1, agent k believes at

time instant i that its neighbors ℓ and m wish to estimate the same desired

model. On account of that, the variables wm,i−1 and wℓ,i−1 which are used

in the test (13) are presenting the current desired model of agents m and ℓ,
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respectively. It is clear from (13) that the matrix Y k
i is symmetric and has ones

on the diagonal. An example is depicted in Fig. 2 where agents having the same

inner color observe the same model, while the outer color indicates the model in

which the agent is interested (or towards which the agent is moving in mobile

networks). The corresponding matrix Y k
i has the following entries:

Y k
i =

k

ℓ

m

n

o

q

k ℓ m n o q




























1 0 0 1 0 1

0 1 1 0 0 0

0 1 1 0 0 0

1 0 0 1 0 1

0 0 0 0 1 0

1 0 0 1 0 1





























. (14)

From (14) agents that share the same desired model will have identical columns

in matrix Y k
i , namely, if agents m and ℓ have the same desired model at time

instant i, this implies that: [Y k
i ]:,m = [Y k

i ]:,ℓ. We denote the local label of each

agent ℓ ∈ Nk by agent k as lkℓ (i). The local label lkℓ (i) is updated at each time

instant i using the following relation:

lkℓ (i) = B([Y
k
i ]:,ℓ) (15)

where B(·) is a function that converts the input sequence from binary to decimal.

For the example in (14), we have

lkk(i) = B(100101) = 37,

l
k
ℓ (i) = B(011000) = 24,

lkm(i) = B(011000) = 24,

lkn(i) = B(100101) = 37,

l
k
o(i) = B(000010) = 2,

lkq (i) = B(100101) = 37.

We define the number of desired models within Nk at time instant i by Ck(i).

After updating matrix Y k
i and generating the local labels {lkℓ (i)}, agent k counts

9



howmany models are desired by its neighborhood to updateCk(i). In the exam-

ple (14), agent k distinguishes at time instant i three desired models {2, 24, 37},

i.e., Ck(i) = 3. Agent k labels these three different models locally as: {2, 24, 37}.

In addition, agent k determines which model among these Ck(i) models has

the maximum number of followers. A follower of a model is an agent that

wishes to estimate and track this model. We define the largest set of agents

belonging to Nk and following the same desired model at time instant i by

Qk,i. In the example, agent k assigns the majority set at time instant i as

follows: Qk,i = {k, n, q} which has the label 37 and is repeated three times

among other labels.

4. Decision-Making Over Multi-Task Networks

Using the information provided by matrix Y k
i , agent k can capture how many

agents within its neighbors follow the same desired model at time instant i.

Once agent k and all its neighbors agree on a single desired model, the matrix

Y k
i will end up being of the following form with unit entries everywhere:

Y k
i =

k

ℓ

m

n

o

q

k ℓ m n o q




























1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1





























. (16)

We define the degree of agreement by each agent k among its neighbors Nk as

pk(i) =
[Y k

i ]k,:1

nk

. (17)

Equally, having pk(i) = 1 means that agent k and all of its neighbors have

agreed on a common desired model. On the other hand, if pk(i) 6= 1, then the
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following switching step is applied:

wk,i−1 ←























wℓ,i−1, if k /∈Qk,i for any ℓ ∈ Qk,i,

wn,i−1, if k ∈Qk,i and Ck(i) = 2, ∀n ∈ Nk,

wk,i−1, otherwise.

(18)

The main idea of the switching step is for each agent k to make a new decision

or to keep the previous one. The first case of (18) implies that agent k does

not belong to the majority desired model set Qk,i at time instant i. Therefore,

agent k changes its decision and switches into the desired model of the majority

set Qk,i. The second case in (18) is applied to prevent an unwanted equilibrium

situation. This problem may arise when only two desired models remain in

Nk. In this case, if all agents in Nk belong to the majority set, this leads to a

situation in which no agent in Nk will change its decision anymore. An example

is shown in Fig. 3 where the outer color of the agents indicate the desired model.

We indicate only the desired model of agent’s k neighbors and their neighbors.

Figure 3 shows that all agents withinNk belong to a majority set and no agent in

Nk will change its decision anymore, e.g. agents q and ℓ belong to the majority

set among their neighbors, as well as agents k, m, n, and o. Namely,

k ∈Qk,i,m ∈Qm,i, n ∈ Qn,i, and o ∈Qo,i (with z◦1),

ℓ ∈ Qℓ,i and q ∈ Qq,i (with z◦2).

To break the equilibrium, an agent that recognizes these two models picks ran-

domly one of the two desired models.

From (18), we can conjecture that the network will probably converge to

the most observable model, since the initial desired model by each agent is its

own observed model. This fact remains true even with the random switching in

the second case of (18), because in that case the more repeated desired model

within Nk has the highest probability to be picked.

To proceed with the cooperation and sharing information among the agents

within the subset that has the same desired model at time instant i, we define

an N ×N matrix Hi. The coefficients {hℓk(i)} are updated after the switching
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Figure 3: Example of the equilibrium case. All agents within Nk belong to the majority sets

among their neighbors.

step (18) using a test that is quite similar to (13) and is applied between each

agent k and its neighbors as follows:

hℓk(i) =











1, if ‖wk,i−1 −wℓ,i−1‖2 ≤ β,

0, otherwise.

(19)

According to matrixHi, each agent knows which subset of its neighbors has the

same desired model as it does after the switching step at time instant i. Having

hℓk(i) = 1 means that ℓ and k have the same desired model at time instant i.

We define an N ×N combination matrix Gi as follows:

Gi = F(Hi) (20)

where F(·) is some function which satisfies

gℓk(i) = 0 if hℓk(i) = 0,

N
∑

ℓ=1

gℓk(i) = 1 (21)

An example of F(·) is the uniform function which generates a left-stochastic

matrix Gi where each entry gℓk(i) is given by

gℓk(i) =











1∑
N
n=1

hnk(i)
, if hℓk(i) = 0,

0, otherwise.

(22)
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MatrixGi by itself does not have enough information for proceeding and updat-

ing the estimate wk,i. The agents still need knowledge about which data to be

combined from each neighbor. Therefore, matrix Gi is split into two matrices

Ȧi and Äi. The weight of the entry gℓk(i) goes to ȧℓk(i) if the desired model of

agent k at time instant i is the same as ℓ’s observed model. Otherwise, äℓk(i)

obtains the weight gℓk(i). The coefficients {ȧℓk(i)} and {äℓk(i)} for ℓ ∈ Nk are

updated using the following steps:

ȧℓk(i) =











gℓk(i), if ‖wk,i−1 −ψℓ,i‖
2 ≤ β,

0, otherwise.

(23)

äℓk(i) =











gℓk(i), if ȧℓk(i) = 0,

0, otherwise.

(24)

In (23), the case that ψℓ,i is close to wℓ,i−1 implies that the observed model

of agent ℓ is the same as the desired model of agent k at time instant i. The

estimate wk,i is updated using (12). Algorithm 1 summarizes the decision-

making scheme.

5. Following the Observed Model of a Specific Agent

In this section the goal is to let the whole network follow the observed model

of some specific agent m, as shown in Fig. 4 where agent m observes model z◦3

(red), therefore, the network converges in a distributed manner to estimate the

model z◦3 . The first step is to spread the ψm,i among agents and keep updating

it over time. This step aims at having a copy (reference) of ψm,i by all agents

in the network. Agents keep updating the copy of ψm,i for two reasons. First,

to have a more accurate version of the vector ψm,i, which indicates the desired

model of the network. Second, to endow the algorithm to work in non-stationary

situations, if drift is happening in agent m’s model.

We denote the copy vector of ψm,i by agent k by ψ̆k,i and refer to it as

the anchor vector. Agents are informed beforehand about the index m of the

specific agent that they should follow. If m ∈ Nk, this implies that agent k

13



Algorithm 1 (Decentralized decision-making scheme)

Initialize A0 = Ȧ0 = Ä0 = E0 =H0 = G0 = I

Initialize ψ0 = φ0 = 0 and p0 = 0

for i > 0 do

for k = 1, . . . , N do

ψk,i = ψk,i−1 + µku
⊺

k,i(dk(i)− uk,iψk,i−1) (25)

assign wk,0 = ψk,1 at i = 1

update {aℓk(i)} according to (11)

φk,i =

N
∑

ℓ=1

aℓk(i)ψℓ,i (26)

update Y k
i according to (13)

find Qk,i and Ck(i)

update pk(i) according to (17)

if pk(i) 6= 1 then

switch wk,i−1 according to (18)

resend wk,i−1

end if

for ℓ ∈ Nk do

update {hℓk(i)} according to (19)

update {gℓk(i)} according to (20)

update {ȧℓk(i)} according to (23)

update {äℓk(i)} according to (24)

end for

wk,i =

N
∑

ℓ=1

ȧℓk(i)φℓ,i +

N
∑

ℓ=1

äℓk(i)wℓ,i−1 (27)

end for

end for
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Figure 4: Final decision of a network after following the model of the specific agent m. The

inner color indicates the observing model while the outer one indicates the desired model.

The arrows represent the spreading process of ψm,i through the network.

(a) (b) (c)

Figure 5: Example of the spreading process of ψm,i from agent m to agent k over time. The

inner color indicates the observing model while the outer one indicates the desired model.
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receives the anchor vector directly from agent m. If not, i.e., m /∈ Nk, then

agent k depends on another agent ℓ ∈ Nk that has already a copy of ψm,i.

Agent k stores the index of this source agent. The index of the source agent of

agent k is denoted by sk(i). Note that the anchor vector ψ̆k,i is not the final

estimate of the desired model.

The circulation process of ψm,i in a distributed manner needs cooperation

among agents. In case that agent k has no direct link to receive data from

agent m, i.e., m 6∈ Nk, agent k gets one of the ψ̆ℓ,i−1 provided that sℓ(i) 6= 0.

If sℓ(i) 6= 0 this implies that agent ℓ has already a source to update its ψ̆ℓ,i,

regardless whether m ∈ Nℓ or not. In other words, sℓ(i) 6= 0 means that agent

ℓ finds a direct or indirect link to agent m. Therefore, it is important for each

agent k to store the agent’s index of its source. An example is shown in Fig. 5

where m ∈ Nℓ but m /∈ Nk. First, the anchor vectors and the source agents for

agents k and ℓ at time instant i = 0 (Fig. 5(a)) are given, respectively, by

ψ̆k,0 = 0, sk(0) = 0, ψ̆ℓ,0 = 0, sℓ(0) = 0. (28)

The anchor vectors and the source agents for agents k and ℓ at time instants

i = {1, 2} (Fig. 5(b) and (c)) are given, respectively, by

ψ̆k,1 = 0, sk(1) = 0, ψ̆ℓ,1 = ψm,1, sℓ(1) = m, (29)

ψ̆k,2 = ψ̆ℓ,1, sk(2) = ℓ, ψ̆ℓ,2 = ψm,2, sℓ(2) = m. (30)

Agents update their anchor vectors {ψ̆k,i} at each time instant i by the following

step:

ψ̆k,i =







































ψm,i, if m ∈ Nk,

ψ̆ℓ,i−1, if ℓ ∈ Nk and sk(i) = 0 and sℓ(i) 6= 0,

ψ̆ℓ,i−1, if ℓ ∈ Nk and sk(i) = ℓ,

ψ̆k,i−1, otherwise

(31)

where ψ̆m,i = ψm,i for agent m itself. The source of the anchor vector is
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updated simultaneously as follows:

sk(i) =























m, if m ∈ Nk,

ℓ, if sk(i) = 0 and sℓ(i) 6= 0,

sk(i− 1), otherwise.

(32)

Similarly to the previous section, the next step is to update the coefficients

{hℓk(i)} using the following test:

hℓk(i) =











1, if sℓ(i) 6= 0 and sk(i) 6= 0,

0, otherwise.

(33)

Again, having sk(i) 6= 0 leads to the situation that agent k has the anchor

vector and has been informed about the decision of the network, therefore,

agent k can start sharing information with the other agents whose sℓ(i) 6= 0 as

well to estimate the desired model. The matrix Gi will be generated using (20).

Agents update the coefficients of both matrices Ȧi and Äi using the following

steps:

ȧℓk(i) =











gℓk(i), if ‖ψ̆k,i −ψℓ,i‖
2 ≤ β,

0, otherwise.

(34)

äℓk(i) =











gℓk(i), if ȧℓk(i) = 0,

0, otherwise.

(35)

Then, the estimate wk,i is updated using Eq. (12). According to (34) and (12),

agent k combines φℓ,i if the desired model of the network (which is represented

by the anchor vector ψ̆k,i of agent k) is close to the observed model of agent ℓ

that is represented by ψℓ,i. Algorithm 2 summarizes the steps of the approach

for following the observed model of a specific agent m.

6. Simulation Results and Discussion

6.1. Static Network

We consider a connected network with 80 randomly distributed agents. The

agents observe data originating from C = 3 different models. Each model

17



Algorithm 2 (Following the observed model of a specific agent)

Initialize A0 = Ȧ0 = Ä0 = E0 =H0 = G0 = I

Initialize ψ0 = ψ̆0 = φ0 = 0 and s0 = 0

for i > 0 do

for k = 1, . . . , N do

ψk,i = ψk,i−1 + µku
⊺

k,i(dk(i)− uk,iψk,i−1) (36)

assign wk,0 = ψk,1 at i = 1

update {aℓk(i)} according to (11)

φk,i =

N
∑

ℓ=1

aℓk(i)ψℓ,i (37)

update ψ̆k,i according to (31)

update sk(i) according to (32)

for ℓ ∈ Nk do

update {hℓk(i)} according to (33)

update {gℓk(i)} according to (20)

update {ȧℓk(i)} according to (34)

update {äℓk(i)} according to (35)

end for

wk,i =

N
∑

ℓ=1

ȧℓk(i)φℓ,i +

N
∑

ℓ=1

äℓk(i)wℓ,i−1 (38)

end for

end for
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Figure 6: Statistical noise and signal profiles over the network.

z◦j ∈ R
M×1 is generated as follows: z◦j = [r1, . . . , rM ]⊺ where rm ∈ [1,−1],

M = 2. The assignment of the agents to models is random. The maximum

number of neighbors is nk = 7. We set {α, β, ν, µ} = {0.04, 0.08, 0.005, 0.01}.

We use the uniform combination policy to generate the coefficients {aℓk(i)} and

{gℓk(i)}.

Figure 6 shows the statistical profile of the regressors and noise across the

agents. The regressors are of size M = 2 zero-mean Gaussian, independent in

time and space, and have diagonal covariance matrices Ru,k. Figure 7 shows

the topology of one of 100 Monte Carlo experiments. Agents having the same

inner color observe the same model, while the outer color indicates the desired

model at steady-state.

The transient network mean-square deviation (MSD) regarding each ob-

served model z◦j at each time instant i is defined by

MSDj(i) ,
1

|Cj |

∑

k∈Cj

||z◦j − φk,i||
2 (39)

where j = 1, . . . , C and each MSDj is computed for agents belonging to Cj .

The transient network mean-square deviation (MSD) for the whole network
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Figure 7: Network topology (a) and final decision of the agents where the bold (dashed) links

represent {ȧ(i)} ({ä(i)}) at steady-state (b).
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Figure 8: Transient mean-square deviation (MSD).
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Figure 9: Network topology (a) and final decision of the agents to follow the model of agent

m where the bold (dashed) links represent {ȧ(i)} ({ä(i)}) at steady-state (b).

regarding the desired model at each time instant i is defined by

MSDd(i) ,
1

N

N
∑

k=1

||z◦d −wk,i||
2 (40)

where z◦d is the desired model when the whole network agrees on one common de-

sired model, i.e., MSDd(i) is only computed at the instants when all {pk(i)} = 1.

Figure 8 depicts the simulated transient mean-square deviation (MSD) of the

network for all observed models and for the network desired model. Table 1 dis-

plays the success rate of the decision-making to agree on one model for different

numbers of observed models, C ∈ {2, 3, 4, 5}. The proposed strategy appears to

provide good success rate under the simulated conditions.

Table 1 Decision-making success rate for different C.

C 2 3 4 5

Success rate 99% 98% 99% 99%

Regarding the application of following the observed model of a specific agent

m, Fig. 9 shows the topology of one case from 100 different experiments. Agents
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Figure 10: Transient mean-square deviation (MSD).

are observing C = 4 different models. Agent m = 10, which is represented by

a square, is the specific agent whose observed model the whole network wishes

to follow. Figure 10 shows the transient mean-square deviation MSD of 100

different experiments when a change in the model assignment occurs suddenly

at time instant i = 600. The success rate of the decision-making to agree on

the observed model of agent m was observed to be 100% in this simulation.

6.2. Mobile Network

We consider a network with 80 randomly distributed mobile agents [2]. The

agents observe data originating from four different models (sources) C = 4,

where wrm ∈ [50,−50]. The objective of the network is to have all agents track

and move towards only one model (source). Figure 11 shows the statistical

profile of the regressors and noise across the agents. Every agent k updates its

location according to the motion mechanism described in [19].

Figure 12 shows the maneuver of the agents over time where the models

(sources) are represented by squares. Figure 13 represents the transient net-

work mean-square deviation (MSD) obtained by averaging over 100 independent

Monte Carlo experiments.
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Figure 11: Statistical noise and signal profiles over the mobile network.
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Figure 12: Maneuver of the agents with four sources over time (a) i=1, (b) i=200, (c) i=500,

and (d) i=1000. The unit length is the body length of a agent.
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Figure 13: Transient mean-square deviation (MSD) of the mobile network.

7. Conclusion

We have proposed a distributed algorithm that allows agents over multi-task

networks to follow only one common model while proceeding with the estimation

process. Agents use a local labeling step to distinguish the multiple desired

models of their neighbors. Simulation results illustrate the operation of the

algorithms and its performance.
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