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Series approximations for Rayleigh distributions of arbitrary dimensions

and covariance matrices

Martin Wiegand, Saralees Nadarajah
School of Mathematics, University of Manchester, Manchester M13 9PL, UK

email: mbbsssn2@manchester.ac.uk

July 12, 2019

Abstract: The multivariate Rayleigh distribution is of crucial importance to many applied problems
of engineering, such as in the analysis of multi-antenna wireless systems. Due to the lack of a generalised
closed form of the distribution, the dependence on effective approximation methods for evaluation has
created numerous numerical approaches with considerable restrictions in both dimensionality, as well as
the structure of covariance matrices. In this paper we extend a previously introduced method [1] without
either of these limitations. We then compare the performance of the new algorithms to recent integration
methods of fixed dimension, presented by Beaulie and Zhang [2] and highlight the advantages of the new
method.

Keywords: Correlation, Covariance, Multivariate Rayleigh distribution, Signal processing

1 Introduction

The Rayleigh distribution is essential to various applications in the field of signal processing, being the
most fundamental model to describe signal fading in wireless systems. Common applications include the
computation of outage probabilities, as evidenced in much of the literature dedicated to the subject [2]
[3] [4], or the interference of elementary waves [5]. One of the most frequent utilisation of multivariate
Rayleigh distributions (along with Rician or Nagakami distributions) lies in the modelling and analysis of
multi-antenna wireless communications systems, where the dimension of the distribution corresponds to
the number of channels or antennae in the system [6]. A Rayleigh approximation without dimensionality
constraints therefore allows for systems of arbitrary size.

So far no closed form density function for Rayleigh distributed random variables has been put forth,
apart from the univariate case. Therefore fast and reliable numerical approximations are necessary to
evaluate various Rayleigh-based models. Over the years many such approximations have been proposed,
utilising series representations, integration methods or a combination of both. Current numerical evalua-
tions are defined for a fixed number of dimensions, requiring new formulations for every dimension, while
others may simply not be extended to more general cases. These approaches have been used with varying
success and occasionally poor computational performance. Some of the most recent advances in approxi-
mation methods have been addressed or developed by Le [7] [8] [9] [10], or Beaulieu and Hemachandra [6]
among others. However, while some of these have proposed approximations that generalise the number
of channels in the observed systems, correlation structures remain restrictive by postulating equal cor-
relations [7] [8] [9] or other specific structures between channels [6]. In an earlier work we introduced a
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generalised series representation, which can be used for distributions of arbitrary dimensions [1]. How-
ever, based on the original method, we introduced a similar restriction on the structure of the covariance
matrix, requiring identical values on the minor diagonals. We denote the kth minor diagonal as aj,i with
|j− i| = k. In this paper we extend [1] by introducing arbitrary covariance matrices to the base approach.

This paper is structured as follows: After the introduction where we reviewed previous methods of
approximation and their applications, we move on to Section 2 discussing the generalisation of [1] to
arbitrary covariance matrices. In Section 3, we investigate the performance of our newly proposed series
approximation and compare the results to one of the most recently proposed integration approximations
[2]. To validate our claims we test all methods for a constructed and an arbitrary covariance matrix of
both low and high correlations, all in a three and a four dimensional space. We investigate the convergence
speed of the series expansion against the accompanying increase in computational effort. Section 4 offers
insight into possible applications of the series representation by computing outage probabilities of multi-
channel systems. Lastly we conclude this paper by summarising our new findings and propose further
research projects.

2 Approximation method

Virtually every approximation method exploits the Rayleigh distribution’s relation to the length (L2

norm) of a normally distributed, multivariate random vector. This approach has been used for decades
to derive fixed dimension densities [11] [12], by setting up an initial expression from which the Rayleigh
distribution may be derived as a marginal. We construct an n-dimensional representation of the Rayleigh
distribution, by introducing 2n zero-mean Gaussian random variables X = X1, . . . , Xn and Y = Y1, . . . , Yn
with their respective variances σ2

1, . . . , σ
2
n. The variables Xi and Xj as well as Yi and Yj are correlated by

ρi,j for i < j, whereas the vectors X and Y remain uncorrelated to each other. In this setup, the random
variable X denotes the in-phase and Y the quadrature part of a given signal. We hence start out with
the joint Gaussian distribution in 1 for a given sample X = (x1, . . . , xn) and Y = (y1, . . . , yn):

f (x1, . . . , xn, y1, . . . , yn) =
1

(2π)n|Σ|
exp

[
−(x, y)TΣ−1(x, y)

2

]
. (1)

We denote the combined covariance matrix (X,Y ) by Σ:

Σ =


0

σ1σnρ1,n

0

...

...

σ1σ2ρ1,2

0

σ2
1

σ1σnρ1,n

0

σ1σ2ρ1,2

0

σ2
1

0

0

. . .

σ2
2

0

σ1σ2ρ1,2

· · ·

. . .

. . .

σ1σ2ρ1,2

· · · · · ·

· · ·

. . .

. . .

0

0

σn

. . .

0

σ1σnρ1,n

σn

0

...

...

0

σ1σnρ1,n

0


. (2)
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This stands in contrast to the previous approaches [1] and [3], where the correlations were limited
to fixed values on the main and minor diagonals, such that ρi,j = ρi+k,j+k remains the same for all
k ≤ n−max{i, j} (see [3] eq. 2).

Analogously to the approach of [1] we convert the cartesian coordinates into polar coordinates as
Xi = ri cos θi and Yi = ri sin θi. The determinant of the Jacobian matrix of the transformation, |J | =
r1 · · · rn, appears as a factor in the density, and will be incorporated into the scalar factor later on. More
importantly we use the identity K−1 = 1/|Σ|CT , where C ∈ R2n is the cofactor matrix corresponding to
Σ. The cofactor matrix retains the same sparse shape of the original matrix, as we can see in 3:

C =


0

c1,n

...

...

0

c1,2

0

c1,1

c1,n

0

c1,1

0

· · ·

. . .

c2,2

0

c1,2

. . .

. . .

0 · · ·

· · ·

. . .

. . .

· · ·

0

cn,n

. . .

cn

cn,n

0

...

...

cn

0


. (3)

The familiar formulation of 5 is obtained by performing the matrix-vector multiplication and the
trigonometric identities sin(x)2 + cos(x)2 = 1 and cos(a − b) = cos(a) cos(b) + sin(a) sin(b). In order
to further clarify and streamline the notation, we denote the exponential coefficient in the product as
ai+j−2 = rirjci,j with the index t = 1, . . . , n(n− 1)/2 = p. Accordingly, we relabel the angle components
xi+j−2 = θj − θi in the same way:

f (r1, . . . , rn, θ1, . . . , θn) =

∏n
i=1 ri

(2π)n|K|1/2
exp

(
− 1

2|K|

n∑
i=1

r2
i ci,i

)
︸ ︷︷ ︸

=γ(r,c)

n∏
i<j

exp

[
− 1

|K|
ci,jrirj cos (θj − θi)

]
(4)

(∗)
= γ(r, c)

n(n−1)/2∏
t=1

exp

[
− 1

|K|
at cos (xt)

]
. (5)

This constitutes in essence a conflation of multiple indices of different factor combinations, into a
single variable with a single progressive index. In (∗) we substitute xl−1 − xk−1 = θk − θl, with x0 = 0,
as has been done in both [1] and [3]. We can then proceed with 5 to derive the final density function by
computing the marginal density by means of integration over the domain [0, 2π] in 6 to derive the final
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result in 8 after some arithmetic and rearranging (for details see [1]):

f (r1, . . . , rn) =

∫ 2π

0
· · ·
∫ 2π

0
f (r1, . . . , rn, θ1, . . . , θn) dθ1 . . . dn (6)

= γ(r, c)

∫ 2π

0
· · ·
∫ 2π

0

n(n−1)/2∏
t=1

exp

[
− 1

|K|
at cos (xt)

]
dθ1 . . . dn (7)

= πnγr,c

∞∑
j1=0

· · ·
jp−1∑
jp=0

bt,j∗t

∑
ρ∈{−1,1}p

n∏
w

δ{Σxw=0}. (8)

The final formula of 8 makes use of the previous variables defined in 9 below:

Σxw = Aw,1 +

n−w∑
l=1

Al,w +

w−1∑
l=1

Aw−l,1+l

bt,j∗t =

{
I0(|at|) if j∗t = 0,

2(−1)j
∗
t I(at<0)Ij∗t (|at|) if j∗t > 0

j∗t = jp−t+1 − jp−t+2

αt = j∗t ρt

A =



α1 αn . . . . . . αn(n−1)/2−2 αn(n−1)/2

α2 αn+1 αn(n−1)/2−1 0

α3
... 0

...
...

...

...
... α2n−2

...
αn−1 0 . . . 0


. (9)

The relaxation of the restrictions on the covariance matrix gives us a much larger scope in potential
application areas, and the basis for a truly universal formulation of the Rayleigh distribution, without
dimensional limitations.

We have now assumed arbitrary cofactor matrix values ci,j , and therefore arbitrary covariance matrix
values Σi,ij . Therefore we may directly compare the newly derived series approximation to recent fixed-
dimension approaches without restrictions on correlation or covariance. The next section will assess the
performance of both the series expansion and the integration-based method of Beaulieu and Zhang [2].

3 Comparison

The method developed by Beaulieu and Zhang [2] relies on the computation of the multivariate Rayleigh
distribution by means of integrals necessary in the transition from joint Gaussian to marginal distributions
([1], [3]). The principal idea in this proposition is to determine two integrals analytically, leaving a
formulation which consists of n− 2 integrals, where n is the dimension of the Rayleigh distribution. The
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remaining integrals are then to be evaluated by numerical means. Beaulieu and Zhang [2] provide explicit
formulations for the three and four-dimensional Rayleigh densities. We have given the functions in 10
below:

f (r1, r2, r3) =
3∏
i=1

ri
σ2
i

exp

− 1

2|Ω|

r2
i

(
1− ρ2

jk

)
σ2
i


∫ π

0

expL2 cos t2
π|Ω|

I0

(√
L2

1 + L2
3 + 2L1L3 cos t2

)
dt2,

(10)

where i 6= j 6= k, σ2 denotes the variance of each Gaussian random variable, while ρl,m denotes their
respective correlation. The coefficients L1, L2 and L3 are defined in Beaulieu and Zhang [2] as follows:

L1 =
r2r3 (ρ2,3)− ρ12ρ13

σ2σ3|Ω|
, L2 =

r1r3 (ρ1,3)− ρ12ρ23

σ1σ3|Ω|
, L3 =

r1r2 (ρ1,2)− ρ13ρ23

σ1σ2|Ω|
. (11)

To evaluate this formulation in practice, we will have to rely on numerical integration methods which
determine the value of the remaining integrals. We select methods in Table 1 to provide a sufficiently
varied picture of performances.

Name Type Function R package Note

U
n
iv
a
ri
a
te

Kronrod Quadrature integral pracma

Simpson Quadrature integral pracma

TOMS614
Quadrature/
Adaptive

int rmutil

Taken from the
ACM algorithm
collection

Romberg Extrapolation int rmutil

Mixed Quadrature integrate stats
R interface for
C++ code

B
iv
a
ri
a
te Romberg Extrapolation int2 rmutil

Quadrature Cubature quad2d pracma
R wrapper for
MatLab code

Cubature Cubature pcubature cubature
R wrapper for C
code

Table 1: An overview of the different numerical integration methods and their implementations.

Since there is no closed form of the multivariate Rayleigh distribution available to compare the ap-
proximations against, we need to select a boundary case for exact results. In order to do so, we chose
the covariance matrix to simplify the integrand in 6 adequately to derive a closed form. In particular we
need all entries of the cofactor matrix other than the main and the first minor diagonals to disappear.
We may write this condition as ci,j = 0 for all |i− j| > 1 (referred to as (**)). The series expansion then
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collapses to the simpler case denoted in 15:

f (r1, . . . , rn) = γn,Σ,r

∫
[0,2π]n

p∏
t=1

exp [at cos (xt)] dx1 · · · dxn (12)

(∗∗)
= γn,Σ,r

∫
[0,2π]n

exp [a1 cos (x1 − x2) + an cos (x2 − x3) + a2n−3 cos (x3 − x4) + · · ·+ ap cos (xn−1 − xn)] dx1 · · · dxn

(13)

= γn,Σ,r(2π)nI0 (a1) I0 (an) (a2n−3) · · · I0 (ap) (14)

=

∏n
i=1 ri

|Σ|1/2
exp

(
− 1

2|Σ|

n∑
i=1

r2
i ci,i

)
n−1∏
l=1

I0

(
− 1

|Σ|
rlrl+1cl,l+1

)
. (15)

We note that the result in 15 constitutes a boundary case where approximation and true solution
coincide, due to the zero-value sum terms of the approximation that disappear. This of course is because
the random variable pairs {Ri, Rj} for k ≤ |i − j|, whose missing cofactors simplify the distribution
significantly. The coefficient γ is dependent on solely the covariance matrix and radius parameters and
has been defined as follows:

γn,Σ,r =

∏n
i=1 ri

(2π)n|Σ|1/2
exp

(
− 1

2|Σ|

n∑
i=1

r2
i ci,i

)
. (16)

We have therefore produced a closed form solution for specific correlation and variance values. The
formulation retrieved in 15 will be used as the true value, to which we will compare the approximations
of the integral and series representation approaches. In order to quantify the accuracy of the proposed
methods we will settle on a number of familiar error measures. Across an equidistant multidimensional
grid, we will evaluate the true solution, the integration-based method for multiple numerical integration
approaches, as well as the series expansion with different numbers of sum terms. We have computed
the average absolute error (AAE), average relative absolute error (ARAE - in percentages), aggregated
absolute error (AGAE) and the maximum absolute error (MAE):

AAE =
1

N

N∑
i

∣∣∣f̂ (xi)− f (xi)
∣∣∣ , (17)

ARAE =
100

N

N∑
i

∣∣∣∣∣ f̂ (xi)− f (xi)

f (xi)

∣∣∣∣∣ , (18)

AGAE =

N∑
i

∣∣∣f̂ (xi)− f (xi)
∣∣∣ , (19)

MAE = max
i

∣∣∣f̂ (xi)− f (xi)
∣∣∣ . (20)

The evaluation points are equidistantly distributed across an area [0, b]n. The upper bound b is chosen
such that the hypercube encompasses the area of interest (until f(b) ≈ 0). In addition to the accuracy
we are concerned with the evaluation and setup speed of both procedures. With setup speed we refer to
the computation time needed for the algorithm to determine the non-zero sum terms of the index value
combinations j1, . . . , jn. Whether or not an index value combination leads to a non-zero sum term is
independent of the covariances, and can therefore be computed once and stored for other computations
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of the same dimension. To make the algorithm more transparent, we have decided to include the one-
time computational effort for the algorithm setup regardless. We have hence recorded both times for all
approaches, to give us an impression of the computational effort involved.

3.1 Three-dimensional case

In a first step we will investigate a constructed three-dimensional example. We have chosen the variances
as σ2

1 = 1.5, σ2
2 = 2, σ2

3 = 1.5 and the correlations as ρ1,2 = −1/
√

3, ρ2,3 = −1/
√

3, ρ1,3 = 1/3. The
corresponding cofactor matrix is depicted in 21:

C =


0
0
0
2
0
4

0
0
2
0
4
0

0
2
0
4
0
2

2
0
4
0
2
0

0
4
0
2
0
0

4
0
2
0
0
0
 , (21)

providing us the cofactor matrix structure necessary to gain a closed form boundary case of the Rayleigh
density. We proceed to analyse how both approximations fared in the simulation. Table 2 lists the
previously discussed metrics which characterise the performances of both methods. The upper part of
the table is focused on the integration-based approaches performed by different numerical methods. The
second half of the table depicts the error measures for the different numbers of sum terms of the series
expansion. The grid has been created to span the cube [0, 3]3 and was evaluated at one million nodes
(f = 100 nodes in each dimension).

All computations were carried out on a personal computer, equipped with 4 Intel(R) Core(TM) i7-
6700 CPU @ 3.40GHz cores, which are divided into 8 Logical Processors and with 16GB available physical
memory. While both setup and evaluation of our algorithm can be easily parallelised, we ran the compu-
tations on only one processor for better comparability.
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f =
100

TYPE AAE ARAE AGAE MAE EVAL (min) SETUP (s)
In

te
g
ra

l

Kronrod 2.21829E-11 7.61392E-08 2.21829E-05 1.27465E-10 13.7299500 0.00000000

TOMS614 2.40850E-08 7.73793E-05 2.40850E-02 1.67967E-07 20.1209166 0.00000000

Simpson 2.21972E-11 7.62012E-08 2.21972E-05 1.27465E-10 49.8370500 0.00000000

Mixed 2.21829E-11 7.61392E-08 2.21829E-05 1.27465E-10 2.47048333 0.00000000

Romberg 2.26737E-11 7.79200E-08 2.26737E-05 1.27543E-10 24.4264333 0.00000000

S
e
ri
e
s

Closed 4.61123E-18 1.64066E-14 4.61123E-12 1.11022E-16 0.24526666 0.00000000

Series 3 3.83983E-18 1.39695E-14 3.83983E-12 9.71445E-17 2.38705000 0.24300003

Series 6 3.83983E-18 1.39695E-14 3.83983E-12 9.71445E-17 3.29476125 0.97500014

Series 9 3.83983E-18 1.39695E-14 3.83983E-12 9.71445E-17 4.28667128 2.90371013

Series 12 3.83983E-18 1.39695E-14 3.83983E-12 9.71445E-17 5.18513210 5.87441301

Series 15 3.83983E-18 1.39695E-14 3.83983E-12 9.71445E-17 6.15813334 10.6629998

Series 18 3.83983E-18 1.39695E-14 3.83983E-12 9.71445E-17 7.15973334 17.3380000

Series 21 3.83983E-18 1.39695E-14 3.83983E-12 9.71445E-17 8.28696667 26.2049999

Table 2: Performance table for three-dimensional approximations.

We can see that most of the integration algorithms perform similarly, with a rather low average error.
All four error measures depict almost the same values within a very small margin for the integration
approach. Only the TOMS614 algorithm seems to perform significantly worse, all error measures being
a multiple of the values we see in the other four integration methods, by as much as a factor of 1000.
Compared to the series expansion however, the integration method performs worse by a wide margin,
regardless of error measure or integration method (∼ 2.2×10−11 vs 3.8 ∼ 10−18). With only a single sum
term used in the series expansion, which we have denoted as closed in the table, the expansion method
already underbids the computed error measures by factors of 107, 106, 107 and 106 for the AAE, ARAE,
AGAE and MAE, respectively. The subsequent series approaches of higher order show only little further
improvement before stagnating at around ∼ 3.810−18. The differences in performance are at this point
in the order of magnitude of the machine precision, and have therefore little to say about convergence or
performance of the methods. In terms of the computation time, we suspected the series representation
to be faster as the evaluation algorithm itself may appear more complex yet relies on basic operations,
many of which were carried out before the series evaluation, regardless of parameter values. The highest
order of series expansion completes the computation in 8.2s, whereas all the integration methods besides
the mixed C method (which completes in ∼ 2.5) are more time consuming. Our observations are largely
matching our expectations, albeit with the exception of the “mixed” algorithm of the stats package.
However, as we noted in Table 1 this numerical integration approach is merely an R frontend for C code,
thus has to be somewhat disqualified for the sake of consistency, as the two programming languages have
very different inherent evaluation speeds and computational efficiency.

We constructed 21 merely to verify the validity of our approximation in a testable boundary case.
However, the example we created through the specific choice of covariance matrix may not be represen-
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tative for the problem as a whole, as the series expansion collapses to the true solution in this particular
case. For arbitrary covariance matrices, no closed form does exist, which is why we are looking for an
accurate approximation in the first place. In [1], we have derived the series representation as an exact
expansion, which can be evaluated to arbitrary precision. To repeat our experiment in a more general
setting, we have therefore chosen a series expansion of n = 30 terms as a stand-in for the true solution,
as the additional contributions for higher orders dropped below the machine precision (in the order of
magnitude ∼ E − 20). We therefore define a second test example with parameters as follows: σ2

1 = 0.25,
σ2

2 = 0.1, σ2 = 0.5 and ρ1,2 = 0.3, ρ1,3 = −0.4, ρ2,3 = 0.1. This selection of variances and correlations
does not pose a special case cofactor matrix, and can therefore be used to derive more meaningful results.

f =
100

TYPE AAE ARAE AGAE MAE EVAL (min) SETUP (s)

In
te
g
ra

l

Kronrod 2.00995E-11 4.65180E-08 2.00995E-05 2.40802E-10 10.0354333 0.00000000

TOMS614 3.10563E-08 6.94000E-05 3.10563E-02 5.94122E-07 15.2123833 0.00000000

Simpson 2.00338E-11 4.68059E-08 2.00338E-05 2.40802E-10 46.1882500 0.00000000

Mixed 2.00995E-11 4.65180E-08 2.00995E-05 2.40802E-10 1.86520000 0.00000000

Romberg 3.55274E-11 6.39262E-07 3.55274E-05 2.74488E-10 19.9705666 0.00000000

S
e
ri
e
s

Series 1 1.18950E-03 1.24626E+01 1.18950E+03 1.03932E-02 0.18264999 0.00000000

Series 3 1.64911E-05 5.45667E-01 1.64911E+01 2.09788E-04 1.78236667 0.18700004

Series 6 1.82202E-07 1.48143E-02 1.82202E-01 4.20331E-06 2.47346667 0.79699993

Series 9 1.59737E-09 2.62467E-04 1.59737E-03 6.59571E-08 3.16587333 2.03900003

Series 12 1.11266E-11 3.17883E-06 1.11266E-05 8.19534E-10 3.87352927 4.53854609

Series 15 6.17717E-14 2.73157E-08 6.17717E-08 7.82583E-12 4.62833467 7.81721807

Series 18 2.74466E-16 1.71696E-10 2.74466E-10 5.74052E-14 5.37201666 13.5309999

Series 21 9.80759E-19 8.09972E-13 9.80759E-13 3.32972E-16 6.01856667 19.7210001

Table 3: Performance table for three-dimensional approximations, for a random covariance matrix.

The various integration methods appear to perform roughly the same as in the previous test problem
in terms of accuracy, with only minor differences, see Table 3. The ARAE appears a little more volatile
between methods than before, and the maximum absolute error across the domain has roughly doubled its
value. The overall error values however remain largely the same, with the TOMS614 method once again
performing noticeably weaker than the other integration processes, with each error measure about 1000
times higher compared to the other integration approaches. The different combination of variances and
correlations in this setup does not immediately favour the series approach, and initially we get less accurate
estimates for comparatively few sum terms, starting out at an average error of as high as 1.18× 10−3. At
12 sum terms we manage to match most integration methods in almost all performance categories (except
for ARAE and MAE), and with 15 terms we have surpassed the benchmark method in every respect of
accuracy.

The computation times for the integrals range from 10 to 45 minutes for one million evaluations. We
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believe that this many nodes do not only offer a greater accuracy in assessing the error measures, but also
a more precise picture for the computational effort. Even at sum term numbers that enable the series
expansion to perform more accurately than the integration approach, we have to invest less than half the
evaluation time (6min maximum for 21 sum terms ). This is of course once again with the exception of
the mixed C-code variant, which admittedly may have a practical use, but cannot be used to assess the
computational complexity of the approximation method itself, as a series representation in C-code would
undeniably be much faster than the R counterpart (which will be part of our further project development).
The highest tested order of the series expansion takes little over 6 minutes to evaluate, with an accuracy
that approaches machine precision at ∼ 9.810−19. Essentially we have shown that we can surpass the
computational accuracy of the integration approach, while still preserving more efficient evaluation.
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Figure 1: A graphical comparison between accuracy and runtimes of all tested three-dimensional approx-
imation methods.

The last thing we need to address is the setup time. While the integration method can be evaluated
at a given point directly, we need to compute a number of things before we carry on to determine the
density at a given evaluation point. The setup time expectedly grows with increased order of the sum
terms, but stays still within the bounds of less than 1 minute for the examples we have investigated. Also
the growth in setup time appears to be diminishing as the number of sum terms increases, potentially
suggesting a slower than linear growth relationship. Compared to the integration approach this may
seem like a disadvantage for the computation of small sample sizes, as it increases the total computation
time. However, the coefficients that are computed for each order of expansion are independent from the
covariance matrix and any other parameters. Therefore we would have to do this computation for any
given order of the series expansion only one time, regardless of covariance matrix. As a consequence we
omit the setup time as an argument against the series expansion.

In Figure 1 we have visualised this performance disparity. The average absolute error decreases
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linearly in a logarithmic plot, suggesting an exponential relationship with the sum term order with a
base of roughly 10. This shows the tremendous convergence speed of the series expansion, while the
computational efficiency is only surpassed by the C-code implementation. However, as the main novelty
of this series expansion is the lack of dimensional and covariance matrix restraints, we are eager to know
how these behaviours react in higher dimensions, and if the disparity between the methods grows with a
larger random vector.

Lastly we investigate one more set of correlations, to shed light on the impact of covariance matrices on
the accuracy of the approximations. To this end we have chosen the variances as before σ1 = 0.5, σ2 = 1
and σ3 = 1.5. The correlations in this experiment are set to ρ1 = 0.9, ρ2 = 0.8 and ρ3 = 0.7, which cover
the higher end of correlations. The results are depicted in Table 4 below.

f =
100

TYPE AAE ARAE AGAE MAE EVAL (min) SETUP (s)

In
te
g
ra

l

Kronrod - - - - - 0

TOMS614 1.32279E-05 9.62955E-02 1.32279E+01 6.09132E-04 19.3434833 0

Simpson - - - - - 0

Mixed 5.89940E-12 1.85958E-08 5.89940E-06 3.13595E-10 2.35811667 0

Romberg 4.45754E-09 3.33035E-05 4.45754E-03 1.08388E-07 18.7787000 0

S
e
ri
e
s

Series 1 2.70535E-02 1.16427E+02 2.70535E+04 5.70334E-01 0.21988333 0

Series 3 5.46290E-03 2.88215E+01 5.46290E+03 2.26885E-01 1.89770000 0.19199991

Series 6 8.30757E-04 5.07632E+00 8.30757E+02 5.92135E-02 2.61155000 0.80699992

Series 9 9.88035E-05 6.82823E-01 9.88035E+01 1.14786E-02 3.38190000 2.05799985

Series 12 9.44718E-06 7.33837E-02 9.44718E+00 1.70428E-03 4.06783333 4.47100019

Series 15 7.41625E-07 6.49326E-03 7.41625E-01 1.95733E-04 4.87441667 7.71799994

Series 18 4.86017E-08 4.83162E-04 4.86017E-02 1.78832E-05 5.53338333 12.7369999

Series 21 2.69552E-09 3.07124E-05 2.69552E-03 1.33273E-06 6.48130000 18.4119999

Table 4: Performance table for three-dimensional approximations, for a high correlation covariance matrix.

During the review of the results of the simulation, we quickly noticed that the Romberg and Simpson’s
integration methods did not show any error measures. This is due to the fact that after 24h of runtime, the
methods did not manage to procure the evaluations of the 1 million observed points. We therefore omit
these methods from the analysis as impractical, or unsuited for high covariance ranges. The mixed method
implemented in underlying C code is more flexible, and does not change much in terms of accuracy, and
only marginally increased in computation time from 1.86min to 2.35min.

For higher covariances the only directly comparable integration method is the Romberg method, which
presents an accuracy of ∼ 4.45 × 10−9 average absolute error and ∼ 3.3 × 10−5 average relative error.
With a computation time of ∼ 19min the evaluation did not take significantly longer, but the accuracy
has visibly decreased. The TOMS614 algorithm on the other hand can only reach an average absolute
error as low as 1.32× 10−5, with an evaluation time of 19.34 min.
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Similarly the series representation converges more slowly, and the highest displayed order of 21 sum
terms reaches an AAE of 2.69 × 10−9, which matches the Romberg methods accuracy. However, the
evaluation time is around ∼ 6.5 min, around 3 times lower than the Romberg integration methods needing
for computation.

3.2 Four-dimensional case

Beaulieu and Zhang [2] offered a four-dimensional version of the previously stated approximation as well.
We cite the four-dimensional extension directly from the source in 24:

f (r1, r2, r3, r4) = (22)

1

|Ω|

4∏
i=1

ri
σ2
i

exp

(
− 1

2|Ω|

4∑
i=1

r2
i |Φi|
σ2
i

)∫ 2π

0

∫ 2π

0
exp [L13 cos (t1) + L14 cos (t2) + L34 cos (t2 − t1)] (23)

· I0

(√
L2

12 + L2
23 + L2

24 + 2L12L23 cos (t1) + 2L12L24 cos (t2) + 2L23L24 cos (t1 − t2)

)
dt1dt2. (24)

The submatrices involved are denoted as follows:

Φi =

 1 ρjk ρjl
ρjk 1 ρkl
ρjl ρkl 1

 , Lij =
rirj
σiσj

ρij ρjk ρjl
ρik 1 ρkl
ρjl ρkl 1

 , Ω =


1 ρ12 ρ13 ρ14

ρ12 1 ρ23 ρ24

ρ13 ρ23 1 ρ34

ρ14 ρ24 ρ34 1

 . (25)

The initial four-dimensional integral can once more be evaluated for the first two variables, after which
numerical methods are necessary. We are interested in the impact of dimensionality on the accuracy of
the proposed approximations and their computational effort. In this section, we will therefore assess
the performance of both the integration and series expansion approaches for four-dimensional benchmark
problems.

We begin with a test problem equivalent to the first example of the three-dimensional test section.
By conveniently choosing the right parameters, we once more obtain a cofactor matrix for which a closed
form of the density function does in fact exist. We have chosen σ2

i = 0.8 for i = 1, . . . , 4 and the
covariances ρ1,2 = −0.6123724, ρ1,3 = 0.4082483, ρ1,4 = −0.2500000, ρ2,3 = −0.6666667, ρ2,4 = 0.4082483,
ρ3,4 = −0.6123724. This results in the desired cofactor matrix in 26:

C =


0

0

0
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0.08

0

0.04

0

0
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0.04
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0
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0

0.08
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0.04

0

0

0

0

0.08

0

0.04

0

0

0

0

0.08

0

0.04

0

0

0

0

0

. (26)

The outcome of this experiment listed in Table 5 is highly reminiscent of the three-dimensional case.
Once more the series expansion collapses to the true closed form, with the absolute errors somewhere in the
order of magnitude of the machine precision. As we were expecting an outcome of the accuracy like this,
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we are using this predominantly as a benchmark to assess the computational effort of the two-dimensional
integration techniques.

f =
15

TYPE AAE ARAE AGAE MAE EVAL (s) SETUP (s)

In
te
g
ra

l Romberg 6.49500E-10 2.20304E-05 6.49500E-06 3.72010E-08 8401.97999 0.00000000

Quadrature 3.30873E-10 4.48268E-06 3.30873E-06 7.44042E-09 19.2610001 0.00000000

Cubature 3.84581E-10 1.15519E-05 3.84581E-06 1.90177E-08 176.161000 0.00000000

S
e
ri
e
s

Closed 7.46334E-19 9.11784E-15 7.46334E-15 5.55112E-17 0.19300008 0.00000000

Series 3 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 5.84400010 0.77800012

Series 6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 22.7339999 7.96700001

Series 9 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 60.3980000 49.8190000

Series 12 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 126.354362 3.33145900

Series 15 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 227.829000 9.79321837

Series 18 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 377.296999 25.1501333

Series 21 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 583.917999 55.3730833

Table 5: Performance table for four-dimensional approximations.

As a second example we have chosen random covariance values, to allow for a more general case. The
variances were chosen as σ2

1 = 0.5, σ2
2 = 1, σ2

3 = 1.5, σ2
4 = 1, and the correlations as ρ1,2 = 0.1, ρ1,3 = 0.05,

ρ1,4 = −0.1, ρ2,3 = 0.025, ρ2,4 = 0.2, ρ3,4 = −0.01. Furthermore, we have reduced the grid size to f = 15
in each dimension, leading to the evaluation of 154 = 50625 nodes. As the additional dimension severely
increased evaluation times of individual nodes, practical considerations and the fact that additional nodes
did not change the error measures to any noteworthy degree led us to this decision.
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f =
15

TYPE AAE ARAE AGAE MAE EVAL (s) SETUP (s)
In

te
g
ra

l Romberg 2.57190E-10 4.24838E-06 2.57190E-06 5.22977E-09 8260.27200 0.00000000

Quadrature 2.48131E-10 3.24287E-06 2.48131E-06 5.21507E-09 17.8032000 0.00000000

Cubature 3.33823E-10 9.27479E-06 3.33823E-06 1.30708E-07 108.509999 0.00000000

S
e
ri
e
s

Series 1 4.87702E-05 4.72348E+00 4.87702E-01 8.93641E-04 0.23400021 0.00000000

Series 3 1.34680E-07 8.89451E-02 1.34680E-03 2.91429E-06 5.74760008 0.76440001

Series 6 3.11428E-10 8.63636E-04 3.11428E-06 9.64595E-09 22.3430001 7.84459996

Series 9 5.77737E-13 4.62287E-06 5.77737E-09 3.25826E-11 59.1546001 48.8952000

Series 12 8.40614E-16 1.47151E-08 8.40614E-12 9.05531E-14 124.848599 196.241199

Series 15 9.48983E-19 2.96553E-11 9.48983E-15 1.64584E-16 224.137799 582.901400

Series 18 8.47948E-22 4.02875E-14 8.47948E-18 2.32934E-19 370.081800 1469.78179

Series 21 4.40060E-25 3.51555E-17 4.40060E-21 1.69407E-21 570.203400 3267.89159

Table 6: Performance table for four-dimensional approximations.

The results in Table 6 are more revealing about the approximations’ behaviours in higher dimensions.
While the integration approach maintains roughly the same accuracy as in the constructed experiment, the
series approach matches and surpasses the results with only 6 sum terms. This marks a considerable fur-
ther intensification of the disparity of both methods performance we had observed in the three-dimensional
case. Due to the numerical integration methods being increasingly computationally expensive in higher
dimensions, the rift between the performances of both methods grows even further.

The recorded computation times appear to confirm these observations. The evaluation of the series
expansion takes only a fraction of the evaluation time the numerical integration requires. The setup
time, while having been recorded for consistency, may once more be neglected. As we earlier elaborated,
the necessary coefficients in the setup process have to be computed only once, regardless of covariance
matrix. In the following discussion we refer to the Romberg method only, as the implementations of the
cubature methods are once more merely wrappers for other, faster coding languages and can therefore
not be directly compared to a pure R implementation. However, we do acknowledge a potential practical
use, while keeping in mind a C or Matlab implementation of the series representation would likely surpass
the integration approach in terms of accuracy and efficiency. At 9 sum terms we have surpassed the
only integration method implemented in R, with an average error of 5.77 × 10−13 versus 2.57 × 10−10.
Remarkably, the computation time stands at 59.15s against the integration methods’ 8260.27s, reducing
the computational time by 140 times. We observe that at 6 sum terms and an average error of ∼ 3.1×10−10

we are in the same accuracy range of the integration approaches at ∼ 2.5−3.3×10−10, while approaching
the evaluation time of the C code based quadrature evaluation at ∼ 18s with ∼ 22.3s for the series
expansion.

As for the 3-dimensional examples, we test another example covariance matrix with high correlation
values in four dimensions, to assess the influence on the accuracy of the approximations. The variances are
chosen as σ1 = 0.5,σ2 = 1, σ3 = 1.5 and σ4 = 1. The correlations are ρ1 = 0.7,ρ2 = 0.8,ρ3 = 0.9,ρ4 = 0.7,
ρ5 = 0.8 and ρ6 = 0.7.
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When reviewing the results in Table 7, we have once more omitted the Romberg integration method
due to slow convergence/numerical instability (the method failed to compute the grid points within 24h).
The comparison here is therefore somewhat problematic, as the quadrature and cubature methods rely
on MatLab and C code subroutines as stated earlier. We therefore lack a direct comparison between
integration and series expansion methods within the same implementation environment.

f =
15

TYPE AAE ARAE AGAE MAE EVAL (s) SETUP (s)

In
te
g
ra

l Romberg - - - - NA NA

Quadrature 1.17185E-09 1.67902E-05 5.93247E-05 3.15848E-08 32.5610001 0.0000000

Cubature 3.97861E-09 1.01483E-04 2.01417E-04 7.60076E-05 1144.98699 0.0000000

S
e
ri
e
s

Series 1 3.87385E-03 5.34388E+01 1.96113E+02 1.33733E-01 0.73600016 0.0000000

Series 3 9.62893E-04 1.67841E+01 4.87465E+01 3.63151E-02 58.2030001 1.7140000

Series 6 1.68243E-04 3.79967E+00 8.51730E+00 7.92697E-03 184.078000 22.886999

Series 9 2.39765E-05 6.97499E-01 1.21381E+00 1.56577E-03 481.630999 109.68700

Series 12 2.92533E-06 1.09059E-01 1.48095E-01 2.84394E-04 1026.01399 472.93000

Series 15 3.11890E-07 1.48686E-02 1.57894E-02 4.79140E-05 1793.01699 1425.0100

Series 18 2.93815E-08 1.78987E-03 1.48744E-03 6.79694E-06 2527.42678 3748.9999

Series 21 2.46319E-09 1.91531E-04 1.24699E-04 9.21801E-07 2958.49176 5274.3876

Table 7: Performance table for four-dimensional approximations with high correlation covariance matrix.

We do notice however that the higher correlation values negatively influence the performance of all
methods, both integration and series expansion based. Both quadrature and cubature integration methods
lose some of their previous accuracy, increasing the AAE from ∼ 3 × 10−10 to 1.17 × 10−9/4 × 10−9.
Meanwhile the computation time has increased for the quadrature method by 100%, whereas the cubature
approach has increased tenfold.

The series approach converges significantly slower as well, as the errors seemingly decreased by ∼ 10−3

for an additional 3 sum terms. This has now been decreased to roughly ∼ 10−1 per 3 sum terms. We note
that the computation time is still below the Romberg method’s computation time for the lower correlation
covariance matrix example. For the high correlation the Romberg method was not able to complete the
computation within what we felt was a reasonable amount of time (< 24h). We note once more that
the quadrature and cubature methods are implemented in C and MatLab code, with only an R front
end. This means the algorithms efficiency cannot be directly compared. Moving forward we will therefore
implement the fairly straightforward algorithm of the series approximation in C code or a comparable
language, as R itself is not suitable for practical purposes.

The performance behaviour and influence of sum terms become evident in Figure 2, where we see
the accuracy of the series representation quickly surpassing the integration approaches, conserving a
convergence in the order of ∼ 10−n, while preserving computational effort.
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Figure 2: A graphical comparison between accuracy and runtimes of all tested four-dimensional approxi-
mation methods.

Paired with the more general applicability of the series presentation, its availability for arbitrary
dimensions and with no restrictions on the composition of the covariance matrix (except for invertibility)
the performance for three and four-dimensional cases heavily favoured the series representation. While
these examples showcased the performance of the series expansion, we are predicting that this difference
in performance may become more pronounced as more channels are added. However, due to the lack of
comparable algorithms in higher dimensions, we are currently unable to investigate this suspicion further.
We therefore conclude that the approach introduced in this paper is superior, and has the potential to
enable new and yet untapped fields of application and research.

4 Applications

One of the most common applications for the Rayleigh distribution is the computation of outage proba-
bilities. Generally this is done via the formula given in 28, which is the outage probability for a three-
dimensional setup. We are utilising the definition noted by Chen and Tellambura [4]:

Pout (γth) =

∫ √
γthΣ1,1
γ1

0

∫ √
γthΣ2,2
γ2

0

∫ √
γthΣ3,3
γ3

0
fR (r1, r2, r3) dr1dr2dr3 (27)

= FR (γth, γth, γth) , (28)

where γth denotes the threshold signal to noise ratio (SNR). We demonstrate how the series representations
can be used to compute the probabilities in relation to the inverse average SNR ratio γi of a single channel.
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Figure 3: Outage probabilities versus average SNR with error distribution for all three-dimensional ap-
proximations: series expansion 3 terms (first row, left); series expansion 6 terms (first row, right); series
expansion 9 terms (second row, left); series expansion 12 terms (second right, right); series expansion 15
terms (third row, left); series expansion 18 terms (third row, right); series expansion 21 terms (fourth
row, left); integral based approximation (fourth row, right).
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In Figure 3 we see the results for each approximation approach. The structure and setup of the
outage probability graphs have been taken from Simon and Alouini [13], and depict the SNR and the
corresponding outage probability. The outage probability is in turn superimposed with the absolute error
distribution across the SNR values, not only highlighting the overall quality of the approximation, but also
the performance in relation to the input values. The overall shape of the error function remains similar
for each approach, but we do notice that the series expansion of higher order performs significantly better
than the integration approach. The slope of the error distribution changes drastically, and for p = 15
sum terms, the absolute error approaches zero almost instantly. Unsurprisingly the performance results
are largely in agreement with the observations made in the previous section, as only a layer of numerical
integration has been added in this application.

5 Conclusions

In this paper, we have generalised the results of [1] to retrieve a series expansion for the Rayleigh dis-
tribution for arbitrary dimension, with no restrictions on the covariance matrix values. Additionally we
have investigated the approximation’s performance in simulation studies of three and four dimensions
with a recent integration based method. The series expansion compared favourably in both accuracy and
computational effort to the proposed benchmark approach. In higher dimensions the difference in per-
formance became more pronounced as the numerical integration methods required added computational
effort. The implementation of the series expansions and the integration methods are available in the R
package DRAYL on CRAN [14].

In the previous section, we gave examples for applications in signal processing, by computing the outage
probability of a three branch system through both [2]’s method and the series expansion, which matched
our observations made during the performance analysis. This showed that the series approach remains
stable and accurate for practical applications as well. In a next step we will extend the series expansion
to include the cumulative distribution function (CDF) of Rayleigh distributions as well, eliminating the
need for numerical integration. Given the frequent use of the CDF to compute outage probabilities, it
would be desirable to have a more direct method of computation, instead of the numerical integration of
density approximations. Additionally, a simpler version of the presented approximation may be available,
as uncountable series expansions exist which may also be investigated, and provide a more accessible
formula. This will also be part of upcoming projects, along with the development of a more practically
suitable implementation of the existing algorithms, as our simple prototype in R leaves a lot of room for
improvement and other languages and implementation techniques will be considered.
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