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A Burst-Form CSI Estimation Approach for FDD
Massive MIMO Systems

Mohammad Javad Azizipour, Student Member, IEEE, Kamal Mohammed-pour, and
A. Lee Swindlehurst, Fellow, IEEE

Abstract—Pilot and channel state information (CSI) feedback
overhead in the downlink and uplink paths are two major
implementation challenges in frequency-division duplex (FDD)
based massive MIMO systems. When the massive MIMO channel
satisfies the burst-sparsity property, we can acquire the channel
with compressed pilots and CSI feedback in a more efficient
approach. This paper proposes a burst-form estimation approach,
referred to as the burst-form least squares (BFLS) algorithm,
to fully utilize the burst-sparsity property of massive MIMO
channels. The proposed algorithm is based on knowledge of the
starting location of each burst at the user side. For situations
where the starting locations change quickly or are otherwise
initially unknown at the user, a starting point estimation (SPE)
algorithm is proposed to provide the position of each burst in
the channel vector. Numerical results demonstrate that the BFLS
algorithm acquires the channel better than competing approaches
and reaches the performance upper bound. It is shown that the
SPE algorithm can find the location of bursts with high accuracy
and using the estimated values do not significantly degrade the
estimation quality.

Index Terms—Massive MIMO, Compressed sensing, Channel
estimation, Pilot overhead, Burst-form least square

I. INTRODUCTION

Massive multi-input multi-output (MIMO) has been intro-
duced as a promising technology for the physical layer of
wireless systems in order to enhance the spectral and also
energy efficiency of future 5G networks [1], [2]. To achieve
the gains promised by the use of a large number of antennas,
the channel state information (CSI) should be acquired at
the transmitter side with high precision. The time-division
duplex (TDD) protocol assumes channel reciprocity, in which
the downlink and uplink channels have the same frequency
response. Based on reciprocity between the channels, the BS
side is able to estimate the CSI by using pilot training in the
uplink path, where the number of pilot symbols is proportional
to the number of users [3]–[5]. This property does not hold
for frequency-division duplex (FDD) systems because of the
difference in the downlink and uplink frequencies. As a result,
FDD systems must in general estimate the CSI via pilots
whose length is on the order of the number of antennas [4],
[6], which is very large for massive MIMO systems. In such
cases the pilot and CSI feedback would be correspondingly
large, and thus it is thought that massive MIMO will not have
high throughput when operating in FDD mode [4], [7]. Since
FDD-based systems are used as the dominant duplex mode in
current wireless networks, many researchers have tackled this
challenge in order to find a better solution for migration from
previous wireless systems to 5G networks [8]–[15].

In many practical scenarios, particularly at millimeter-wave
frequencies, due to limited local scattering the massive MIMO
channel will exhibit sparsity in the spatial domain [15];
i.e., the propagation paths between the BS antennas and the
users is composed of only a few directions in the angular
domain, a property referred to as angular sparsity. In such
cases, compressed sensing (CS) methods can be applied to
estimate the massive MIMO channel with fewer pilots and CSI
measurements compared to conventional channel estimation
procedures [16]–[19]. Thus, CS-based channel estimation al-
gorithms and CS-based pilot design methods are considered to
be promising directions for solving the pilot overhead issue in
FDD-based massive MIMO systems [20], [21]. As one of the
first contributions in this area, [11] improved the well-known
orthogonal matching pursuit (OMP) algorithm by exploiting
the common support shared by users located close to each
other. The authors of [12] proposed a structured compressed
sensing algorithm and used the spatial and temporal sparsity in
each sub-channel to enhance the resulting estimation quality.
In another work [15], they used an adaptive algorithm for pilot
and CSI feedback compression by utilizing the same properties
in the sub-channels. The challenge yet to be overcome is that
these algorithms have been developed for certain special cases
of massive MIMO channels, e.g., where the users’ channels
share the same scatterers in the propagation environment or
the same sparsity pattern in the sub-channels, properties that
may not hold in many scenarios. Another direction taken in
the literature [22]–[24] is to improve CS-based methods by
exploiting partial support information. In all these works, the
channel recovery problem is formulated as a weighted linear
optimization problem. The results show that the estimation
quality is dependent on the given partial support information
and the quality is decreased when the information is not
accurate.

The sparsity observed in massive MIMO channels does
not mean that the signal arrivals are confined to a single
direction, but instead to a cluster of directions whose angular
spread may or may not be narrow, depending on the limited
number of physical scatterers near the user in the propagation
environment. We refer to this type of sparsity structure as
burst-sparsity, a property that has been exploited, for exam-
ple, in [13], [25], [26]. In [25], the conventional LASSO
algorithm [27] was redesigned to be compatible with the
burst structure in massive MIMO channels. Moreover, in [13],
authors improved the proposed burst LASSO approach by
exploiting partial support information assumed to be available
at the user side. Despite using burst sparsity to enhance the
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recovery performance, the resulting burst LASSO algorithm
shows satisfactory results only when the support information is
accurately known at the user side. Furthermore, the algorithm
suffers from high computational complexity especially when
the number of antennas and the burst size are large.

In this paper, to overcome the issues raised above, we
propose a new approach based on the burst property that yields
a simple least squares (LS) solution, referred to as the burst-
form LS (BFLS) algorithm. Two scenarios are considered.
In the first, the user is aware of the starting location of the
bursts, and in the second, the starting location of the bursts
is unknown and must be estimated. In the first scenario, the
proposed BFLS algorithm estimates the channels and refines
the estimates by exploiting the burst structure. In this case, the
estimated CSI quality is shown in the simulations to provide
performance equivalent to that of a genie-aided LS algorithm
and has very low computational complexity. In the second
scenario, an algorithm is presented for estimating the burst
starting points, which are then used by the BFLS algorithm for
channel acquisition. Furthermore, an error correction mecha-
nism is designed to enhance the estimation accuracy of the
burst starting points before halting the estimation procedure,
because the algorithm may produce large errors due to the
small number of assigned pilots at the base station (BS) side.

By estimating the starting location of each burst, the pro-
posed algorithm is not dependent on the existence of any
supporting information and is capable of channel estimation
whether or not the starting location of the bursts is known. In
addition, our proposed algorithms do not impose heavy com-
plexity at the user side and also can estimate the channel with
less complexity than algorithms of the LASSO family. The
rest of the paper is organized as follows. Section II presents
the downlink signal model for FDD massive MIMO systems
and also the burst structure of the channel. In Section III,
the proposed burst-form LS algorithm is introduced. In this
section, we also describe how to utilize the burst sparsity when
the starting location is known. In Section IV, the algorithm for
estimating the burst starting locations is developed when they
are unknown. The performance of BFLS and the starting point
estimation algorithms are then evaluated in Section V. Finally,
Section VI concludes the paper.

Notation: Matrix and vectors are denoted in upper and lower
boldface, respectively. The operators (.)∗, (.)T, (.)H, |.|, (.)†,
E{.}, and symbols Z, I, and 0 are used for conjugate, trans-
pose, conjugate transpose, cardinality, Moore-Penrose pseudo-
inverse, expectation, the set of integers, identity matrix, and
zero vector respectively. The `p-norm of vector a is defined
as ‖a‖p, (

∑n
i=1|ai|p)

1/p. The j-th element of given set A is
denoted by A[j], the specific i-th column of matrix A and the
columns with indices in set I are denoted by A[i] and A[I]
respectively, and a[i] refers to the i-th entry of vector a and
those elements whose indices are in set I are denoted by a[I].

II. PROBLEM FORMULATION

A. FDD Massive MIMO

As illustrated in Fig. 1, we consider an FDD massive MIMO
system with N antennas at the BS and one antenna at the user

Downlink path

Uplink path

Estimated 
CSI 

Burst 1

Burst 2

Local 
scatterers 2

Local 
scatterers 1

BS

Reference 
user

Fig. 1. FDD massive MIMO for uplink and downlink paths in a burst-sparse
channel.

side. In the FDD protocol, the BS broadcasts M pilot signals
to the users in the downlink path and the estimated CSI is
sent back to the BS for downlink channel precoding. Without
loss of generality, we only focus on the reference user for
downlink channel estimation. The received signal at the user
can be written as

y = hHX + n, (1)

where h ∈ CN is the channel vector between each antenna el-
ement and the user, X ∈ CN×M is the pilot matrix consisting
of M pilots with total transmit power E{xH

i xi} = P = Mp,
where xT

i is the i-th row of X, and n ∈ C1×M is complex
additive Gaussian noise in the downlink path with zero mean
and covariance E{nnH} = σ2

nI. Now, the user is able to apply
a suitable estimation algorithm to the measurement vector
y for downlink channel estimation. Note that conventional
channel estimation approaches require M ≥ N pilots, which
results in an overwhelming pilot overhead for the downlink
path. By considering CS-based methods, the BS can compress
the required number of pilots and the resulting measurements
can be adjusted to the relatively small number of non-zero
channel entries. Although the channel support is an unknown
variable, the sparsity upper bound changes slowly in each time
slot and the BS can acquire it using prior information.

B. Burst-sparse Channel Model

Since the BS antennas are often installed at high elevations
surrounded by few local scatterers, the angular support of the
channel seen at the BS side is relatively small. Accordingly,
some dominant elements in the channel vector can represent
nearly all multipath directions between the BS and the users.
More precisely, the channel has an angular representation with
a small number of non-zero coefficients, and owing to the large
number of antennas in massive MIMO, we can consider it to
be a sparse vector in the angular domain. As depicted in Fig.
1, each cluster of local scatterers (denoted by rings) near the
user yields a contiguous block of non-zero bins in the angular
domain of the channel response with a specific starting and
ending point, which we refer to as a burst area.
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When the massive MIMO channel is represented in the
angular domain, the burst channel model can be expressed
as [28]

hH = hH
BFG, (2)

where G ∈ CN×N is a transformation matrix that is depen-
dent on the geometrical structure of the antenna array, and
hH
BF ∈ C1×N is the burst-sparse channel vector in the angular

domain. For a uniform linear array, the transformation matrix
can be taken to be the discrete Fourier transform (DFT) matrix,
which implies that the channel vector is sampled with uniform
angular intervals at the BS side [28]. The burst-sparse channel
vector hH

BF = [0, . . . ,0,h∗1, . . . ,0, . . . ,h
∗
B , . . . ,0] consists of

B bursts, with each burst forming a sub-vector h∗l ∈ C1×dl ,
where dl is the length of l-th burst. Two parameters uniquely
identify the l-th burst, the starting point sl, and the length dl
which satisfies dl ≤ U , for some (known) upper bound U
on the length of all bursts. Therefore, the indices of the non-
zero elements in the l-th burst can be extracted from the set
Sl = {sl + j| 0 ≤ j ≤ (U − 1), j ∈ Z}. Among the defined
parameters, the BS can determine the number of bursts B, and
the upper bound U on the burst length since these parameters
change relatively slowly. However, the case of the starting
point sl is different since it can vary significantly with only a
small change in the user position. It is worth noting that the
defined burst model is not equivalent to the well-known block
sparse model [29], since the bursts do not necessarily have the
same length, and the blocks of zero elements in the channel
angular response are also of varying lengths and in random
positions.

C. CS Formulation for Downlink Channel Estimation

The downlink channel estimation problem can be formu-
lated as a compressed sensing problem using previous methods
for massive MIMO systems and sparse channels. By substi-
tuting (2) into (1), the received signal at the user side is given
by

y = hH
BFGX + n. (3)

By taking the conjugate transpose of both sides and defining
Ψ , XHGH, the received signal in the downlink path can be
written in the compressed sensing model as

ycs = ΨhBF + ncs, (4)

where ycs = yH is the measurement signal, Ψ is the sensing
matrix and ncs = nH is the resized vector of additive noise.

There are several recovery algorithms that can be used to
reconstruct the channel vector hBF by solving the M linear
equations in (4). A well-known solution to this problem, the
LASSO approach1, is formulated as the following convex
optimization problem:

min
ĥBF

‖ycs −ΨĥBF ‖2+ξ‖ĥBF ‖1 (5)

where ξ > 0, and ĥBF is the reconstructed channel vector.
However, the standard LASSO algorithm can only exploit

1Also known as standard LASSO to be distinct from other versions, for
example group LASSO, fused LASSO, etc.

non-specific sparse structure in the channel vector, and does
not take into account the special burst nature of the channels
we consider. Instead, one may consider solving the following
optimization problem which exploits burst sparsity:

min
ĥBF

‖ycs −ΨĥBF ‖22

subject to ‖ĥBF ‖1≤ ε, ĥBF =

B∑
l=1

hl,
(6)

where ε is a positive parameter. Applying block-sparse re-
covery algorithms directly to (6) will not produce satisfactory
results, since the burst constraint in (6) can not be handled
by the block-sparse model. By converting the burst-sparse
model into a block-sparse model, a burst-LASSO approach
was introduced in [13], [25] which can handle (6). However,
as discussed in Section II-B, the zero channel elements do not
share the block structure, and thus the penalty function based
on such transformations can incur large performance losses
especially for bursts of different lengths. In this paper, a novel
least squares approach will be proposed to solve (6) in a simple
and efficient way by utilizing the burst model directly.

III. BURST-FORM LEAST SQUARE APPROACH

In this section, a least squares algorithm is investigated for
compressed channel estimation instead of convex optimization
approaches. First, we exploit the burst-form of the channel
to design an LS-based algorithm. The main challenge of the
proposed algorithm is related to the redundant elements which
arise due to the use of the upper bound parameter U in
forming the burst areas. In other words, the proposed algorithm
assumes that the sparsity order of each burst is U , while
in general they satisfy2 dl ≤ U . This issue becomes worse
when the transmit SNR is low and the incorrectly estimated
elements have significant amplitudes. To eliminate them, we
apply a refinement step to the algorithm in order to remove
the estimated channel coefficients that do not correspond to the
actual channel. The details of algorithm are explained later in
the section.

A. BFLS Algorithm

At the user side, the measurement signal ycs and the sensing
matrix Ψ are available due to availability of the received
downlink signal and knowledge of the pilot matrix. If the
precise angular support of the channel was known by the
user, the least squares estimator for the downlink channel hBF

would be given by

ĥBF [Ω] = Ψ†[Ω]ycs, (7)

where Ω is the index set of the channel support with cardinality
|Ω|=

∑B
l=1 dl, and Ψ† = (ΨHΨ)−1ΨH is the Moore-Penrose

pseudo-inverse of the sensing matrix. If only the starting point
sl but not the length dl of each burst is known, an initial

2Note that the exact number of entries of vector h∗
l is an unknown

parameter for which we only have an upper bound.
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estimate can be obtained by using the superset ΩU :

Ω ⊆ ΩU =

B⋃
l=1

Sl, (8)

where Sl is the set of channel elements obtained by starting
from sl and including the subsequent U angles. In this case,
the burst-form LS (BFLS) estimator is given by

ĥBF [ΩU ] = Ψ†[ΩU ]ycs . (9)

Note that the BFLS approach estimates only the channel
elements whose indices are in the set ΩU , and the remaining
coefficients will be zero based on the sparsity property of the
channel. The burst-form LS estimator minimizes the energy
between the measurement signal and the compressed samples
of the channel such that these samples are aligned with
the bursts in the channel. In other words, we fully exploit
the burst structure and then solve the estimation problem.
In the mathematical expression, ĥBF is the solution of the
optimization problem (6), where the sparsity order in each
burst has been set to the upper limit dl = U . Therefore, the
estimated channel has (BU −

∑B
l=1 dl) erroneously estimated

coefficients, and these elements should be removed because
their amplitude may not be negligible for some transmit SNR
regimes.

To refine the channel estimate and remove the erroneous
elements, we introduce the following step in the BFLS algo-
rithm. The core of this step is based on comparing the residual
vector with a predetermined threshold parameter. The residual
vector is defined as

r0 = ycs −Ψ[Ω1
U ]ĥBF , (10)

where Ω1
U = ΩU and r0 are respectively the indices of

the channel support and the residual vector before applying
the refinement step. We see from this definition that the
norm of the residual vector should approach the norm of the
additive noise as the redundant channel elements are properly
removed. On the other hand, if we eliminate one of the
elements corresponding to the original channel support, the
norm of the residual will increase according to the energy
of the removed element. Therefore, the difference of residual
norms in consecutive iterations, i.e. (‖ri‖2−‖ri−1‖2) can
be compared with a predefined threshold ηth to determine
whether or not a coefficient with significant energy has been
removed. If the difference of residual norms does not exceed
the threshold, then the last presumed support location in the
l-th burst is removed, and the norm of the residual is checked
again. This process continues until the difference of the norms
of the residuals rises above the threshold ηth.

More precisely, we let (U − i) denote the last index of the
arbitrary burst l in the i-th iteration of the refinement process,
and the elements that will be eliminated from consideration at
refinement step i are given by

Σi =
{
sl + (U − 1), sl + (U − 2), . . . , sl + (U − i)

}
(11)

where sl is the starting location of the l-th burst. According
to the above definitions, at step i the new burst Ii becomes

the original set minus the i last channel elements:

Ii = Sl\Σi, (12)

where Ii is the refined set with cardinality |Ii|= U − i, which
determines the new support set for the l-th burst. The residual
vector at the i-th iteration of the refinement step is computed
by replacing Sl with the refined burst Ii to form the new
burst areas Ωtemp and this is substituted into (10) as ri =
ycs−Ψ[Ωtemp]ĥBF . It should be noted that we select refined
set (i− 1) as the final refined burst because the threshold will
stop the algorithm when the original support is removed from
the channel. The above procedure will be repeated for each
burst individually until the halting condition is met.

Algorithm 1 shown below divides the BFLS algorithm into
two main steps. Step 1 determines the area of each burst
and combines them into the initial set ΩU (lines 4 and 5
in the algorithm). More precisely, the area of each burst is
computed using their starting locations and the upper bound
U , and then these B bursts are merged together to create the
initial channel support that is of interest. Note that when the
bursts are close to each other, adjacent bursts may overlap,
but the common taps are included only once in ΩU . In Step 2
which includes the refinement step (lines 13− 20), the BFLS
approach estimates the channel by utilizing the bursts formed
in the previous step. The residual vector r0 is also computed.
The computation of r0 in this step will be used as the previous
residual norm at the refinement step. Therefore, in the case
of dl = U , the refinement process will be stopped with one
iteration. In other words, when U equals the length of the
support in each burst, the estimated channel vector ĥBF does
not have any redundant elements and the BFLS algorithm
can be stopped without refinement. Before the refinement
procedure is performed, the l-th burst will be removed from
the burst areas as Λl = Ωl

U\Sl because it is regenerated with
refined elements in line 21 to form the channel support Ωl

U for
the next burst. Due to the individual refinement, the algorithm
needs to be repeated B(U − dl + 1) times to form the final
burst-sparse channel estimate.

B. Computational Complexity of the BFLS Algorithm

The complexity of the BFLS algorithm is dominated by
the least-squares and residual computations which are per-
formed in lines 10 − 11 and 18 − 19 of the algorithm.
The least-squares step in line 10 has a complexity of
O(M |Ωl

U |+2M |Ωl
U |2+|Ωl

U |3) operations, and the residual
update in line 11 has a complexity of O(M |Ωl

U |) operations,
where |Ωl

U | is the channel support which is a variable set
in each iteration and satisfies

∑B
l=1 dl ≤ |Ωl

U |≤ BU . Lines
18− 19 have the same order of complexity with new channel
support |Ωtemp|= |Λl|+|Ii|, where |Ii| is decreased in each
iteration of the refinement process and satisfies dl ≤ |Ii|< U ,
and |Λl| is changed in each burst estimation step, which
satisfies

∑B
j=1,j 6=l dj ≤ |Λl|≤ (B− 1)U . These computations

should be repeated proportional to the number of bursts B
(lines 10− 11) and the number of over-estimated supports in
each burst (lines 18− 19).
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Algorithm 1: Proposed BFLS Algorithm

1 Inputs: ycs, Ψ, B, U , sl, ηth ≤ 1.
2 Output: Estimated burst-sparse channel, ĥBF

3 Step 1 (Form the Burst Areas)
4 Sl = {sl + j| 0 ≤ j ≤ (U − 1), j ∈ Z}, l = 1, 2, . . . , B

5 ΩU =
⋃B

l=1 Sl;
6 Initialize: ĥBF = 0N×1,Ω

1
U = ΩU , l = 1.

7 Step 2 (Estimation and Refinement)
8 while l ≤ B do
9 Initialize: i = 0, ‖r−1‖2= 0.

10 ĥtemp = Ψ†[Ωl
U ]ycs;

11 ri = ycs −Ψ[Ωl
U ]ĥtemp;

12 Λl = Ωl
U\Sl;

13 repeat
14 i = i+ 1;
15 Σi = {sl+(U−1), sl+(U−2), . . . , sl+(U−i)};
16 Ii = Sl\Σi;
17 Ωtemp = Λl ∪ Ii;
18 ĥi = Ψ†[Ωtemp]ycs;
19 ri = ycs −Ψ[Ωtemp]ĥi;
20 until (‖ri‖2−‖ri−1‖2) > ηth;
21 Sl = Ii−1;
22 l = l + 1;
23 Ωl

U =
⋃B

k=1 Sk;
24 end

25 ĥBF [ΩB+1
U ] = ĥi−1;

IV. LOCATION OF BURSTS IN THE CHANNEL

As is seen in Algorithm 1, the BFLS approach requires the
starting locations of each burst to form the channel support.
Since the positions of the users in the cell typically change,
the location of the bursts in the channel vector can also
vary greatly and consequently the user may not know these
locations in advance. If the BFLS algorithm is implemented
with invalid values of sl, the performance can degrade sig-
nificantly. In this section, we first introduce an approach that
estimates the starting location of each individual burst. Then,
the performance of this procedure is analyzed when an error
occurs, and we will discuss how to recognize and also correct
such errors. Finally, by combing these ideas together, we
elaborate an algorithm, referred to as starting point estimation
(SPE) algorithm to find the location of the bursts in the channel
vector.

A. Starting Point Estimation Algorithm

In general, forming the burst areas is not possible when
their starting locations are unknown. However, if we compute
the maximum correlation between the received signal and the
columns of the sensing matrix, we can hope to identify the
channel support within a certain burst. Therefore, the main

Realizations:

Fig. 2. A simple example of burst realizations with N = 12 antennas, B = 1
bursts, db = 3, and sparsity upper bound U = 5.

idea behind the proposed algorithm is to use burst areas
identified in this manner and then to search for neighboring
channel coefficients that fall within the same burst.

The maximum correlation can be obtained as

ψ[l] = argmaxt=1,2,...,N |Ψ
H[t]rtemp| (13)

where ψ[l] is the column index of the sensing matrix which has
the maximum correlation with the residual vector, and rtemp is
the residual vector, which is equal to the measurement signal
for the first burst (l = 1). Consider a particular burst b and its
associated column ψ[b] from the sensing matrix. The set of
all possible supports for this burst can be described by

A = R∪ L (14)

where R = {ψ[b] + j| 0 ≤ j ≤ (U − 1), j ∈ Z} are the
elements on the right side of ψ[b], and L = {ψ[b] − j| 0 ≤
j ≤ (U − 1), j ∈ Z} are those on the left side of ψ[b]. The
constructed set A includes all possible realizations of burst b
with length U , which we call Bi, i = 1, 2, . . . , U .

To see the possible realizations, Fig 2 illustrates bursts with
length U formed by starting from the elements on the left
side of ψ[b]. Since Sb ⊆ A, one of these realizations should
be similar to the original burst area Sb. Assume that ŝb ∈ A
indicates a realization which is matched to sb (for example,
set B3 in the realizations of Fig. 2). Clearly the burst area
Ŝb = {ŝb + j| 0 ≤ j ≤ (U − 1), j ∈ Z} should minimize the
norm of the residual vector. Therefore, we can try each Bi as a
potential burst and compute the corresponding residual to find
the one with the smallest norm. The number of searches in this
stage is equal to U and the process will be performed only
once for each burst. When the starting point of the burst b is
identified using the above procedure, the burst area Bi? related
to the minimum residual norm is saved, the new residual vector
is computed as rtemp, and the process is then repeated for the
other bursts in order to prevent identification of the same burst
in subsequent iterations.

The proposed method for estimation of the starting point is
based on maximum correlation computation and residual norm
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minimization for each burst individually. In this approach, the
following problem could occur: if the maximum correlation
for burst b corresponds to an index that is outside burst b,
the resulting realization sets Bi may not contain burst b, i.e.
Sb * A, and the algorithm may produce an estimated starting
point ŝb that is far from the true value sb, or possibly even
inside the burst. Therefore, an effective mechanism should be
introduced in order to recognize and also correct such errors.
This mechanism has been designed as follows.

Assume that, due to noise or interference, the index of
maximum correlation ψ[b] for burst b corresponds to an angle
index that is located outside of burst b. If we form the burst
area based on this incorrect ψ[b], estimate the starting point
ŝb, and then remove the effect of the estimated burst from
the residual vector, then even if the other bursts have been
detected correctly, the final residual rtemp will likely have a
norm greater than the noise threshold even after the algorithm
is performed B times to find all bursts. Therefore, we can
recognize such errors by comparing the residual norm to a
threshold; e.g., if ‖rtemp‖22 > µth after we have initially
identified B bursts, then we decide that at least one of the
identified bursts has been incorrectly located. The threshold
parameter µth can be chosen to be proportional to the noise
level, as αE{‖n‖22} for some α > 0. In particular, since

E{‖n‖22} = E

{
M∑
i=1

|ni|2
}

=

M∑
i=1

E
{
|ni|2

}
= Mσ2

n , (15)

we have µth = α(Mσ2
n). As we sequentially detect the starting

location for each burst, and we add the resulting burst to those
that have been previously found, we expect that ‖rtemp‖22 >
µth will be true until all B bursts have been detected. At this
point, assuming the bursts have all been correctly identified,
then ‖rtemp‖22 should drop below the threshold µth and the
algorithm will terminate. If not, then we assume an error has
occurred and we continue the iterations using the approach
described below to fine tune the burst locations and correct
the error.

The purpose of each additional iteration beyond the first
B is to attempt to find a large correlation at an angle that
lies outside the union of the current set of detected bursts.
The location of this large correlation is thus a candidate for
a potential channel support that was missed by the algorithm
and should be included in one of the bursts. Suppose ψ[l]
is the angle corresponding to a large correlation at iteration
l > B. For all possible burst locations Bi, i = 1, · · · , U ,
surrounding ψ[l], we find the closest burst from the current set
and replace it with Bi. We then compute the resulting residual
and we repeat this process for all i = 1, · · · , U , to find the Bi
that results in the smallest residual. If the resulting residual
falls below the threshold, the algorithm terminates. If not, the
process is repeated for the next iteration l+ 1 until either the
residual finally falls below the threshold, or an upper limit
lmax on the iterations is reached.

The starting point estimation algorithm is divided into two
combined parts, as detailed in Algorithm 2. In the first part,
for iterations l such that l ≤ B, the maximum correlation
computation in line 6 finds a candidate location for the l-th

burst, and forms the set A of all possible starting points in
line 9. The candidate bursts Bi are tentatively added to the total
burst support in line 15, and the resulting residual is calculated
in line 20. This process is repeated for all possible starting
locations, and the one with the minimum residual is found in
line 22. The corresponding burst is then labeled as the next
“true” burst l and is added to the previously detected bursts
in line 25. If the resulting residual is below the threshold, the
algorithm terminates at line 31.

Algorithm 2: Proposed SPE Algorithm

1 Inputs: ycs, Ψ, B, U , µth, lmax > B.
2 Output: Estimation of starting points, ŝ1, ŝ2, . . . , ŝB .
3 Initialize: rtemp = ycs, ψ = 0lmax×1 , S0 = ∅ , l = 0.

4 repeat
5 l = l + 1;
6 ψ[l] = argmaxt=1,2,...,N |Ψ

H[t]rtemp|;
7 R = {ψ[l] + j| 0 ≤ j ≤ (U − 1), j ∈ Z};
8 L = {ψ[l]− j| 0 ≤ j ≤ (U − 1), j ∈ Z};
9 A = R∪ L;

10 Initialize: i = 0.

11 while i < U do
12 i = i+ 1;
13 Bi = {A[i] + j| 0 ≤ j ≤ (U − 1), j ∈ Z};

14 if l ≤ B then
15 ΩU = Bi ∪

(⋃l
k=1 Sk−1

)
;

16 else
17 k?(i) = argmink=1,2,...,B |Sk − Bi|;
18 ΩU =

S1 ∪ . . . ∪ Sk?(i)−1 ∪ Bi ∪ Sk?(i)+1 ∪ . . .SB ;
19 end

20 ri =
(
I−Ψ[ΩU ]Ψ†[ΩU ]

)
ycs;

21 end
22 i? = argmini=1,2,...,U‖ri‖2;

23 if l ≤ B then
24 ŝl = A[i?];
25 Sl = Bi? ;
26 else
27 ŝk?(i?) = A[i?];
28 Sk?(i?) = Bi? ;
29 end
30 rtemp = ri? ;

31 until
(
‖rtemp‖22 ≤ µth or l ≥ lmax

)
;

The second part of the algorithm is initiated if ‖rtemp‖22 >
µth. The idea behind this second part is that, if the residual is
still too high, at least one of the bursts has been misplaced and
channel components for the user outside the burst still remain.
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These components are found by further correlation and burst
positioning operations, not to create new bursts, but instead
to refine the location of the existing detected bursts. First, a
new correlation peak is detected in line 6, and candidate burst
regions are found in the vicinity of this new peak. Each of
these candidates replaces the closest existing burst in the set
(lines 17 − 18), and the corresponding residual is computed
in line 20. The replacement that leads to the smallest residual
in line 22 is the one that is chosen, and the corresponding
previously detected burst is replaced with the new one in
line 28. This process is repeated until the residual finally falls
below the threshold µth, or the maximum number of iterations
lmax is reached.

Once the starting point of the burst are estimated using
the SPE algorithm (Algorithm 2), the BFLS algorithm (Algo-
rithm 1) can be implemented directly to precisely determine
the burst lengths and to estimate the channel coefficients.

B. Computational Complexity of the SPE Algorithm

The maximum correlation computation (line 6) and the
residual update (line 20) are responsible for the bulk
of the computational load in each iteration of SPE al-
gorithm. The total complexity of the correlation step is
O(lmaxMN) operations. The residual update has a complexity
of O

(
2MUl + 2MU2l2 + U3l3

)
, where l ≤ lmax indicates

the l-th iteration of the algorithm. This analysis and the
computational complexity of BFLS demonstrate that the over-
all channel estimation complexity for our method grows as
O(N) and O(M), which is considerably less than the linear
programing algorithms used by standard LASSO and Burst
LASSO, whose complexity is of order O(N3) and O(N3U3)
respectively [30].

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
BFLS and SPE algorithms by considering an FDD massive
MIMO system with a uniform linear array composed of
N = 120 antennas and M = 45 reserved pilots (except for
the example in Fig. 5). The pilot signals are drawn from a
Gaussian distribution with zero mean and variance equal to
the transmit power p at the BS side. The channel is assumed
to consist of two bursts with different lengths (unless otherwise
stated) whose non-zero entries are distributed as complex
Gaussian elements. The upper bound parameter is fixed as
U = 12 except for cases where U is variable. Two bursts are
assumed in the simulations, with actual lengths of 8 and 10
bins for cases where the bursts are of unequal lengths. When
the bursts were assumed to be of the same length, both had 10
non-zero bins. The threshold parameter to halt Algorithm 1 is
set as ηth = 0.8 and the parameter µth in the halting criterion
of Algorithm 2 assumes α = 1.

We compare our algorithms with the following baselines in
terms of the normalized MSE (NMSE), defined as

NMSE =
1

Nc

Nc∑
q=1

‖hH
q − ĥH

q ‖22
‖hH

q ‖22
(16)

where Nc is the number of simulations, and q refers to the
q-th simulation.

1) Block OMP: As a conventional block recovery algo-
rithm, block OMP estimates the channel by grouping the
supports in the blocks and utilizing greedy and iterative
procedures [16], [29]. The algorithm will repeat until the
halt conditions are met.

2) Standard LASSO: The channel is recovered by solving
the convex optimization problem (5). Standard LASSO
estimates the channel without exploiting the burst spar-
sity property [24], [27].

3) Burst LASSO: In this approach, standard LASSO is
modified by using a lifting transformation to convert the
burst sparsity to the block model [13], [25]. In other
words, the Burst LASSO approach solves problem (6)
to recover the burst-sparse channel.

4) Aided Burst LASSO: This corresponds to Burst
LASSO assuming that the starting location of each burst
is known [13].

5) Genie Aided LS: This baseline approach assumes that
the location of the channel support is available at the
BS side and only requires that the amplitudes be recon-
structed using the conventional LS estimator.

Moreover, to analyze the computational complexity of the
BFLS algorithms when the number of antennas is increased
and to compare it with the baseline approaches, we use the
run-time criterion, which is defined as the CPU time for the
calculations.

A. Channel Estimation Quality in Terms of NMSE

The Normalized MSE of the estimated channel versus trans-
mit SNR is plotted in Fig. 3 for the various algorithms under
consideration. As can be seen, the BFLS algorithm with known
burst starting locations outperforms Aided Burst LASSO with
exact support information. In addition, the NMSE of the
proposed approach is essentially identical to that of the Genie
Aided LS lower bound as the SNR increases. As a result, we
can expect a high-quality channel estimate from the proposed
algorithm if the stating locations of each burst are available.
When the starting locations of the bursts are not available at
the user side, the SPE algorithm is implemented to find them,
and then used in the BFLS algorithm for channel acquisition.
The proposed BFLS algorithm shows a significantly improved
performance compared with Standard LASSO and its perfor-
mance is still very close to the Genie Aided lower bound and
Aided Burst LASSO with known starting points. The Burst
LASSO approach is unable to estimate the channel better than
Standard LASSO for the case of different burst lengths. This
is because the burst sparse channel cannot be converted to a
block sparse model by the lifting transformation in [25]. The
Block OMP algorithm also shows poor performance due to
block-wise channel recovery.

Fig. 4 illustrates the NMSE versus transmit SNR for the case
with equal burst lengths. Similar to the previous case with
different lengths, the proposed BFLS algorithm outperforms
the other algorithms and its performance approaches the lower
bound. From Fig. 3 and Fig. 4, we observe that the Burst
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Fig. 3. Normalized MSE versus transmit SNR given N = 120, M = 45,
B = 2 and U = 12, when the length of the bursts are different.
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Fig. 4. Normalized MSE in terms of transmit SNR with N = 120, M = 45,
B = 2, and U = 12, for bursts with the same length.

LASSO approach enhances the estimation quality only when
the starting locations are known and the bursts have the same
length, while the BFLS algorithm estimates the channel with
acceptable quality in both cases whether or not the starting
locations of the bursts are known.

Fig. 5 compares the algorithms in terms of pilot overhead
when the transmit SNR is 15dB and U = 12. The results
demonstrate again that the performance of the BFLS algorithm
is equal to the lower bound when the starting point is given. We
see that the pilot overhead can be reduced by approximately
70% without any degradation in performance, when the exact
support information is available at the user side. For unknown
support information, the BFLS requires at least M = 45 pilots
to recover the channel, which corresponds to a 65% pilot and
CSI compression (only 5% more pilots are required leading to
only a slight decrease in performance). Furthermore, the BFLS
algorithm has performance similar to Aided Burst LASSO for
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Fig. 5. Normalized MSE versus pilot overhead for transmit SNR = 15dB,
N = 120, U = 12, and two bursts with different lengths.

M ≥ 45, using only estimated burst starting points. The Burst
LASSO and conventional LASSO algorithms require pilots
whose length is up to 50% of the number of antennas for
acceptable estimation quality, which leads to a large pilot
overhead.

B. Performance of the SPE Algorithm

To illustrate the accuracy of the proposed starting point
estimation algorithm, the normalized MSE of the estimated
points, defined as 1

B

∑B
l=1 E

{
(sl − ŝl)2/s2l

}
, in terms of

the sparsity upper bound U is plotted in Fig 6. This figure
shows how the value of U can affect the performance of the
SPE algorithm in different SNR regimes. Because the burst
area has a longer length when the upper bound U grows,
the residual vectors have almost the same norms and they
cannot be easily distinguished. Consequently, as the upper
bound U grows away from the actual length of the bursts, the
error in the estimated starting location grows correspondingly.
Therefore, the only key factor in the performance of the
proposed algorithm is the value of the parameter U .

Fig. 7 depicts the effect of the upper bound U on the
channel estimation quality for two bursts of 10 non-zero
coefficients, i.e. d1 = d2 = 10. We see from this figure that
the BFLS algorithm with unknown starting locations provides
performance equal to the lower bound when U is chosen to
correspond to the exact sparsity order in each burst. A slight
degradation is observed when the difference between U and
the length of the bursts grows.

C. Computational Complexity in Terms of Run Time

In Fig. 8, we compare the computational complexity of the
algorithms according to their run time for different numbers
of transmit antennas. The number of required pilots is taken
to be 2

5N (60% compression) for each of value of N . From
this figure, we see that the LASSO approaches (Burst LASSO,
Standard LASSO, and Aided Burst LASSO) require the most
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Fig. 7. Normalized MSE of channel estimation in term of transmit SNR for
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run time, since they must solve a large-dimensional optimiza-
tion problem to recover the channel, especially for very large
antennas arrays. Due to the large number of variables in the
objective function of the Burst LASSO optimization, more
computation is needed to estimate the massive MIMO channel.
Unlike the LASSO approaches, the proposed BFLS algorithm
first reduces the dimension of the problem by determining the
locations of the channel elements, which leads to a significant
reduction in complexity. For the case with unknown starting
locations, the run time increases due to the computation
of the SPE algorithm, which tends to dominate the overall
computational cost.

VI. CONCLUSION

In this paper, a novel burst-form LS approach which fully
utilizes the burst structure of sparse channels in massive
MIMO system has been introduced. In the first scenario
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Fig. 8. CPU running time versus number of transmit antennas when U = 12,
transmit SNR = 15dB, and under the configuration: Intel CPU (Xeon) with
2.4 GHz frequency, 4GB RAM.

considered, the starting location of the bursts is considered
to be a variable that varies slowly enough that the user can
track it easily and thus is considered to be known. Using the
known starting points and an upper bound for the lengths of
the bursts, the location of each burst in the channel vector
is determined and then the amplitude of the supports are
estimated by the LS approach. In addition, a refinement step
has been embedded into the proposed algorithm to eliminate
over-estimated support sets. We also considered the scenario
in which the user cannot provide the starting locations to
the BFLS algorithm. In this case, we proposed an algorithm
for estimating the starting point locations of each burst. This
second algorithm includes a refinement step to fine-tune the
estimated starting points in cases where errors are introduced
by the first pass of the algorithm. Our simulations verify that
the BFLS algorithm can provide very high quality channel
estimates for FDD systems with much fewer pilots and with
significantly reduced computation compared with competing
algorithms, even for the case where the burst starting points
must be estimated.
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