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Abstract

A moving target may enter a radar coverage area unannounced and leave
after an unspecified period, which implies that the target’s entry time and
departure time are unknown. In the absence of these time information, tar-
get detection and parameter estimation (DAPE) will be severely impacted.
In this paper, we consider the coherent detection and parameters estimation
problem for a radar moving target with unknown entry time and departure
time (that is, the time when the target appears-in/leaves the radar detection
field is unknown), involving across range cell (ARC) and Doppler spread (DS)
effects within the observation period. A new algorithm, known as window
Radon Fractional Fourier transform (WRFRFT) is proposed to detect and
estimate the target’s time parameters (i.e., entry time and departure time)
and motion parameters (i.e., range, velocity and acceleration). The obser-
vation values of a maneuvering target are first intercepted and extracted by
the window function and searching along the motion trajectory. Then these
values are fractional Fourier transformed and well accumulated in the WR-
FRFT domain, where the DAPE of target could be accomplished thereafter.
Experiments with simulated and real radar data sets prove its effectiveness.
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1. Introduction

Radar is widely used in military and civilian surveillance because of its
ability of working at all-time and under all-weather conditions [1, 2, 3, 4, 5, 6].
Generally speaking, target detection, parameter estimation and target imag-
ing are the three most important functions of modern radars [7, 8, 9], where
the performance of target detection and parameter estimation will signifi-
cantly affect the imaging quality for the target [10, 11, 12]. Therefore, how
to improve the performances of target detection and parameter estimation
have become important topics in radar research [13, 14, 15].

Long-time coherent accumulation is an effective method to improve the
performance of radar target detection and parameter estimation (DAPE)
[16]. By stacking the echo signals in the same phase level within a certain
observation time, the echo’s signal-to-noise ratio (SNR) can be improved to
the maximum extent with coherent integration processing [17]. However,
due to the movement of the target, the phenomenon of across-range cell
(ARC) and Doppler spread (DS) [15] will occur within the accumulation
time, leading to the failure of the traditional moving target detection (MTD)
method. More importantly, in the actual detection scene, the target’s time
parameters information (that is, when the target enters and leaves the radar
detection area) and motion parameters information (i.e., distance, velocity,
and acceleration) are often unknown, which will bring great challenges to the
DAPE of moving targets with long time coherent integration.

To deal with the ARC and realize the coherent detection of constant
velocity targets, many methods have been proposed, such as location rota-
tion transform (LRT) [18], sequence reversing transform (SRT) [19], Radon
Fourier transform (RFT) [20, 21, 22], scaled inverse Fourier transform (SIFT)
[23] and keystone transform (KT) [24, 25, 26]. More specifically, LRT and
RFT eliminate the ARC by two-dimensional searching processing in the pa-
rameter space, while SRT and SIFT are able to eliminate the ARC via the
correlation operation without the brute-force searching process. Unfortu-
nately, when the moving target has a certain degree of mobility (e.g., with
acceleration), the methods in [18, 19, 20, 21, 22, 23, 24, 25, 26] may suffer
integration and detection performance loss since they could not remove the
ARC and DS caused by target’s acceleration motion.

As to the accelerating target, it is worth noting that the ARC (including
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the ARC induced by velocity and the ARC caused by acceleration) and DS
effects occur simultaneously during the observation time. To jointly correct
and compensate for the ARC and DS, Xu, et al. [27] introduced a method
known as generalized Radon Fourier transform (GRFT), which is the exten-
sion of the original RFT algorithm. In addition, Li, et al. [28] proposed an
algorithm named Radon Lv’s distribution (RLVD) to accumulate and detect
weak target signals, while Chen, et al. [29] proposed the Radon Fractional
Fourier transform (RFRFT) for a maneuvering target detection. To some
extent, these two algorithms [28, 29] also can be regarded as the expan-
sion and extension of the RFT, since both RLVD and RFRFT eliminate the
ARC and DS simultaneously by searching in the range-velocity-acceleration
domain. However, the computational complexity of RLVD/RFRFT is bigger
than that of GRFT.

Moreover, there are some other coherent integration algorithms, which
could be employed to deal with the ARC and/or DS, such as short time
GRFT (STGRFT) [30], symmetric autocorrelation function [31], adjacent
correction function [32, 33, 34], KT with matched filter process [35], three-
dimensional scaled transform [36], and so on. In particular, the STGRFT-
based method is able to remove the ARC/DS and obtain the coherent inte-
gration. However, the STGRFT-based method only considers the detection
problem of a moving target. Most importantly, STGRFT and the other
existing algorithms mentioned above [18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36] are all assume that the target’s time pa-
rameter information (that is, the time when the target entries/leaves the
radar detection area) is already known. Actually, before the target detection
and parameters estimation are accomplished, the time of target’s entry and
leaving is often unknown, and then this assumption will no longer hold and
the existed coherent integration methods would become invalid, or at least
degraded.

This paper addresses the coherent detection and parameters estimation
problem for a radar moving target with unknown entry/departure time,
where the ARC and DS effects are also considered. A new method known
as window Radon Fractional Fourier transform (WRFRFT) is proposed to
estimate the target’s time parameters (i.e., entry time and departure time)
and motion parameters (i.e., range, velocity and acceleration). By employing
the window function and searching process within the parameter space, the
WRFRFT is capable to remove the ARC/DS effect and realize the coherently
refoucusing of target signal, resulting in superior SNR improvement and bet-
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ter detection and parameter estimation ability. Detailed experiments with
simulated data and real radar data are given to demonstrate the superiority
of the WRFRFT-based method.

The signal model for a radar moving target with unknown entry time
and departure time is described in Section 2. In section 3, the proposed
WRFRFT method is given, including its definition, properties, main steps
and computational complexity. In Section 4, the performances of WRFRFT
method with simulated and real data are assessed. Section 5 presents the
conclusions.

2. Mathematical Model of Received Signal

Assume that the linear frequency modulation is adopted as the radar’s
transmitted waveform, i.e.,

strans(t̂) = rect

(
t̂

Tp

)
exp

(
jπγt̂2

)
exp(j2πfct̂) (1)

where rect (x) =

{
1, |x| ≤ 0.5
0, |x| > 0.5

, t̂, γ, fc and Tp denote, respectively, the fast

time variable, chirp rate, carrier frequency and pulse duration.
Suppose that the total observation time of radar is from T0 to T1, where

a moving target enters the radar detection area at time Tb and leaves the
radar detection area at time Te (T0 < Tb < Te < T1). The instantaneous
slant distance between the target and radar at time Tb is denoted as R0, and
the radial distance of target could be expressed as:

R(t) = R0 + V (t− Tb) + A(t− Tb)2, t ∈ [Tb, Te] (2)

where t denotes the slow time, while V and A are respectively the target’s
radial velocity and acceleration, Tb represents the beginning-time (entry) of
the target and Te represents the ending-time (departure) of the target, which
are both unknown.

With the pulse compression (PC), the received signal within the obser-
vation time can be expressed as [27]

s(t̂, t) = w(t)σ0sinc

[
B

(
t̂− 2R(t)

c

)]
× exp

[
−j4πR(t)

λ

]
+ ns(t̂, t)

(3)
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where

w(t) = rect

[
t− 0.5(Tb + Te)

Te − Tb

]
=

{
1, Tb ≤ t ≤ Te
0, else

(4)

ns(t̂, t) represents noise, σ0 and λ are respectively the signal amplitude and
the wavelength, while B and c represent the bandwidth and light speed,
respectively.

From (3), it could be noticed that the radar echo contains target signal
within the period [Tb, Te], while the radar echo only contains noise for the
other time periods, i.e., the beginning time of target signal is Tb and the
ending time of target signal is Te. The sketch map of the radar echo in the
t̂-t plane is given in Fig. 1.

Only noise

Target signal 

with noise

Total 

observation 

time

Figure 1: Sketch map of the radar’s echo in the t̂-t plane.

3. WRFRFT-based Method

3.1. Definition of WRFRFT
The definition of WRFRFT is given as

WRg(t)(α, u) = Fα[g(t)s (2r(t)/c, t)](u)

=

∫ ∞
−∞

g(t)s (2r(t)/c, t)Ka(t, u)dt,
(5)
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where g(t) and r(t) are respectively the window function and searching mo-
tion trajectory:

r(t) = r0 + v(t− η0) + a(t− η0)2 (6)

g(t) =rect

[
t− 0.5(η1 + η0)

η1 − η0

]
=

{
1, η0 ≤ t ≤ η1
0, else

T0 ≤ η0 ≤ η1 ≤ T1

(7)

η0 is the beginning time of g(t) and η1 is ending time of g(t), (r0, v, a) denotes
the searching motion parameters pair (i.e., searching initial range, searching
radial velocity and radial acceleration). α = Pπ/2 is the rotation angle,
P is searching transform order, Fα represents the FRFT operator, and the
transform kernel Ka(t, u) is given by

Ka(t, u) ={
Aα exp[j(0.5t2 cotα− ut cscα + 0.5u2 cotα)] α 6= nπ

δ[u− (−1)nt] α = nπ

(8)

where Aα =
√

(1− j cotα)/2π.
Inserting (7) into (5) yields,

WRg(t)(α, u) =

∫ η1

η0

g(t)s (2r(t)/c, t)Ka(t, u)dt (9)

From the definition of WRFRFT, it could be interpreted as the transform
of the target’s intercepted and extracted signal in the FRFT domain. In par-
ticular, the WRFRFT includes three main steps: The first is an interception
of the two-dimensional compressed signal based on function g(t) (i.e., g(t)
determines the interception-operation’s beginning/ending time). The second
is the signal extraction process applied to the intercepted signal, based on
the resultant searching motion parameters pair (r0, v, a). The third is the
FRFT-based integration process.

For comparison, the definition of RFRFT is also given:

RFRFT (α, u) = Fα[s (2r(t)/c, t)](u)

=

∫ ∞
−∞

s (2r(t)/c, t)Ka(t, u)dt

=

∫ T1

T0

s (2r(t)/c, t)Ka(t, u)dt

(10)
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From (9) and (10), we can notice that both WRFRFT and RFRFT ex-
tract the signal along target’s motion trajectory and integrate with FRFT.
The main difference is that RFRFT performs the extraction and integration
operations within the total observation time, while the beginning/ending
time of WRFRFT is adjustable (determined by η0 and η1), thus able to bet-
ter match with the moving target with unknown entry/departure time. In
particular, the RFRFT can be considered as a special case of WRFRFT (i.e.,
when η0 = T0, η1 = T1).

3.2. Some Properties of WRFRFT

1) Rotational Additivity: Note that the kernel of WRFRFT has the ro-
tational additivity property, i.e.,∫ ∞

−∞
Kα(t, u)Kβ(u, z)du = Kα+β(t, z) (11)

Thus, it could be easily for us to obtain the rotational additivity of WR-
FRFT, i.e.,

WRg(t)(α + β, z)

= Fβ[WRg(t)(α, u)](z)

=

∫ ∞
−∞

Kβ(u, z)

∫ ∞
−∞

g(t)s (2r(t)/c, t)Kα(t, u)dtdu

=

∫ ∞
−∞

g(t)s (2r(t)/c, t)

∫ ∞
−∞

Kα(t, u)Kβ(u, z)dudt

=

∫ ∞
−∞

g(t)s (2r(t)/c, t)Kα+β(t, z)dt

= Fα+β[g(t)s (2r(t)/c, t)](z)

(12)

The rotational additivity of WRFRFT provides us the solution of the
transform between WRFRFTs with different transform angles. That is to
say, we only need to calculate WRFRFT with the total transform order for
one time, which is a major advantage in term of computational efficiency.

2) Inverse WRFRFT (IWRFRFT): According to the rotational additivity
property above, it also could be concluded that the WRFRFT of angle −α
is the inverse of the WRFRFT with angle α, since that F−α(Fα) = Fα−α =
F0 = I. The IWFRFT is

g(t)s (2r(t)/c, t) =

∫ ∞
−∞

WRg(t)(α, u)K−α(t, u)du (13)
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3) Linear Additivity: It’s easy to find that WRFRFT is linear. In par-
ticular, let ε1 and ε2 denote two constant coefficients, and we have

Fα[ε1x1 + ε1x2](u) = ε1Fα[x1](u) + ε1Fα[x2](u) (14)

This property shows that the WRFRFT satisfies the superposition principle,
which is helpful in the analysis of multi-component signals.

4) Index Commutativity: Apply (5) for two orders, we have

Fβ[Fα[g(t)s (2r(t)/c, t)](z)]

=

∫ ∞
−∞

Kβ(u, z)

∫ ∞
−∞

g(t)s (2r(t)/c, t)Kα(t, u)dtdu

=

∫ ∞
−∞

Kα(t, u)

[∫ ∞
−∞

g(t)s (2r(t)/c, t)Kβ(u, z)du

]
dt

= Fα[Fβ[g(t)s (2r(t)/c, t)](z)]

(15)

Hence, the WRFRFT adheres to the index commutativity property.
5) Parseval Relation: The WRFRFT also holds the classical Parseval

relation: ∫ ∞
−∞

g(t)x (2rx(t)/c, t) y (2ry(t)/c, t) dt

=

∫ ∞
−∞

WRx (α, u)WR∗y (α, u) du

(16)

whereWRx (α, u) = Fα[g(t)x(t, 2rx(t)/c](u), WRy (α, u) = Fα[g(t)y(t, 2ry(t)/c](u).
In particular, (16) will turn into the energy conservation property when
x = y, i.e., ∫ ∞

−∞
g(t)|x (2rx(t)/c, t) |2dt =

∫ ∞
−∞
|WRx (α, u) |2du (17)

The squared magnitude of the WFRFT (|WRx (α, u) |2) thus represent the
signal energy spectrum with angle α and window function g(t).
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3.3. WRFRFT for Moving Target Detection and Estimation

Substitute (3) and (4) into (5) yields,

WRg(t)(α, u) = Fα[g(t)s (2r(t)/c, t)](u)

=

∫ ∞
−∞

g(t)w(t)σ0sinc

[
B

(
2r(t)

c
− 2R(t)

c

)]
× exp

[
−j4πR(t)

λ

]
Kα(t, u)dt

+

∫ ∞
−∞

g(t)ns(2r(t)/c, t)Kα(t, u)dt

(18)

where the first and the second integral term of (18) represent respectively
the WRFRFT of target signal and the WRFRFT of noise.

Let C and D are respectively:

C = {t|g(t) = 1}, D = {t|w(t) = 1} (19)

In other words, C denotes the function g(t)’s non-zero area while D denotes
the function w(t)’s non-zero area.

Case 1: When C ∩D = ∅, we have

g(t)w(t) = 0 (20)

In this case, (18) could be expressed as

WRg(t)(α, u) = 0 +

∫ ∞
−∞

g(t)ns(2r(t)/c, t)Kα(t, u)dt

=

∫ η1

η0

ns(2r(t)/c, t)Kα(t, u)dt

(21)

Hence, in this case, only noise is extracted and accumulated, but none of the
target’s signal is extracted and accumulated.

Case 2: When C ∩D 6= ∅, we have

g(t)w(t) =

{
1, T ′ ≤ t ≤ T ′′

0, else
(22)

where
T ′ = max[Tb, η0], T

′′ = min[Te, η1] (23)
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In this case, the WRFRFT of (18) can be recast as

WRg(t)(α, u) =

∫ T ′′

T ′
σ0sinc

[
B

(
2r(t)

c
− 2R(t)

c

)]
× exp

[
−j4πR(t)

λ

]
Kα(t, u)dt

+

∫ η1

η0

ns(2r(t)/c, t)Kα(t, u)dt

(24)

From (23) and (24), we notice that the values of η0 and η1 determine
the extracted range of the target signal and noise. In order to ensure SNR
improvement, on the one hand, we need to extract and integrate all the target
signals, and at the same time, we need to extract as little noise as possible.

In particular, to guarantee that all the target signals are extracted and
accumulated, the following equation should be satisfied

T ′ ≤ Tb, T
′′ ≥ Te (25)

Combining with (23) we have

η0 ≤ Tb, η1 ≥ Te (26)

In addition to satisfying the inequality (26), we also need to ensure that
as little noise as possible is extracted. Thus, we have

η0 = Tb, η1 = Te (27)

Then (24) could be rewritten as:

WRg(t)(α, u) =

∫ Te

Tb

σ0sinc

[
B

(
2r(t)

c
− 2R(t)

c

)]
× exp

[
−j4πR(t)

λ

]
Kα(t, u)dt

+

∫ Te

Tb

ns(2r(t)/c, t)Kα(t, u)dt

=

∫ Te

Tb

σ0 exp

[
−j4πR(t)

λ

]
Kα(t, u)dt

+

∫ Te

Tb

ns(2r(t)/c, t)Kα(t, u)dt

when r0 = R0, v = V, a = A

(28)

10



Equation (28) shows that the entire target signal is extracted and could be
coherently integrated in the FRFT domain when the motion parameters of
the search match with the motion parameters of target.

Based on the analysis above, it could be noticed that only when η0 =
Tb, η1 = Te, the target signal is totally extracted and accumulated in the
FRFT domain while it could ensure that as little noise as possible is extracted
simultaneously, resulting in a peak value in the WRFRFT output (where the
peak location corresponds to the time parameters and motion parameters of
target).

With different searching parameters (i.e., beginning/ending time, range,
velocity and acceleration), different integration outputs of WRFRFT would
be obtained and the target signal will be focused as a peak when the search-
ing time/motion parameters match with the target’s time/motion parame-
ters. Thus, the target’s time parameters and motion parameters could be
estimated by

(T̂b, T̂e, R̂0, V̂ , Â) = arg max
(η0,η1,r0,v,a)

|WRg(t)(α, u)| (29)

A simulation experiment (Table 1 shows the radar parameters and Table
2 gives the target parameters) is given to show how the WRFRFT performs
with varying η0 and η1. The result of the radar echo after pulse compression
is shown in Fig. 2(a). The WRFRFT result when η0 = 0.755s and η1 = 3s
(i.e., the WRFRFT’s window function matches the beginning/ending time
of target signal) is given in Fig. 2(b) (slice of velocity and acceleration).
It is observed that the target signal is coherently accumulated as a peak,
which is corresponding to the target’s radial velocity and acceleration. Fig.
2(c) and Fig. 2(d) give respectively the WRFRFT results for the cases that
η0 = 0.15s, η1 = 0.5s and η0 = 3.05s, η1 = 3.5s. In these two cases (Fig.
2(c) and Fig. 2(d)), only noise is extracted and accumulated, resulting in
unfocused results for WRFRFT. Fig. 2(e) gives the WRFRFT output when
η0 = 0.505s and η1 = 2.9s, where only part of the target signal is extracted in
this case, and thus the peak value of Fig. 2(e) is smaller than the peak value of
Fig. 2(b). Fig. 2(f) shows the WRFRFT output when η0 = 0.755s, η1 = 3.4s,
where the entire target signal is extracted and coherently accumulated in this
case. However, it is worth pointing out that compared with Fig. 2(b), much
more noise is extracted and accumulated in Fig. 2(f). As a result, the peak
value of Fig. 2(f) is smaller than the peak value of Fig. 2(b).

In Fig. 2(g), we examine the WRFRFT outputs for a fixed η1 (η1 = 3)
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but varying η0. In other words, with the ending time of WRFRFT’ window
function g(t) matches the target signal’s ending time, the peak value reaches
its maximum value when η0 = 0.755s (i.e., the beginning time of g(t) equals to
the target signal’s beginning time). Similarly, Fig. 2(h) shows the integrated
peak value of WRFRFT for a fixed η0 (η0 = 0.755s) but varying η1. That is
to say, the beginning time of g(t) matches the target signal’s beginning time.
We could see that the peak value reaches its maximum value when η1 = 3s
(i.e., the ending time of g(t) equals to the target signal’s ending time).

Based on the results of Fig. 2, it can be assured that only when the
beginning/ending time of WRFRFT’s window function equal to the target
signal’s beginning/ending time, then the integrated output of WRFRFT will
reach its maximum value.

Table 1
Radar Parameters

Carrier frequency 6 GHz
Bandwidth 10 MHz

Sample frequency 50 MHz
Pulse repetition frequency 200 Hz

Pulse duration 10 us
Beginning time of target 0.755s

SNR after PC 4 dB

Table 2
Moving Target’s Time Parameters and Motion Parameters

Initial range cell 287
Radial velocity (m/s) 90

Radial acceleration (m/s2) 26
Beginning time 0.755s

Ending time 3s

3.4. Procedure of the WRFRFT-based Method

The main steps of the WRFRFT-based approach can be summarized as
follows:

12
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Figure 2: WRFRFT response with respect to η0 and η1. (a) PC. (b) η0 = 0.755s, η1 = 3s.
(c) η0 = 0.15s, η1 = 0.5s. (d) η0 = 3.05s, η1 = 3.5s. (e) η0 = 0.505s, η1 = 2.9s. (f)
η0 = 0.755s, η1 = 3.4s. (g) Integrated peak value curve for fixed η1 but varying η0. (h)
Integrated peak value curve for fixed η0 but varying η1.
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Step 1: Based on the relative prior information of targets to be expected
(such as moving status and varieties) and the radar parameters, the search-
ing scope of initial range, velocity, acceleration and beginning/ending time
can be obtained (denoted respectively as [rmin, rmax], [vmin, vmax], [amin, amax],
[η0min, η0max] and [η1min, η1max]). In addition, the searching interval of be-
ginning/ending time, initial range, velocity and acceleration can be set as
[29]:

∆η = PRT (30)

∆r = c/2B (31)

∆v = λ/2(T1 − T0) (32)

∆a = λ/2(T1 − T0)2 (33)

where PRT is radar pulse repetition time.
Step 2: With the searching parameters (rs, vs, as, η0s, η1s), the moving

trajectory to be searched and the window function g(t) could be respectively
expressed as:

rs(t) = r0s + vs(t− η0s) + as(t− η0s)2, t ∈ [η0s, η1s] (34)

g(t) =rect

[
t− 0.5(η1s + η0s)

η1s − η0s

]
(35)

where r0s = rmin : ∆r : rmax, vs = vmin : ∆v : vmax, as = amin : ∆a : amax,
η0s = η0min : ∆η : η0max, η1s = η1min : ∆η : η1max.

Step 3: Intercept and extract the target signal from the compressed signal
based on the window function and searching motion trajectory, i.e.,

se(t) = g(t)s (2rs(t)/c, t) (36)

Step 4: Apply the WRFRFT operation on the extracted signal.
Step 5: Go through all the searching parameters and obtain the corre-

sponding WRFRFT output WRg(t)(α, u).
Step 6: Take the amplitude of WRFRFT output in step 5 as test statistic,

and compare with the adaptive threshold for a given false alarm probability

|WRg(t)(α, u)|
H1
>
<
H0

γ (37)
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where γ dentoes the detection threshold [29], which could be obtained via
the reference unit after WRFRFT. If |WRg(t)(α, u)| is larger than γ, target is
confirmed. In addition, the target’s time parameters and motion parameters
can be estimated via the peak location of WRg(t)(α, u).

Fig. 3 gives the flow chart of the WRFRFT-based method.

3.5. Discussion on Computational Complexity
It could be noticed that the WRFRFT mainly involves the five dimensions

searching (i.e., searching of beginning time, ending time, range, velocity and
acceleration) and the FRFT operation. Note that the coherent integration
of the target signal is obtained when the searching time/motion parameters
match with the target’s time/motion parameters and the fractional order of
FRFT matches the target’s acceleration. Therefore, the following relation-
ship could be employed within the WRFRFT:

α = arccot

(
−2asTη
λfs

)
(38)

where Tη = η1s − η0s + PRT and fs denotes the sample frequency.
According to the analysis in Section 3.4, the searching numbers of begin-

ning time, ending time, range, velocity and acceleration are:

Nη0 = round

(
η0max − η0min

∆η

)
(39)

Nη1 = round

(
η1max − η1min

∆η

)
(40)

Nr = round

(
rmax − rmin

∆r

)
(41)

Nv = round

(
vmax − vmin

∆v

)
(42)

Na = round

(
amax − amin

∆a

)
(43)

Then, the computational complexity of the WRFRFT-based approach is
O(Nη0Nη1NrNvNaN log2N), where N is the pulse number. The computa-
tional cost of RFRFT is in the order of O(NrNvNaNPN log2N) [29], where
NP denotes the number of transform order of FRFT. Hence, the computa-
tional burden of WRFRFT is bigger than that of RFRFT, since the searching
process of beginning/ending time. It is necessary to study the fast imple-
mentation of WRFRFT method in the future.
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Figure 3: Flowchart of the WRFRFT method.
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4. Experiments and Analysis

The experiments with simulated data (Section 4.1, Section 4.2, Section
4.3 and Section 4.4) and real data (Section 4.5) are given to demonstrate the
effectiveness of the WRFRFT method, where the radar parameters of Section
4.1, Section 4.2, Section 4.3 and Section 4.4 are set as the same as those in
Table 1. In addition, the target’s time parameters and motion parameters
of Section 4.1−Section 4.2 are given in Table 2. Several typical coherent
detection algorithms (RFRFT, GRFT, RFT) are used for comparison.

4.1. WRFRFT of Weak Target

In Fig. 4, the WRFRFT’s response for a weak target is given, where the
SNR after PC is 0 dB (as shown in Fig. 4(a)). Fig. 4(b)−Fig. 4(f) give
respectively different projections of the WRFRFT output. More specifically,
the projection in range cell-velocity domain is shown in Fig. 4(b) and the
projection in range cell-acceleration domain is given in Fig. 4(c). Meanwhile,
the projection in velocity-acceleration space is shown in Fig. 4(d) and the
projection in acceleration-beginning time domain is given in Fig. 4(e). It can
be noticed that the peak locations of different projections (e.g., Fig. 4(b), Fig.
4(c), Fig. 4(d)) indicate the corresponding parameters (e.g., range, velocity,
acceleration, beginning time) of target. Also, the projection in beginning
time-ending time space is shown in Fig. 4(f), where Fig. 4(g) and Fig.
4(h) give respectively the beginning time response slice and the ending time
response slice of Fig. 4(f), from which we could obtain the estimations of the
beginning/ending time of target signal.

In order to comparison, the processing results of RFRFT, GRFT and
RFT are shown in Fig. 5(a)−Fig. 5(c). On the whole, the outputs of these
three algorithms are all defocused, due to the mismatch among the begin-
ning/ending time of the target signal and RFRFT, GRFT as well as the
RFT. Compared to the integration results of GRFT and RFT (which are se-
riously defocused) the integration result of RFRFT seems slightly better, but
there is still no obvious peak in Fig. 5(a). More importantly, the relatively
high peak position of Fig. 5(a) does not appear at the position correspond-
ing to the target’s motion parameters, which means that the target’s motion
parameters cannot be accurately estimated.

4.2. Parameters Estimation Performance

The estimation performances (i.e., root-mean-squared error (RMSE)) of
the proposed WRFRFT algorithm for target’s motion parameters (range, ve-
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Figure 4: WRFRFT for a weak target. (a) PC. (b) Projection in range cell-velocity
domain. (c) Projection in range cell-acceleration domain. (d) Projection in velocity-
acceleration domain. (e) Projection in acceleration-beginning time domain. (f) Projection
in beginning time-ending time domain. (g) Beginning time response slice. (h) Ending
time response slice.
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Figure 5: Integration results of (a) RFRFT. (b) GRFT. (c) RFT.
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locity and acceleration) and time parameters (beginning/ending time) under
different SNR levels are evaluated by Monte Carlo experiment. Fig. 6 gives
the estimation performance curves of target’s motion parameters, where 200
times Monte Carlo trails are performed for each SNR. From Fig. 6, we can
notice that the WRFRFT has a better estimation ability than RFRFT and it
could obtain good estimation performance when the SNR is larger than −10
dB. Additionally, Fig. 7 shows the RMSE curves of target’s time parameters
where similar behaviors are observed.
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Figure 6: RMSE of the estimated motion parameters. (a) Range. (b) Velocity. (c)
Acceleration.

4.3. Detection Ability

The detection performances of the WRFRFT method, RFRFT, GRFT,
MTD and RFT under different SNR are shown in Fig. 8, where the false
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Figure 7: RMSE of the estimated time parameters. (a) Beginning time (entry). (b) Ending
time (departure).

alarm rate is set as Pf = 10−5. From Fig. 8, it could be noticed that the
proposed WRFRFT method could obtain better detection probability than
RFRFT, GRFT and RFT thanks to its ability of matching with the target’s
beginning time and ending time as well as the correction of ARC and DS. For
example, WRFRFT is able to detect a target with 0.8 probability at SNR
10/11.5/15.6 dB lower than RFRFT/GRFT/RFT respectively.

4.4. WRFRFT for Multiple Targets

Fig. 9 shows the simulation results of WRFRFT for multiple targets.
Four moving targets (denoted as T1, T2, T3 and T4) are considered and the
parameters are listed in Table 3. The target motion trajectories after range
compression are shown in Fig. 9(a), where the four curved trajectories are
observed. Fig. 9(b)−Fig. 9(d) give respectively different slices of WRFRFT
output.

More specifically, Fig. 9(b) shows the WRFRFT result with as = 25m/s2,
η0s = 0.755s, η1s = 3s. Note that the searching values of acceleration, be-
ginning/ending time are match with the corresponding parameters of T1 and
T2. Hence, the signal energy of T1 and T2 are coherently accumulated and
the targets are are well focused as seen from the two peaks in this slice (Fig.
9(b)). However, because of the searching values of acceleration, beginning
time and ending time in this slice are not matched with T3 and T4 and thus
the signal energy of T3 and T4 can not be coherently integrated in this slice.

Fig. 9(c) shows the WRFRFT result with as = 17m/s2, η0s = 0.905s,
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η1s = 3.4s, which is matched with the acceleration and beginning/ending
time of T3. Correspondingly, the target signal of T3 is coherently focused as
a peak in this slice (Fig. 9(c)). Moreover, Fig. 9(d) shows the WRFRFT
result with as = 13m/s2, η0s = 1.005s, η1s = 3.2s. In this slice (Fig. 9(d)),
the searching values of acceleration and beginning/ending time match with
the parameters of T4 and thus we could notice that there is a peak formed,
which is corresponding to T4.

4.5. Real Data Results

To verify the effectiveness of the WRFRFT method, an evaluation is made
using real collected data. The data set is the target signal of an unmanned
aerial vehicle (UAV). Its maximum speed is 60 m/s and its maximum acceler-
ation is 10 m/s2. The detection system was a LFM pulse radar, the detailed
parameters are listed in Table 4. During the experiment, the target did not
appear in the radar detection beam for the early stage of radar startup, so
there was only noise and clutter, but no target echo signal. Then, the UAV
flew into the radar detection area, and the radar received the echo signal of
the UAV. The UAV flew out of the radar detection area a few seconds later,
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Figure 9: Multiple targets scene. (a) Results after pulse compression. (b) The focusing
result of T1 and T2 with as = 25m/s2, η0s = 0.755s, η1s = 3s. (c) The focusing result
of T3 with as = 17m/s2, η0s = 0.905s, η1s = 3.4s. (d) The focusing result of T4 with
as = 13m/s2, η0s = 1.005s, η1s = 3.2s.
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Table 3
Parameters of the Four Moving Targets

Parameter T1 T2 T3 T4
Initial range cell 287 323 269 305
Velocity (m/s) 90 70 75 95

Acceleration m/s2 25 25 17 13
Beginning time (s) 0.705 0.705 0.905 1.005

Ending time (s) 3 3 3.4 3.2
SNR after PC 6dB 6dB 6dB 6dB

but the radar was still transmitting and receiving signals after the UAV’s
departure.

The selected data to be processed consists of 2000 pulses (i.e., coherent
processing interval is 4 s), as show in Fig. 10(a), from which we could see
that the target motion trajectory crosses several range cells. In particular,
we could choose ”two points” (as shown in Fig. 10(a)) from the target’s
moving trajectory to obtain a rough estimation of target’s velocity, i.e., v =
(79 − 72) × 2.5m/(1.428s − 0.974s) = 27.533m/s. After WRFRFT, the
focusing result of target is given in Fig. 10(b). We could notice that the target
signal is focused as a peak and its position represents the target’s velocity
and acceleration (i.e., 29m/s and 4m/s2). For comparison, the processing
results of RFRFT and GRFT are also given in Fig. 10(c) and Fig. 10(d),
respectively. For the focusing result of RFRFT (Fig. 10(c)), it could be
noticed that there is no significant peak in the RFRFT output and noted
that the ”pseudo or false peak” location is corresponding to −9m/s and
0m/s2. In addition, the ”pseudo or false peak” location of GRFT (Fig.
10(d)) is corresponding to −25m/s and 0m/s2. Therefore, both RFRFT and
GRFT could not focus the target signal correctly, resulting in estimation
error and even false alarm. Furthermore, the beginning-time response slice
and ending-time response slice of WRFRFT are given in Fig. 10(e) and Fig.
10(f), respectively. From Fig. 10(e) and Fig. 10(f), we could obtain the
estimations of target signal’s beginning/ending time, i.e., 0.602 s and 3.406
s.

24



X: 79 Y: 0.974
Index: 33.86
RGB: 0.375, 1, 0.625

Relative range cell

Sl
ow

 ti
m

e 
(s

)

X: 72 Y: 1.428
Index: 35.27
RGB: 0.5, 1, 0.5

20 40 60 80 100

0.5

1

1.5

2

2.5

3

3.5

4

Moving target

(a)

 

(b)

 

(c)

 

(d)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

X: 0.602
Y: 1

Searching beginning time (s)

N
or

m
al

iz
ed

 a
m

pl
itu

de

(e)

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

X: 3.406
Y: 1

Searching ending time (s)

N
or

m
al

iz
ed

 a
m

pl
itu

de

(f)

Figure 10: Real data results. (a) Compressed echoes. (b) The focusing result of WRFRFT.
(c) Integration result of RFRFT. (d) Integration result of GRFT. (e) Beginning time
response slice. (f) Ending time response slice.
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Table 4
Radar Parameters for Real Data

Wave band C
Bandwidth 20 MHz

Sample frequency 60 MHz
Pulse repetition frequency 500 Hz

Pulse duration 18 us

5. Conclusion

In this paper, a new coherently focusing and parameters estimation method
(i.e., WRFRFT) has been proposed for a radar maneuvering target with ARC
and DS effects, where the times of the target appears in and leaves the radar
detection area are unknown. By employing the window function and search-
ing along the target moving trajectory, the echo signal of a maneuvering
target could be well matched and focused as a peak in the WRFRFT do-
main and the target’s time parameters (entry time and departure time) and
motion parameters (range, velocity and acceleration) could be estimated via
the peak location. The performances are validated by detailed experiments
using simulated data and real data.
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