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Abstract

The synchrosqueezing transform, a kind of reassignment method, aims to sharpen the time-

frequency representation and to separate the components of a multicomponent non-stationary

signal. In this paper, we consider the short-time Fourier transform (STFT) with a time-varying

parameter, called the adaptive STFT. Based on the local approximation of linear frequency mod-

ulation mode, we analyze the well-separated condition of non-stationary multicomponent signals

using the adaptive STFT with the Gaussian window function. We propose the STFT-based syn-

chrosqueezing transform (FSST) with a time-varying parameter, named the adaptive FSST, to

enhance the time-frequency concentration and resolution of a multicomponent signal, and to sep-

arate its components more accurately. In addition, we also propose the 2nd-order adaptive FSST

to further improve the adaptive FSST for the non-stationary signals with fast-varying frequencies.

Furthermore, we present a localized optimization algorithm based on our well-separated condi-

tion to estimate the time-varying parameter adaptively and automatically. Simulation results on

synthetic signals and the bat echolocation signal are provided to demonstrate the effectiveness

and robustness of the proposed method.

Keywords: Instantaneous frequency, Adaptive short-time Fourier transform, Adaptive syn-

chrosqueezing transform, Well-separated condition for multicomponent non-stationary signal, Com-

ponent recovery of non-stationary signal

1 Introduction

To model a non-stationary signal as a superposition of locally band-limited, amplitude and frequency-

modulated Fourier-like oscillatory modes:

x(t) =

K∑
k=1

xk(t), xk(t) = Ak(t)e
i2πφk(t), (1)
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Simons Foundation (Grant No. 353185)
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where Ak(t), φ
′
k(t) > 0, has been a very active research area over the past few years. Note that the

number of component K may change with time t, but it should be constant for long enough time

intervals. The representation of x(t) in (1) with Ak(t) and φ′k(t) varying slowly or more slowly than

φk(t) is called an adaptive harmonic model (AHM) representation of x(t), where Ak(t) are called

the instantaneous amplitudes and φ′k(t) the instantaneous frequencies (IFs). To decompose x(t) as

an AHM representation (1) is important to extract information, such as the underlying dynamics,

hidden in x(t).

Time-frequency (TF) analysis is widely used in engineering fields such as communication, radar

and sonar as a powerful tool for analyzing time-varying non-stationary signals [1]. Time-frequency

analysis is especially useful for signals containing many oscillatory components with slowly time-

varying amplitudes and instantaneous frequencies. The short-time Fourier transform (STFT), the

continuous wavelet transform (CWT) and the Wigner-Ville distribution are the most typical TF

analysis, see details in [1]-[6]. Other TF distributions of Cohen’s class include the exponential

distribution [7], a smoothed pseudo Wigner distribution [8] and the complex-lag distribution [9].

In addition, the TF signal analysis and synthesis using the eigenvalue decomposition method has

been studied [10, 11]. In particular, an eigenvalue decomposition-based approach which enables

the separation of non-stationary components with overlapped supports in the TF plane has been

proposed in [12].

Recently a number of new TF analysis methods such as the Hilbert spectrum analysis with em-

pirical mode decomposition (EMD) [13], the reassignment method [14] and synchrosqueezed wavelet

transform (SST) [15] have also been proposed to obtain Ak(t) and φ′k(t).

EMD is a data-driven decomposition algorithm which separates the time series signal into a set

of monocomponents, called intrinsic mode functions (IMFs) [13]. EMD has been studied by many

researchers and has been used in many applications, see e.g. [16]-[23]. Because of the presence of

widely disparate scales in a single IMF, or a similar scale residing in different IMF components,

named as mode mixing [24], two close IMFs are hardly distinguished by EMD.

The CWT-based synchrosqueezing transform (WSST), introduced in [15] and future studied in

[25], is a special case of reassignment methods, which aims to sharpen the TF representation of the

signal by allocating the CWT coefficient value to a different point in the TF plane. A variant of

WSST, the STFT-based SST (FSST) was proposed in [26] and further studied in [27, 28]. Both

WSST and FSST have been proved to be robust to noise and small perturbations [29]-[31]. However

for frequency-varying signals, the squeezing effect of SST is not desirable. In this regard, a 2nd-order

SST was introduced in [32, 33] and further studied in [34, 35]. The 2nd-order SST improves the

concentration of the TF representation well on perturbed linear chirps with Gaussian modulated

amplitudes. The higher-order FSST was presented in [36], which aims to handle signals containing

more general types.

Other SST related methods include the generalized SST [37], a hybrid EMD-SST computational

scheme [38], the synchrosqueezed wave packet transform [39], the S-transform-based SST [40], SST
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with vanishing moment wavelets [41], the multitapered SST [42] and the demodulation-transform

based SST [43, 44]. In addition, the synchrosqueezed curvelet transform for two-dimensional mode

decomposition was introduced in [45], the signal separation operator which is related to FSST was

proposed in [46] and the empirical signal separation algorithm was introduced in [47]. The statistical

analysis of synchrosqueezed transforms has been studied in [48] and a new IF estimator within the

framework of the signal’s phase derivative and the linear canonical transform was introduced in [49].

SST has been used in machine fault diagnosis [50, 51], crystal image analysis [52, 53], welding crack

acoustic emission signal analysis [54], and medical data analysis [55]-[57].

Most of the FSST algorithms available in the literature are based on the short-time Fourier

transform (STFT) with a fixed window, which means high time resolution and frequency resolution

cannot be obtained simultaneously. For broadband signals, a wide window is suitable for the low-

frequency parts. On the contrary, a narrow window is suitable for the high-frequency parts. To

enhance the TF resolution and energy concentration, we propose in this paper the adaptive FSST

based on the STFT with a time-varying window. More precisely, let Vx(t, η) be the (modified) STFT

of x(t) ∈ L2(R) with a window function h(t) ∈ L2(R) defined by

Vx(t, η) :=

∫ ∞
−∞

x(τ)h(τ − t)e−i2πη(τ−t)dτ (2)

=

∫ ∞
−∞

x(t+ τ)h(τ)e−i2πητdτ, (3)

where t and η are the time variable and the frequency variable respectively. In this paper we consider

the STFT with a time-varying parameter σ(t) (called the adaptive STFT) defined by

Ṽx(t, η) :=

∫ ∞
−∞

x(τ)gσ(t)(τ − t)e−i2πη(τ−t)dτ (4)

=

∫ ∞
−∞

x(t+ τ)
1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ, (5)

where σ = σ(t) is a positive function of t, and gσ(t)(τ) is defined by

gσ(t)(τ) :=
1

σ(t)
g(

τ

σ(t)
), (6)

with g ∈ L2(R). The window width of gσ(t)(τ) is σ(t) (up to a constant), depending on the time

variable t. In this paper we consider the FSST based on Ṽx(t, η) (called the adaptive FSST) and

study the choice of the time parameter σ(t) so that the adaptive FSST gives a better instantaneous

frequency estimation of the component of a multicomponent signal, and provides more accurate

component recovery.

To recover/separate the components xk(t) of a multicomponent signal as given by (1) with the

SST approach, [30] indicates that if STFTs Vxk−1
(t, η) and Vxk(t, η) of two components xk−1(t)

and xk(t) are mixed, then FSST cannot separate these two components xk−1(t) and xk(t) either,

and hence it cannot recover/separate components accurately. Thus it is desirable that appropriate

window width of the window function h(t) can be chosen (if possible) so that the STFTs of different
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components do not overlap. When xk(t) are sinusoidal signals Ake
i2πckt for some constants Ak, ck > 0

or they are well approximated by sinusoidal functions at any local time in the sense that for any

t ∈ R,

xk(t+ τ) = Ak(t+ τ)ei2πφk(t+τ) ≈ Ak(t)ei2π
(
φk(t)+φ′k(t)τ

)
= xk(t)e

i2πφ′k(t)τ for τ ≈ 0, (7)

then the STFT Vxk(t, η) of xk(t) with a window function h(t) is

Vxk(t, η) ≈ xk(t)ĥ(η − φ′k(t)),

where ĥ denotes the Fourier transform of h(t). Hence if supp(ĥ) ⊆ [−4,4] for some 4 > 0, then

Vxk(t, η) lies in the TF zone given by

Zk = {(t, η) : |η − φ′k(t)| < 4, t ∈ R}.

Therefore, if

φ′k(t)− φ′k−1(t) ≥ 24, t ∈ R, 2 ≤ k ≤ K, (8)

then Zk ∩ Z` = Ø, k 6= `, which means the components of x(t) are well separated in the TF plane.

(8) is a required condition for the study of FSST in [27, 28] and even for the study of the 2nd-order

FSST in [32, 35]. Here we call (8) the sinusoidal signal model-based well-separated condition for

x(t).

In this paper we use the linear frequency modulation (LFM) signal to approximate a non-

stationary signal at any local time to study the TF zone of the adaptive STFT Ṽxk(t, η). More

precisely, we assume that each xk(t) is well approximated by an LFM at any local time: for any

t ∈ R,

xk(t+ τ) = Ak(t+ τ)ei2πφk(t+τ)

≈ Ak(t)ei2π(φk(t)+φ′k(t)τ+ 1
2
φ′′k(t)τ2) = xk(t)e

i2π(φ′k(t)τ+ 1
2
φ′′k(t)τ2) for τ ≈ 0, (9)

where for a given t, the quantity in (9) as a function τ is called an LFM signal (or a linear chirp

signal). Thus we have

Ṽxk(t, η) ≈
∫
R
xk(t)e

i2π(φ′k(t)τ+ 1
2
φ′′k(t)τ2) 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ. (10)

In this paper we will obtain the LFM model-based well-separated condition which guarantees that

for different k, the quantities as functions of (t, η) on the right-hand side of (10) lie within non-

overlapping zones in the TF plane when g is the Gaussian window function. We will also discuss how

to select the time-varying parameter σ(t) such that the corresponding adaptive FSST and 2nd-order

adaptive FSST have sharp TF representation. In particular, we propose a localized optimization

method based on our well-separated condition to estimate the time-varying adaptive window width

σ(t).
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The idea of using an optimal time-varying window parameter (window width) has been studied or

considered extensively in the literature, see e.g. [58]-[63]. In particular, the authors in [63] introduced

a method to select the time-varying window width for sharp SST representation by minimizing the

Rényi entropy. In addition, after we completed our work, we were aware of the very recent work [64] on

the adaptive STFT-based SST with the window function containing time and frequency parameters.

Our motivation is different from others in that we do not focus on the optimal parameter such that

the corresponding STFT has the sharpest representation in the TF plane. Instead, we pursue the

establishment of the LFM model-based well-separated condition for multicomponent signals based

on the adaptive STFT and we propose how to select window width σ(t) such that the STFTs of

the components lie in non-overlapping regions of the TF plane. The Rényi entropy-based optimal

parameter may give the overall sharp representation of STFT or FSST, but it does not guarantee all

the components to be separated. The selected σ(t) proposed by us does not necessarily result in a

sharp representation of the associated STFT. Instead, it is selected in such a way that the adaptive

STFTs of the components are well separated, and the corresponding adaptive FSSTs have sharp

representation and hence the components can be recovered more accurately.

The remainder of this paper is organized as follows. We introduce the adaptive STFT and

adaptive FSST with a time-varying parameter in Section 2, where we also introduce the 2nd-order

adaptive FSST. We derive the optimal time-varying parameter for a monocomponent signal based

on the LFM model in Section 3. In Section 4, we establish the LFM model-based well-separated

condition for multicomponent signals. In Section 5 we propose a localized optimization method on

the selection of window parameters based on our well-separated condition. Experimental results are

provided in Section 6. Finally we give the conclusion in Section 7.

2 STFT and FSST with a time-varying parameter

In this section we first provide a brief review of FSST, then we propose the adaptive FSST based on

the STFT with a time-varying parameter.

2.1 Short-time Fourier transform-based synchrosqueezed transform

Recall that Vx(t, η) is the STFT of x(t) defined by (2), which can be extended to a slowly growing

x(t) provided that the window function h(t) is in the Schwarz class S.

The idea of FSST is to reassign the frequency variable. As in [26], for a signal x(t), at (t, η) for

which Vx(t, η) 6= 0, denote

ωx(t, η) =
∂
∂tVx(t, η)

2πiVx(t, η)
. (11)

When x(t) = Aei2πct, where A, c are constants with c > 0, then ωx(t, η) is exactly c, the IF of x(t).

The quantity ωx(t, η) is called the “phase transformation” [25]. FSST is to reassign the frequency
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variable η by transforming STFT Vx(t, η) of x(t) to a quantity, denoted by Rx(t, η), on the TF plane:

Rx(t, ξ) :=

∫
{ζ:Vx(t,ζ) 6=0}

Vx(t, ζ)δ
(
ωx(t, ζ)− ξ

)
dζ, (12)

where ξ is the frequency variable.

For a multicomponent signal x(t) given by (1), when Ak(t), φk(t) satisfy certain conditions, each

component xk(t) can be recovered from its FSST:

xk(t) ≈
1

h(0)

∫
|ξ−φ′k(t)|<Γ

Rx(t, ξ)dξ, (13)

for certain Γ > 0. For more mathematically precise definition of FSST and the conditions on

Ak(t), φk(t) for (13), see [26]-[28].

2.2 Adaptive STFT with a time-varying parameter

We consider the window function given by

gσ(t) =
1

σ
g(
t

σ
),

where σ > 0 is a parameter, g(t) is a positive function in L2(R) with g(0) 6= 0 and having certain

decaying order as t→∞. If

g(t) =
1√
2π
e−

t2

2 , (14)

then gσ(t) is the Gaussian window function. The parameter σ is also called the window width in the

time-domain of the window function gσ(t) since the time duration ∆gσ of gσ is σ (up to a constant):

∆gσ = σ∆g, where ∆g is the time duration of g . The parameter σ affects the shape of gσ and hence,

the representation of the STFT of a signal with gσ. As mentioned in Section 1, [30] states that for

a multicomponent signal as given by (1), if STFTs Vxk−1
(t, η) and Vxk(t, η) of two components xk−1

and xk are mixed, then FSST cannot separate these two components xk−1(t) and xk(t) either. Thus

it is desirable that an appropriate σ can be chosen so that the STFTs of different components do

not overlap. In this paper we introduce STFT with a time-varying parameter and then establish the

separability condition of a multicomponent signal based on this type of STFT.

The STFT of x(t) with a time-varying parameter Ṽx(t, η) (called the adaptive STFT) we consider

is defined by (4). One can verify that Ṽx(t, η) can be written as

Ṽx(t, η) =

∫ ∞
−∞

x̂(ξ)ĝσ(t)(η − ξ)ei2πtξdξ =

∫ ∞
−∞

x̂(ξ)ĝ
(
σ(t)(η − ξ)

)
ei2πtξdξ. (15)

where for a signal x(t), its Fourier transform x̂(ξ) is defined by

x̂(ξ) =

∫ ∞
−∞

x(t)e−i2πξtdt.

We can obtain that x(t) can be recovered from Ṽx(t, η) as shown in the following theorem.
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Theorem 1. Let Ṽx(t, η) be the time-varying STFT of x(t) ∈ L2(R) defined by (4). Suppose x̂, ĝ ∈
L1(R). Then

x(t) =
σ(t)

g(0)

∫ ∞
−∞

Ṽx(t, η)dη. (16)

If in addition g(t) is real-valued, then for a real-valued x(t), we have

x(t) =
2σ(t)

g(0)
Re
(∫ ∞

0
Ṽx(t, η)dη

)
. (17)

The proof of Theorem 1 is presented in Appendix.

2.3 Adaptive FSST with a time-varying parameter

Next we introduce the synchrosqueezing transform (SST) associated with the adaptive STFT. First

we need to define the phase transformation ωadpx associated with the adaptive STFT. In the following

we use g(τ) replaced by τg′(τ), namely,

Ṽ τg′(τ)
x (t, η) :=

∫ ∞
−∞

x(t+ τ)
τ

σ2(t)
g′(

τ

σ(t)
)e−i2πητdτ. (18)

To define the phase transformation ωadpx , we first consider s(t) = Aei2πct. From

Ṽs(t, η) =

∫ ∞
−∞

s(t+ τ)gσ(t)(τ)e−i2πητdτ = A

∫ ∞
−∞

ei2πc(t+τ) 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ,

we have

∂

∂t
Ṽs(t, η) = A

∫ ∞
−∞

(i2πc)ei2πc(t+τ) 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

+A

∫ ∞
−∞

ei2πc(t+τ)(− σ
′(t)

σ(t)2
)g(

τ

σ(t)
)e−i2πητdτ +A

∫ ∞
−∞

ei2πc(t+τ)(−σ
′(t)τ

σ(t)3
)g′(

τ

σ(t)
)e−i2πητdτ

= i2πc Ṽs(t, η)− σ′(t)

σ(t)
Ṽs(t, η)− σ′(t)

σ(t)
Ṽ τg′(τ)
s (t, η).

Thus, if Ṽs(t, η) 6= 0, we have

∂
∂t Ṽs(t, η)

i2πṼs(t, η)
= c− σ′(t)

i2πσ(t)
− σ′(t)

σ(t)

Ṽ
τg′(τ)
s (t, η)

i2πṼs(t, η)
.

Therefore, the IF of s(t), which is c, can be obtained by

c = Re
{ ∂

∂t Ṽs(t, η)

i2πṼs(t, η)

}
+
σ′(t)

σ(t)
Re
{ Ṽ τg′(τ)

s (t, η)

i2πṼs(t, η)

}
, for Ṽs(t, η) 6= 0. (19)

Hence, for a general x(t), at (t, η) for which Ṽx(t, η) 6= 0, the quantity in the right-hand side of

the above equation is a good candidate for the IF of x. This quantity is also called the phase

transformation, and we denote it by ωadpx (t, η):

ωadpx (t, η) = Re
{∂t(Ṽx(t, η)

)
i2πṼx(t, η)

}
+
σ′(t)

σ(t)
Re
{ Ṽ τg′(τ)

x (t, η)

i2πṼx(t, η)

}
, for Ṽx(t, η) 6= 0. (20)
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The FSST with a time-varying parameter (called the adaptive FSST of x(t)) is defined by

Radpx (t, ξ) :=

∫
{η∈R: Ṽx(t,η)6=0}

Ṽx(t, η)δ
(
ωadpx (t, η)− ξ

)
dη, (21)

where ξ is the frequency variable. The reconstruction formulas in (16) and (17) lead to that x(t) can

be reconstructed from its adaptive FSST:

x(t) =
σ(t)

g(0)

∫ ∞
−∞

Radpx (t, ξ)dξ; (22)

and if in addition g(t) is real-valued, then for real-valued x(t), we have

x(t) =
2σ(t)

g(0)
Re
(∫ ∞

0
Radpx (t, ξ)dξ

)
. (23)

One can use the following formula to recover the kth component xk(t) of a multicomponent signal

from the adaptive FSST:

xk(t) =
2σ(t)

g(0)
Re
(∫
|ξ−φ′k(t)|<Γ1

Radpx (t, ξ)dη
)

(24)

for some Γ1 > 0.

2.4 Second-order adaptive FSST

The 2nd-order FSST was introduced in [32]. The main idea is to define a new phase transformation

ω2nd
x such that when x(t) is a linear frequency modulation (LFM) signal, then ω2nd

x is exactly the IF

of x(t). We say s(t) is an LFM signal or a linear chirp if

s(t) = Aei2πφ(t) = Aei2π(ct+ 1
2
rt2) (25)

with phase function φ(t) = ct+ 1
2rt

2, IF φ′(t) = c+ rt and chirp rate φ′′(t) = r.

Recall that in Section 2.3, we use Ṽ
τg′(τ)
x (t, η) to denote the adaptive STFT defined by (4) with

g(τ) replaced by τg′(τ). In the following, we use Ṽ
τg(τ)
x (t, η) to denote the adaptive STFT defined

by (4) with g(τ) replaced by τg(τ). That is,

Ṽ τg(τ)
x (t, η) :=

∫ ∞
−∞

x(t+ τ)
τ

σ2(t)
g(

τ

σ(t)
)e−i2πητdτ. (26)

For a signal x(t), we define the phase transformation for the 2nd-order adaptive FSST as

ωadp,2ndx (t, η) =


Re
{ ∂

∂t
Ṽx(t,η)

i2πṼx(t,η)

}
+ σ′(t)

σ(t) Re
{
Ṽ
τg′(τ)
x (t,η)

i2πṼx(t,η)

}
− Re

{
Ṽ
τg(τ)
x (t,η)

i2πṼx(t,η)
P0(t, η)

}
,

if ∂
∂η

(
Ṽ
τg(τ)
x (t,η)

Ṽx(t,η)

)
6= 0 and Ṽx(t, η) 6= 0;

Re
{ ∂

∂t
Ṽx(t,η)

i2πṼx(t,η)

}
+ σ′(t)

σ(t) Re
{
Ṽ
τg′(τ)
x (t,η)

i2πṼx(t,η)

}
, if ∂

∂η

(
Ṽ
τg(τ)
x (t,η)

Ṽx(t,η)

)
= 0, Ṽx(t, η) 6= 0,

(27)

where

P0(t, η) =
1

∂
∂η

(
Ṽ
τg(τ)
x (t,η)

Ṽx(t,η)

){ ∂

∂η

( ∂
∂t Ṽx(t, η)

Ṽx(t, η)

)
+
σ′(t)

σ(t)

∂

∂η

( Ṽ τg′(τ)
x (t, η)

Ṽx(t, η)

)}
. (28)

Then we have the following theorem with its proof given in Appendix.
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Theorem 2. If x(t) is an LFM signal given by (25), then at (t, η) where ∂
∂η

(
Ṽ
τg(τ)
x (t,η)

Ṽx(t,η)

)
6= 0 and

Ṽx(t, η) 6= 0, ωadp,2ndx (t, η) defined by (27) is the IF of x(t), namely ωadp,2ndx (t, η) = c+ rt.

Observe that when σ(t) ≡ σ is a constant function, ωadp,2ndx (t, η) is reduced to ω2nd
x (t, η) given by

ω2nd
x (t, η) =

 Re
{ ∂

∂t
Vx(t,η)

i2πVx(t,η)

}
− Re

{
V
τg(τ)
x (t,η)
i2πVx(t,η) p0(t, η)

}
, if ∂

∂η

(
V
τg(τ)
x (t,η)
Vx(t,η)

)
6= 0, Vx(t, η) 6= 0;

Re
{ ∂

∂t
Vx(t,η)

i2πVx(t,η)

}
, if ∂

∂η

(
V
τg(τ)
x (t,η)
Vx(t,η)

)
= 0, Vx(t, η) 6= 0,

(29)

where

p0(t, η) =
1

∂
∂η

(
V
τg(τ)
x (t,η)
Vx(t,η)

) ∂

∂η

( ∂
∂tVx(t, η)

Vx(t, η)

)
.

ω2nd
x in (29) is one of the phase transformations considered in [36] for the conventional 2nd-order

FSST.

With the phase transformation ωadp,2ndx (t, η) in (27), we define the 2nd-order FSST with a time-

varying parameter, called the 2nd-order adaptive FSST, of a signal x(t) as in (21):

Radp,2ndx (ξ, t) :=

∫
{η∈R: Ṽx(t,η)6=0}

Ṽx(t, η)δ
(
ωadp,2ndx (t, η)− ξ

)
dη, (30)

where ξ is the frequency variable. We also have the reconstruction formulas for x(t) and xk(t) similar

to (22), (23) and (24) with Radpx (ξ, t) replaced by Radp,2ndx (ξ, t). Note that the conventional 2nd-order

FSST is defined by

R2nd
x (ξ, t) :=

∫
{η∈R: Vx(t,η)6=0}

Vx(t, η)δ
(
ω2nd
x (t, η)− ξ

)
dη, (31)

where one can use ω2nd
x (t, η) defined by (29) or choose one of several different ω2nd

x in [32].

3 Support zones of STFTs of LFM signals

The parameter σ for the window function gσ affects the sharpness of the STFT of a signal. In this

section, we study how the time-varying parameter σ(t) controls the representation of STFT Ṽx(t, η)

of a monocomponent signal x(t) and provide the parameter σ(t) with which STFT has the sharpest

representation in the TF plane. In the next section, we will consider the following problem: under

which condition (if any) for a multicomponent signal as given by (1), with a suitable choice of σ(t),

the STFTs of Ṽxk(t, η), 1 ≤ k ≤ K are well separated.

To study the sharpness of the STFT of a monocomponent signal or the separability of STFTs

(including STFTs with a time-varying parameter) of different components xk of x(t), we need to

consider the support zone of STFT Vxk(t, η) in the TF plane, the region outside which Vxk(t, η) ≈ 0.

Since the support zone of Vxk(t, η) is determined by the support of ĝ outside which ĝ(ξ) ≈ 0, first of

all, we need to define the “support” of ĝ if g is not band-limited. More precisely, for a given threshold

0 < ε < 1, if |ĝ(ξ)|/maxξ |ĝ(ξ)| < ε for |ξ| ≥ ξ0, then we say ĝ(ξ) is “supported” in [−ξ0, ξ0]. We
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use Lĝ = 2ξ0 to denote the length of the “support” interval of ĝ and we call it the duration of ĝ.

Note that ξ0 = ξ0,ε depends on ε. For simplicity, here and below we drop the subscript ε. Also in

applications, ε is quite small.

In the remainder of this paper, we consider g given by (14) and thus gσ(t) is the Gaussian window

function defined by

gσ(τ) =
1

σ
√

2π
e−

τ2

2σ2 , (32)

with its Fourier transform given by

ĝσ(ξ) = e−2π2σ2ξ2 . (33)

For g given by (14), |ĝ(ξ)| = e−2π2ξ2 < ε if and only if |ξ| > α, where

α =
1

2π

√
2 ln(1/ε). (34)

Thus we regard that ĝ is “supported” in [−α, α]. Hence, ĝσ, given by (33), is “supported” in [−α
σ ,

α
σ ],

and Lĝσ = 2α
σ .

For s(t) = Aei2πct, since its STFT with gσ is

Vs(t, η) = Aei2πtcĝσ(η − c),

and ĝσ(η− c) is “supported” in c− α
σ ≤ η ≤ c+ α

σ , Vs(t, η) concentrates around η = c and lies within

the zone (a strip) of the TF plane (t, η):{
(t, η) : c− α

σ
≤ η ≤ c+

α

σ
, t ∈ R

}
. (35)

Next we consider LFM signals with IF φ′(t) = c + rt > 0. First we find the STFT of an LFM

signal.

Proposition 1. Let s(t) be an LFM given by (25). The STFT of s(t) with the Gaussian window

function gσ(τ) is given by

Vs(t, η) =
A√

1− i2πσ2r
ei2π(ct+rt2/2) h

(
η − (c+ rt)

)
, (36)

where

h(ξ) = e
− 2π2σ2

1+(2πrσ2)2
(1+i2πσ2r)ξ2

.

One can obtain (36) by applying the following formula (see [1]): for real α and β with α > 0∫ ∞
−∞

e−(α+iβ)t2+iωtdt =

√
π√

α+ iβ
e
− ω2

4(α+iβ) . (37)

Observe that |h(ξ)| is a Gaussian function with duration

L|h| = 2α

√
1 + (2πrσ2)2

σ2
= 2α

√
1

σ2
+ (2πrσ)2.

10



Thus the ridge of Vs(t, η) concentrates around η = c + rt in the TF plane, and Vs(t, η) lies within

the zone of TF plane of (t, η):

−1

2
L|h| ≤ c+ rt− η ≤ 1

2
L|h|,

or equivalently

c+ rt− α
√

1

σ2
+ (2πrσ)2 ≤ η ≤ c+ rt+ α

√
1

σ2
+ (2πrσ)2. (38)

L|h| gains its minimum when 1
σ2 = (2πrσ)2, namely,

σ =
1√

2π|r|
=

1√
2π|φ′′(t)|

. (39)

The choice of σ given in (39) results in the sharpest representation of Vs(t, η).

For a monocomponent signal x(t) = A(t)ei2πφ(t), if its STFT with gσ, which is also given by (refer

to (3)),

Vx(t, η) =

∫ ∞
−∞

A(t+ τ)ei2πφ(t+τ)gσ(τ)e−i2πητdτ

can be well approximated by

Vx(t, η) ≈
∫ ∞
−∞

A(t)ei2π
(
φ(t)+φ′(t)τ+ 1

2
φ′′(t)τ2

)
gσ(τ)e−i2πητdτ,

then the choice of σ given

σ =
1√

2π|φ′′(t)|
(40)

results in the sharpest representation of Vx(t, η). The choice of σ = σ(t) in (40) coincides with the

result derived in [1].

Observe that σ in (40) is the optimal parameter for the representation of a monocomponent

signal. In the next section, we will use the obtained TF zone in (38) for the STFT of an LFM signal

to study the well-separated condition for a multicomponent signal.

4 Separability of multicomponent signals and selection of time-

varying parameter

In this section, we will consider the problem that under which condition (if any), for a multicomponent

signal as given by (1), with a suitable choice of σ(t), STFTs Ṽxk(t, η), 1 ≤ k ≤ K of different

components xk defined in (4) are well separated, and the associated adaptive FSST of x(t) has a

sharp representation.

4.1 Sinusoidal signal model

First we consider the sinusoidal signal model. Recall that the STFT of s(t) = Aei2πct with gσ(t) is

supported in the zone of the TF plane given by (35). Suppose x(t) is a finite summation of sinusoidal
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signals:

x(t) =

K∑
k=1

Ake
i2πckt, (41)

where Ak, ck are positive constants with 0 < ck < ck+1. Since the STFT of the k-component of x(t)

lies within the zone of the TF plane (t, η): ck − α/σ ≤ η ≤ ck + α/σ for any t, the components of

x(t) will be well-separated in the TF plane if

ck−1 +
α

σ
≤ ck −

α

σ
,

or equivalently

σ ≥ 2α

ck − ck−1
, for k = 2, 3, · · · ,K.

More generally, for x(t) given by (1), suppose each xk(t) is well approximated by sinusoidal

functions at any local time, that is (7) holds. Then the time-varying STFT Ṽxk(t, η) of xk(t) can be

well-approximated by

Ṽxk(t, η) ≈
∫ ∞
−∞

xk(t)e
i2πφ′k(t)τgσ(t)(τ)e−i2πητdτ

= xk(t)ĝ
(
σ(t)(η − φ′k(t))

)
.

Hence Ṽxk(t, η) lies within the zone of the TF plane (t, η):

Ok = {(t, η) : −α ≤ σ(t)
(
η − φ′k(t)

)
≤ α} = {(t, η) : φ′k(t)−

α

σ(t)
≤ η ≤ φ′k(t) +

α

σ(t)
}.

Thus, the components of x(t) will be well-separated in the TF plane (namely, Ok, 1 ≤ k ≤ K do not

overlap) if

φ′k−1(t) +
α

σ(t)
≤ φ′k(t)−

α

σ(t)
, t ∈ R, k = 2, · · · ,K,

or equivalently

σ(t) ≥ 2α

φ′k(t)− φ′k−1(t)
, t ∈ R, k = 2, 3, · · · ,K. (42)

(42) is the sinusoidal signal model-based well-separable condition for x(t) with the adaptive STFT.

When σ(t) ≡ σ is a positive constant function, (42) is reduced to (8) with 4 = α/σ.

We observe in our experiments that in general a big σ will result in low time-resolution and

unreliable representation of the FSST of a signal x(t). Actually, the error bounds derived in [25, 26,

27, 28, 35] imply that for a signal, its synchrosqueezed representation is sharper when the window

width in the time domain of the window function gσ, which is σ (up to a constant), is smaller. Thus

we should choose σ(t) as small as possible. Hence, we propose the sinusoidal signal model-based

choice for σ, denoted by σ1(t), to be

σ1(t) = max
2≤k≤K

{ 2α

φ′k(t)− φ′k−1(t)

}
. (43)
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4.2 Linear frequency modulation (LFM) model

In this subsection we will derive the well-separated condition based on the LFM model. More

precisely, we consider x(t) =
∑K

k=1 xk(t), where each xk(t) is an LFM signal, namely,

xk(t) = Ake
i2π(ckt+

1
2
rkt

2)

with the phase function φk(t) = ckt+ 1
2rkt

2 and φ′k−1(t) < φ′k(t).

From (38), STFT Vxk(t, η) of xk with Gaussian window function gσ lies within the zone of TF

plane (t, η):

ck + rkt− α
√

1

σ2
+ (2πrkσ)2 ≤ η ≤ ck + rkt+ α

√
1

σ2
+ (2πrkσ)2, (44)

for all t. Thus xk−1(t) and xk(t) are separable in the TF plane if

ck−1 + rk−1t+ α

√
1

σ2
+ (2πrk−1σ)2 ≤ ck + rkt− α

√
1

σ2
+ (2πrkσ)2. (45)

The condition that (45) holds for k = 2, · · · ,K is the well-separated condition for a multicompo-

nent signal consisting of LFM signals. One of the main goals of this paper to obtain an explicit σ(t)

such that Vxk(t, η), 1 ≤ k ≤ K lie within non-overlapping TF zones. To this end, we replace the TF

zone of Vxk(t, η) in (44) by a larger zone for Vxk(t, η) by using 1
σ +2π|rk|σ to replace

√
1
σ2 + (2πrkσ)2

in (44):

ck + rkt− α(
1

σ
+ 2π|rk|σ) ≤ η ≤ ck + rkt+ α(

1

σ
+ 2π|rk|σ). (46)

Since √
2

2
(
1

σ
+ 2π|rk|σ) ≤

√
1

σ2
+ (2πrkσ)2 ≤ 1

σ
+ 2π|rk|σ,

the zone given by (46) is slightly larger than that given by (44). Clearly, xk−1(t) and xk(t) are

separable in the TF plane if

ck−1 + rk−1t+ α(
1

σ
+ 2π|rk−1|σ) ≤ ck + rkt− α(

1

σ
+ 2π|rk|σ).

More generally, for x(t) given by (1), suppose each xk is well approximated by an LFM at any

local time, namely (9) holds. Then the time-varying STFT Ṽxk(t, η) of xk with gσ(t), which is (refer

to (5)) ∫ ∞
−∞

Ak(t+ τ)ei2πφk(t+τ)gσ(t)(τ)e−i2πητdτ,

can be well-approximated by the quantity on the right-hand side of (10), which is (by applying

Proposition 1 or (37))

xk(t)√
1− i2πσ(t)2φ′′k(t)

e
− 2π2

1
σ(t)2

+(2πφ′′
k
(t)σ(t))2

(1+i2πσ2(t)φ′′k(t))(η−φ′k(t))2

.

Thus Ṽxk(t, η) lies within the zone of TF plane:

φ′k(t)− α

√
1

σ(t)2
+ (2πφ′′k(t)σ(t))2 ≤ η ≤ φ′k(t) + α

√
1

σ(t)2
+ (2πφ′′k(t)σ(t))2, (47)
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for t ∈ R, and the well-separable condition for x(t) is

φ′k−1(t) + α

√
1

σ(t)2
+ (2πφ′′k−1(t)σ(t))2 ≤ φ′k(t)− α

√
1

σ(t)2
+ (2πφ′′k(t)σ(t))2, 2 ≤ k ≤ K, (48)

for t ∈ R.

As above, we replace the TF zone (47) of Ṽxk(t, η) by a larger zone given by

φ′k(t)− α
( 1

σ(t)
+ 2π|φ′′k(t)|σ(t)

)
≤ η ≤ φ′k(t) + α

( 1

σ(t)
+ 2π|φ′′k(t)|σ(t)

)
.

Then the corresponding well-separable condition for x(t) is

φ′k−1(t) + α
( 1

σ(t)
+ 2π|φ′′k−1(t)|σ(t)

)
≤ φ′k(t)− α

( 1

σ(t)
+ 2π|φ′′k(t)|σ(t)

)
, 2 ≤ k ≤ K, (49)

which is equivalent to

ak(t)σ(t)2 − bk(t)σ(t) + 2α ≤ 0, 2 ≤ k ≤ K, (50)

where

ak(t) = 2πα(|φ′′k−1(t)|+ |φ′′k(t)|), bk(t) = φ′k(t)− φ′k−1(t). (51)

If

bk(t)
2 − 8αak(t) =

(
φ′k(t)− φ′k−1(t)

)2 − 16πα2
(
|φ′′k(t)|+ |φ′′k−1(t)|

)
≥ 0,

then (49) (or (50)) is equivalent to

4α

bk(t) +
√
bk(t)2 − 8αak(t)

≤ σ(t) ≤ 4α

bk(t)−
√
bk(t)2 − 8αak(t)

, 2 ≤ k ≤ K, (52)

for t ∈ R. Otherwise, if bk(t)
2−8αak(t) < 0, then there is no suitable solution of the parameter σ for

(49) or equivalently (50). In this case we say that components xk−1(t) and xk(t) of multicomponent

signal x(t) cannot be separated in the TF plane. Note that when ak(t) = 0, i.e. φ′′k(t) = φ′′k−1(t) = 0,

(52) is reduced to (42). In the next theorem, we summarize the LFM model-based well-separated

condition we have derived above.

Theorem 3. Let x(t) =
∑K

k=1 xk(t), where each xk(t) = Ak(t)e
i2πφk(t) is an LFM signal or its

adaptive STFT Ṽxk(t, η) with gσ(t) can be well approximated by (10), and φ′k−1(t) < φ′k(t). If

4α
√
π
√
|φ′′k(t)|+ |φ′′k−1(t)| ≤ φ′k(t)− φ′k−1(t), k = 2, · · · ,K, and (53)

max
2≤k≤K

{ 4α

bk(t) +
√
bk(t)2 − 8αak(t)

}
≤ min

2≤k≤K

{ 4α

bk(t)−
√
bk(t)2 − 8αak(t)

}
, (54)

for t ∈ R, then the components of x(t) are well-separable in TF plane in the sense that Ṽxk(t, η), 1 ≤
k ≤ K with σ(t) chosen to satisfy (52) lie in non-overlapping regions in the TF plane.
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We call (53)-(54) the LFM model-based well-separated condition for a multicomponent signal

x(t). Observe that our LFM model-based well-separated condition (53) requires the boundedness of

the 2nd-order derivatives φ′′k(t), while it seems the sinusoidal signal-based well-separated condition

(8) or (42) does not have such a constraint. Actually the sinusoidal signal model assumption (7)

requires φ′′k(t) be small. In addition, to make the recovery error in (13) small, φ′′k(t) must be very

small (see [27, 28, 35] for the details about the recovery error estimates).

Any σ(t) between the two quantities in the two sides of the inequality (54) can separate the

components of x(t) in the TF plane. As discussed above, since a smaller σ(t) gives a sharper

synchrosqueezing representation, we should choose σ(t) as small as possible. Hence, we propose the

LFM model-based choice for σ, denoted by σ2(t), to be

σ2(t) = max
{ 4α

bk(t) +
√
bk(t)2 − 8αak(t)

: 2 ≤ k ≤ K
}
, (55)

where ak(t) and bk(t) are defined by (51), and α is defined by (34).

Figure 1: Experimental results on the two-component LFM signal in (56): IFs (Top-left); adaptive FSST

with time-varying parameter σ2(t) (Top-middle); 2nd-order adaptive FSST with time-varying parameter σ2(t)

(Top-right); conventional FSST (Bottom-left) and conventional 2nd-order FSST (Bottom-right) with σ = 0.057

Next we show some experimental results. We consider a two-component LFM signal,

y(t) = y1(t) + y2(t) = cos(2π(12t+ 25t2)) + cos(2π(34t+ 32t2)), t ∈ [0, 1], (56)

where the number of sampling points is 256, namely the sampling rate is 256Hz. The IFs of y1(t) and

y2(t) are φ′(t) = 12 + 50t and φ′2(t) = 34 + 64t, respectively. The top-left panel of Fig.1 shows the

instantaneous frequencies of y1(t) and y2(t). With σ2(t), both the proposed adaptive FSST defined by

(21) and 2nd-order adaptive FSST defined by (30) can represent this signal sharply. Here and below,
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we choose ε = 1
5 , and hence α which is defined by (34) and used in (55) is α ≈ 0.2855. Observe that

the 2nd-order adaptive FSST further improves the TF energy concentration of the adaptive FSST.

Here we also give the results of conventional FSST studied in [26]-[28], and conventional 2nd-order

FSST defined in [32] with σ = 0.057. This σ is obtained by minimizing the Rényi entropy of the

STFT (refer to the next section about the definition of Rényi entropy). Observe that the 2nd-order

FSST is better than the FSST with the same σ. When σ = 0.057 the TF representation of the

conventional 2nd-order FSST is not as sharp or clear as that of the 2nd-order adaptive FSST.

5 Selecting the time-varying parameter automatically

Suppose x(t) given by (1) is separable, meaning (53) and (54) hold. If we know φ′k(t) and φ′′k(t),

then we can choose a σ(t) such as σ2(t) in (55) to satisfy (52) to define the adaptive STFT and

adaptive FSST for sharp representations of xk(t) in the TF plane and for accurate recovery of xk(t).

However in practice, we in general have no prior knowledge of φ′k(t) and φ′′k(t). Hence, we need to

have a method which provides suitable σ(t). In this section, we propose an algorithm to estimate

σ(t) which is based on the well-separated condition of (49).

First for temporarily fixed t and σ, denote Vx,(t,σ)(η) = Vx(t, η, σ), the STFT of x(t) with a

time-varying parameter defined by (4). We extract the peaks (local maxima) of |Vx,(t,σ)(η)| with

certain height. More precisely, assuming γ1 > 0 is a given threshold, we find local maximum points

η1, η2, · · · , ηm of |Vx,(t,σ)(η)| at which |Vx,(t,σ)(η)| attains local maxima with

|Vx,(t,σ)(ηk)|
maxη |Vx,(t,σ)(η)|

> γ1, k = 1, · · · ,m. (57)

Note that m may depend on t and σ. We assume η1 < η2 < · · · < ηm. The threshold γ1 is used to

remove the local maxima with smaller amplitudes, which are regarded as noises and interferences.

For each local maximum point ηk, we regard ηk is the local maximum of the adaptive STFT

Vxk,(t,σ)(η) of a potential component, denoted by xk(t) of x(t). To check whether xk is indeed a

component of x(t) or not, we consider the support interval [lk, hk] for Vxk,(t,σ)(η) with |Vxk,(t,σ)(η)| > 0

for η ∈ [lk, hk]. If there is no overlap among [lk, hk], [lk−1, hk−1], [lk+1, hk+1], then we decide that

xk(t) is indeed a component of x(t), where [lk−1, hk−1], [lk+1, hk+1] are the support intervals for xk−1

and xk+1 defined similarly. With our LFM model, if the estimated IF φ′k(t) of xk(t) is ĉk + r̂kt, then

by (49),

hk = ĉk + α
( 1

σ
+ 2π|r̂k|σ

)
, (58)

lk = ĉk−1 − α
( 1

σ
+ 2π|r̂k−1|σ

)
. (59)

Notice that ĉk = ηk. Thus we need to estimate the chirp rate r̂k of xk(t). To this end, we extract

a small piece of curve in the TF plane passing through (t, ηk) which corresponds to the local ridge

on |Vxk,(t,σ)(η)|. More precisely, letting

tk1 = t− 1

2
Lgσ = t− 2πασ, tk2 = t− 1

2
Lgσ = t+ 2πασ,
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define

d̂k(τ) = argmax
η: η is near ηk

|V(τ,σ)(η)|, τ ∈ [tk1, tk2].

In the above we have used the fact that the duration of gσ(t) is (refer to (34))

Lgσ = 2σ
√

2 ln(1/ε) = 4πσα.

Note that d̂k(t) = ηk and (t, ηk) is a point lying on the curve in the TF of (τ, η) given by

L = {(τ, d̂k(τ)) : τ ∈ [tk1, tk2]} = {(τ, η) : η = d̂k(τ), τ ∈ [tk1, tk2]}.

Most importantly, {|Vxk,(τ,σ)(η)| : (τ, η) ∈ L} is the local ridge on |Vxk,(τ,σ)(η)| near (t, ηk), and thus,

it is also the local ridge on |Vx(t, η, σ)|. Observe that from the STFT of an LFM given by Proposition

1, the local ridge on |Vxk(t, η, σ)| occurs when φ′k(t) = ck + rkt. Thus we use the linear function

dk(τ) = r̂k(τ − t) + ĉk, τ ∈ [tk1, tk2]

to fit d̂k(τ). The obtained r̂k is the estimated chirp rate rk of xk(t). With this r̂k and ĉk = ηk as

given above, we have hk, lk given in (58) and (59). Especially when r̂k = 0, recalling the support

zone of a sinusoidal signal mode in (35), we have

hk = ĉk +
α

σ
, lk = ĉk −

α

σ
.

This way we obtain the collection of support intervals for Vx(t, η, σ) for fixed t and σ:

s = {[l1, h1], · · · , [lm, hm]}. (60)

If adjacent intervals of s do not overlap, namely,

hk ≤ lk+1, for all k = 1, 2, · · · ,m− 1 (61)

holds, then this σ is a right parameter to separate the components and such a σ is a good candidate

which we consider to select. Otherwise, if a pair of adjacent intervals of s overlap, namely, (61) does

not hold, then this σ is not the parameter we shall choose and we need to consider a different σ.

In the above description of our idea for the algorithm, we start with a σ and (temporarily fixed)

t, then we decide whether this σ is a good candidate to select or not based our proposed criterion:

(61) holds or does not. The choice of the initial σ plays a critical role for the success of our algorithm

due to that on one hand, as we have mentioned above, in general a smaller σ will result in a sharper

representation of SST, and hence, we should find σ as small as possible such that (61) holds; and

on the other hand, different σ with which (61) holds may result in different number of intervals m

in (60) even for the same time instance t. To keep the number m (an estimation of the number of

modes K for a given time t) unchanged when we search for different σ with a fixed t, the initial σ

is required to provide a good estimate of the number of the components of a multicomponent signal

x(t). To this end, in this paper we propose to use the Rényi entropy to determine the initial σ(t).
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The Rényi entropy is a commonly used measurement to evaluate the concentration of a TF

representation such as STFT, SST, etc. of a signal of x(t), see [62, 65, 66]. Taking STFT Vx(t, η) of

a signal x(t) as an example, the Rényi entropy with Vx(t, η) is

Eζ(t) :=
1

1− `
log2

∫ t+ζ
t−ζ

∫∞
0 |Vx(b, η)|2` dηdb(∫ t+ζ

t−ζ
∫∞

0 |Vx(b, η)|2 dηdb
)` , (62)

where ` is usually greater than 2. In this paper we choose ` = 2.5, a common value used in other

papers, see for examples [62, 63]. Parameter ζ > 0 determines the local duration to calculate the

local Rényi entropy. We choose ζ = 4. One may choose some large ζ for non-stationary signals

with slow-varying IFs. Note that the smaller the Rényi entropy, the better the TF resolution. So

for a fixed time t, we can use (62) to find a σ (denoted as σu(t)) with the best TF concentration

of Vx(t, η, σ), where Vx(t, η, σ) is the regular STFT of x(t) defined by (2) with the window function

h(τ) = gσ(τ) = 1
σg( τσ ) having a parameter σ. More precisely, replacing Vx(b, η) in (62) by Vx(b, η, σ),

we define the Rényi entropy Eζ(t, σ) of Vx(t, η, σ), and then, obtain

σu(t) = argmin
σ>0

{Eζ(t, σ)} . (63)

We set σu(t) as the upper bound of σ(t) for a fixed t.

With these discussions, we propose an algorithm to estimate σ(t) as follows.

Algorithm 1. (Separability parameter estimation) Let {σj , j = 1, 2, · · · , n} be an uniform

discretization of σ with σ1 > σ2 > · · · > σn > 0 and sampling step ∆σ = σj−1 − σj . The discrete

sequence s(t), t = t1, t2, · · · , tN (or t = 0, 1, · · · , N − 1) is the signal to be analyzed.

Step 1. Let t be one of t1, t2, · · · , tN . Find σu in (63) with σ ranging over {σj , j = 1, 2, · · · , n}.

Step 2. Let s be the set of the intervals given by (60) with σ = σu. Let z = σu. If (61) holds,

then go to Step 3. Otherwise, go to Step 5.

Step 3. Let σ = z − ∆σ. If the number of intervals m in (60) with this new σ remains

unchanged, σ ≥ σn and (61) holds, then go to Step 4. Otherwise, go to Step 5.

Step 4. Repeat Step 3 with z = σ.

Step 5. Let C(t) = z, and do Step 1 to Step 4 for different time t of t1, t2, · · · , tN .

Step 6. Smooth C(t) with a low-pass filter B(t):

σest(t) = (C ∗B)(t). (64)

We call σest(t) the estimation of the separability time-varying parameter σ2(t) in (55). In Step

6, we use a low-pass filter B(t) to smooth C(t). This is because of the assumption of the continuity

condition for Ak(t) and φk(t). With the estimated σest(t), we can define the adaptive STFT, the

adaptive FSST and the 2nd-order adaptive FSST with a time-varying parameter σ(t) = σest(t).
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Figure 2: Experimental results of different time-varying parameters for the two-component LFM signal in

(56): various time-varying parameters (Top-left); adaptive FSST with σest(t) (Top-middle) and 2nd-order

adaptive FSST with σest(t) (Top-right); regular-PT adaptive FSST with σRe(t) (Bottom-left) and 2nd-order

regular-PT adaptive FSST with σRe2(t) (Bottom-right).

In [63], the Rényi entropy-based optimal time-varying window was proposed for the sharp repre-

sentation of SST. More precisely, let Rx(b, ξ, σ) and R2nd
x (b, ξ, σ) be the regular FSST and the regular

2nd-order FSST of x(t) (with the phase transformation ω2nd
x (a, b) given in [32]) defined by (12) and

(31) respectively with the window function h(t) = gσ(t) given by (32) containing σ > 0. Denote

the Rényi entropies of Rx(b, ξ, σ) and R2nd
x (b, ξ, σ) by ESST`,ζ,σ(t) and ESST2

`,ζ,σ (t) respectively, which are

defined by (62) with Vx(b, ξ) to be replaced by Rx(b, ξ, σ) and R2nd
x (b, ξ, σ) for certain fixed `, ζ. The

optimal time-varying parameter is obtained by minimizing ESST`,ζ,σ(t) and ESST2
`,ζ,σ (t):

σRe(t) = argmin
σ>0

ESST`, ζ, σ(t), σRe2(t) = argmin
σ>0

ESST2
`, ζ, σ(t). (65)

With σRe(t) and σRe2(t) obtained by (65), [63] defines the time-varying-window FSST with σ =

σRe(t) by (21) but with the phase transformation ωadpx (t, ξ) in (20) replaced by the regular phase

transformation ωx(t, ξ) defined by the formula (11) for the conventional FSST. Similarly, the 2nd-

order time-varying-window FSST with σ = σRe2(t) in [63] is defined by (30) but with the phase

transformation ωadp,2ndx (t, ξ) in (27) replaced by a regular phase transformation ω2nd
x (t, ξ) defined by a

formula in [32] for the conventional 2nd-order FSST. With PT representing phase transformation, we

call them the regular-PT adaptive FSST and the 2nd-order regular-PT adaptive FSST, respectively.

We use the Rényi entropy-based adaptive FSST and our proposed adaptive FSST with σ = σest(t)

to process the two-component linear chirp signal in (56). The different time-varying parameters are

shown in the top-left panel of Fig.2, where σ1(t), σ2(t), σu(t), σest(t), σRe(t) and σRe2(t) are defined

by (43), (55), (63), (64) and (65), respectively. Here we let σ ∈ [0.001, 0.2] with ∆σ = 0.001, namely
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σ1 = 0.2 in Algorithm 1. We set ` = 2.5, ζ = 4 (sampling points, for discrete signal) and γ1 in (57)

to be 0.3. Note that we set the same values of `, ζ, and γ1 for all the following experiments. We use

a simple rectangular window B = {1/5, 1/5, 1/5, 1/5, 1/5} as the low-pass filter. One can use some

other filters, such as an FIR filter or a window of Gaussian or Hamming. Note that the length of

the filter we use is 5, which is related to the parameter ζ = 4. And we use a constant ε = 1/5 in

(34), namely constant α in (59). The estimation σest(t) by Algorithm 1 is very close to σ2(t) except

for the start near t = 0. So the estimation algorithm is an efficient method to estimate the well-

separation time-varying parameter σ2(t). Fig.2 shows the proposed adaptive FSST and 2nd-order

adaptive FSST with σest(t). The proposed 2nd-order adaptive FSST gives energy concentration. In

Fig.2, we also provide the regular-PT adaptive FSST with σ = σRe(t) and the 2nd-order regular-PT

adaptive FSST with σRe2(t) as described above. The regular-PT adaptive FSST performs well in

the TF energy concentration of this two-component signal. The Matlab routines for Algorithm 1,

FSST, the adaptive FSST and regular-PT adaptive FSST can be downloaded at the website of one

of the authors: www.math.umsl.edu/∼jiang .

For most well-separated signals, Algorithm 1 results in a suitable σest(t) with which the 2nd-

order adaptive FSST is clear, sharp and concentrated. However, when IFs of different components

are too close, then two adjacent components at Step 2 of Algorithm 1 may merge into one, which

results in component mixing. In addition, the regular-PT adaptive FSST method is unable to

separate such components either, see an experimental example in the next section. To tackle this

problem, we propose to use a varying ε or α in (34), which defines the bandwidth of ĝ(ξ) and hence

determines the support zones of STFTs. Although a greater ε may result in a larger recovery error,

some components with extremely close IFs can be separated with a large ε. Suppose ε ∈ [εs, εo] for

some 0 < εs < εo < 1. Our method is first we choose the maximum ε = εo for fixed t and σ first,

and obtain the support intervals s in (60) satisfying (61). Then we decrease ε step by step. This

way the support intervals in (60) will increase gradually. We stop our procedure when ε reaches the

minimum value εs or the condition in (61) does not hold. The following is the revised algorithm to

estimate σ(t).

Algorithm 2. Let {σj , j = 1, 2, · · · , n} be an uniform discretization of σ with σ1 > σ2 > · · · >
σn > 0 and sampling step ∆σ = σj−1 − σj . Let {εj , j = 1, 2, · · · ,m} be an uniform discretization

of ε with ε1 > ε2 > · · · > εm > 0 and sampling step ∆ε = εj−1 − εj . The discrete sequence s(t),

t = t1, t2, · · · , tN (or t = 0, 1, · · · , N − 1) is the signal to be analyzed.

Step 1. Let t be one of t1, t2, · · · , tN . Find σu in (63) with σ ∈ {σj , j = 1, 2, · · · , n}.

Step 2. Let s be the set of the intervals given by (60) with σ = σu and ε = ε1. Let z = σu.

Step 3. If (61) holds and ε > εm, update ε with ε−∆ε, and repeat Step 3.

Step 4. If ε > εm, go to Step 7. Otherwise, if ε = εm, go to Step 5.
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Step 5. Let σ = z − ∆σ. If the number of intervals m in (60) with this new σ remains

unchanged, σ ≥ σn and (61) holds, then go to Step 6. Otherwise, go to Step 7.

Step 6. Let ε = ε1, go to Step 3 with z = σ.

Step 7. Let C(t) = z, and do Step 1 to Step 6 for different time t of t1, t2, · · · , tN .

Step 8. Smooth C(t) with a low-pass filter B(t):

σest2(t) = (C ∗B)(t).

6 Further experiments and results

In this section, we provide more numerical examples to further illustrate the effectiveness and ro-

bustness of our method in the IF estimation and component recovery.

6.1 Experiments with a three-component synthetic signal

The three-component signal we consider is given by

z(t) = z1(t) + z2(t) + z3(t), (66)

where

z1(t) = cos
(
118π(t− 1/2) + 100π(t− 1/2)2

)
, t ∈ [1/2, 1],

z2(t) = cos
(
94πt+ 13 cos(4πt− π/2) + 110πt2

)
, t ∈ [0, 1],

z3(t) = cos
(
194πt+ 112πt2

)
, t ∈ [0, 3/4].

Note that the durations of the three components in (66) are different, that is K in (1) can be time-

varying. The sampling rate for this experiment is 512Hz, namely we have 512 discrete samples for z(t).

The IFs of the three components are φ′1(t) = 59 + 100(t− 1/2), φ′2(t) = 47− 26 sin(4πt−π/2) + 110t

and φ′3(t) = 97 + 112t, respectively. Fig.3 shows the waveform and IFs of z(t).

Figure 3: Three-component signal in (66): its waveform (Left panel) and IFs of its components (Right panel).

We calculate various time-varying parameters as those shown in Fig.2 and σest2(t) as well. In this

experiment, to obtain σest2(t) with Algorithm 2, we consider a time-varying ε(t) with ε ∈ [0.2, 0.8]
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Figure 4: Experimental results on the three-component signal in (66). Top-row (from left to right): conven-

tional FSST with constant σ = 0.04, regular-PT adaptive FSST with σRe(t) and adaptive FSST with σest2(t);

Bottom-row (from left to right): conventional 2nd-order FSST with constant σ = 0.04, 2nd-order regular-PT

adaptive FSST with σRe2(t) and 2nd-order adaptive FSST with σest2(t).

and ∆ε = 0.01. For this three-component signal, we observe that the conventional FSST, regular-

PT adaptive FSST and adaptive FSST with σest(t) cannot separate the three components well due

to that the frequencies of two components are close to each other, see Fig.4, while the 2nd-order

adaptive FSST with σest2(t) provides quite sharp and clear representations of the three components.

In Fig.4, for the conventional FSST and conventional 2nd-order FSST, we use σ = 0.04 which is

obtained by minimizing the Rényi entropy of the STFT.

We also consider FSSTs in noise environment. We add Gaussian noises to the original signal

given in (66) with different signal-to-noise ratios (SNRs). Fig.5 shows the conventional 2nd-order

FSST and our proposed 2nd-order adaptive FSST under different noise levels. Observe that our

method works well under noisy environment.

6.2 Application to bat echolocation signal

In order to further verify the reliability of the proposed algorithm, we test our method on a bat

echolocation signal emitted by a large brown bat. There are 400 samples with the sampling period

7 microseconds (sampling rate Fs ≈ 142.86 KHz). For a given real-world signal, how to select

an appropriate constant σ such that the resulting conventional SST or 2nd-order SST has a sharp

representation is probably not very simple. Here we choose σ = 8× 10−5, which is close to the mean

of σest(t) obtained by Algorithm 1. Fig.6 shows the TF representations of the echolocation signal:

STFT, conventional 2nd-order FSST with σ = 8 × 10−5 and the 2nd-order adaptive FSST with

time-varying parameter σest(t). Unlike the three-component signal in Fig.4, the four components
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Figure 5: FSSTs of three-component signal in (66) under different noise levels. Top row (from left to right):

Conventional 2nd-order FSSTs with constant σ = 0.01 under SNRs of 5dB, 10dB and 15dB. Bottom row

(from left to right): 2nd-order adaptive FSSTs under SNRs of 5dB, 10dB and 15dB.

in the bat signal are much well separated. Thus, both the conventional 2nd-order FSST and the

2nd-order adaptive FSST can separate well the components of the signal. In addition, they give

sharp representations in the TF plane. Comparing with the conventional 2nd-order FSST, the 2nd-

order adaptive FSST with σest(t) gives a better representation for the fourth component (the highest

frequency component) and the two ends of the signal. Furthermore, σest(t) provides a hint how to

select σ for the conventional 2nd-order FSST.

6.3 Signal separation

Finally we consider the separation of a multicomponent signal: to recover/reconstruct its compo-

nents. We use (13), (24) and similar formulas to recover the signal components for conventional

FSST and adaptive FSST. Here we use the maximum values on the FSST plane to search for the

IF ridges φ′k(t) one by one, see details in [31]. Then integrate around the ridges with Γ = Γ1 = 15

(discrete value, unitless). We use the relative “root mean square error” (RMSE) to evaluate the

separation performance, which is defined by

RMSE =
1

K

K∑
k=1

‖zk − ẑk‖2
‖zk‖2

, (67)

where ẑk is the reconstructed zk, K is the number of components. We also consider signal separation

in noise environment. As before we add Gaussian noises to the original signal given in (66) with

different signal-to-noise ratios (SNRs).
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Figure 6: Example of the bat echolocation signal. Top-left: waveform; Top-right: conventional STFT with

σ = 8×10−5; Bottom-left: conventional 2nd-order FSST with σ = 8×10−5; Bottom-right: 2nd-order adaptive

FSST with time-varying parameter σest(t) obtained by our proposed Algorithm 1.

Due to the page limitation of the paper, we just provide the pictures of the reconstructed com-

ponents of the three-component signal z(t) in (66) by the 2nd-order adaptive FSST with σest2(t)

under the noiseless environment, while we provide RMSEs of four different methods, all in Fig.7. In

the bottom-right panel of Fig.7 for RMSEs, Method 1, 2, 3 and 4 denote the 2nd-order adaptive

FSST with σest2(t), the regular-PT adaptive FSST with σRe(t), the 2nd-order regular-PT adaptive

FSST with σRe2(t) and the conventional 2nd-order FSST with constant σ = 0.01, respectively. This

panel gives the RMSEs of these 4 methods when SNR varies from 0dB to 20dB. Under each SNR,

we do Monte-Carlo experiment for 50 runs. Obviously, the reconstruction error with the 2nd-order

adaptive FSST is less than those with other methods. Observe that when the noise level is high, for

example SNR=0dB, RMSEs for all methods are large. This is mainly due to the fact that in a high

level noise environment, the IFs of the modes are hardly estimated by the ridge detection process

with the local maxima in the TF plane.

7 Conclusion

In this paper, we introduce the adaptive short-time Fourier transform (STFT) with a time-varying

parameter and the adaptive STFT-based synchrosqueezing transform (called the adaptive FSST). We

also introduce the 2nd-order adaptive FSST. We analyze the support zones of the STFTs of linear

frequency modulation (LFM) signals with the Gaussian window function. We develop the well-

separated condition for non-stationary signals by using LFM signals to approximate non-stationary
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Figure 7: Reconstruction results of the signal in (66). Top-left, top-right and bottom-left: the reconstructed

z1(t), z2(t) and z3(t) by the 2nd-order adaptive FSST. Bottom-right: RMSEs under different SNRs with

various methods (Method 1: 2nd-order adaptive FSST; Method 2: regular-PT adaptive FSST; Method 3:

2nd-order regular-PT adaptive FSST; Method 4: conventional 2nd-order FSST).

signals during at local time. We propose a method to select the time-varying parameter automat-

ically. The experimental results on both synthetic and real data demonstrate that the adaptive

FSST is efficient for the instantaneous frequency estimation, sharp representation in the TF and the

separation of multicomponent non-stationary signals with fast-varying frequencies. We will study

the theoretical analysis of the adaptive FSST in our future work. In addition, our further study

will consider other types of time-varying window functions besides the Gaussian window function.

In this paper we consider signals of components without crossover IF curves. In the future, we will

consider how to recover components with crossover IF curves.

Acknowledgments: The authors wish to thank Curtis Condon, Ken White, and Al Feng of the

Beckman Institute of the University of Illinois for the bat data in Fig.6 and for permission to use it

in this paper.
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Appendix

Proof of Theorem 1. From (15), we have∫ ∞
−∞

Ṽx(t, η)dη =

∫ ∞
−∞

∫ ∞
−∞

x̂(ζ)ĝσ(t)(η − ζ)ei2πtζdζdη =

∫ ∞
−∞

x̂(ζ)ei2πtζ
∫ ∞
−∞

ĝσ(t)(η − ζ)dηdζ

=

∫ ∞
−∞

x̂(ζ)ei2πtζ
∫ ∞
−∞

ĝσ(t)(η)dηdζ =

∫ ∞
−∞

ĝσ(t)(η)ei2π·0·ηdη

∫ ∞
−∞

x̂(ζ)ei2πtζdζ

= gσ(t)(0)x(t) =
g(0)

σ(t)
x(t),

where exchanging the order of dη and dζ follows from the Fubini’s theorem. This shows (16).

To prove (17), note that for real-valued x(t), since gσ(t)(τ) is real-valued, we have Ṽx(t,−η) =

Ṽx(t, η). Hence, from (16), we have

g(0)

σ(t)
x(t) =

∫ ∞
0

Ṽx(t, η)dη +

∫ 0

−∞
Ṽx(t, η)dη =

∫ ∞
0

Ṽx(t, η)dη +

∫ ∞
0

Ṽx(t,−η)dη

=

∫ ∞
0

Ṽx(t, η)dη +

∫ ∞
0

Ṽx(t, η)dη = 2Re
(∫ ∞

0
Ṽx(t, η)dη

)
.

Thus (17) holds. �

Proof of Theorem 2. Here we will show that ωadp,2nds (t, η) = c+ rt for s(t) given by

s(t) = A(t)ei2πφ(t) = Aept+
q
2
t2ei2π(ct+ 1

2
rt2) (68)

where p, q are two real constants.

From s′(t) =
(
p+ qt+ i2π(c+ rt)

)
s(t) and

Ṽs(t, η) =

∫ ∞
−∞

s(t+ τ)
1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ,

we have

∂

∂t
Ṽs(t, η) =

∫ ∞
−∞

s′(t+ τ)
1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ +

∫ ∞
−∞

s(t+ τ)(− σ
′(t)

σ(t)2
)g(

τ

σ(t)
)e−i2πητdτ

+

∫ ∞
−∞

s(t+ τ)(−σ
′(t)τ

σ(t)3
)g′(

τ

σ(t)
)e−i2πητdτ

= (p+ qt+ i2π(c+ rt)
)
Ṽs(t, η) + (q + i2πr)

∫ ∞
−∞

τs(t+ τ)
1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

−σ
′(t)

σ(t)
Ṽs(t, η)− σ′(t)

σ(t)
Ṽ τg′(τ)
s (t, η)

=
(
p+ qt+ i2π(c+ rt)− σ′(t)

σ(t)

)
Ṽs(t, η) + (q + i2πr)σ(t)Ṽ τg(τ)

s (t, η)− σ′(t)

σ(t)
Ṽ τg′(τ)
s (t, η)

Thus, if Ṽs(t, η) 6= 0, we have

∂
∂t Ṽs(t, η)

Ṽs(t, η)
= p+ qt− σ′(t)

σ(t)
+ i2π(c+ rt) + (q + i2πr)σ(t)

Ṽ
τg(τ)
s (t, η)

Ṽs(t, η)
− σ′(t)

σ(t)

Ṽ
τg′(τ)
s (t, η)

Ṽs(t, η)
. (69)
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Taking partial derivative ∂
∂η to both sides of (69),

∂

∂η

( ∂
∂t Ṽs(t, η)

Ṽs(t, η)

)
= (q + i2πr)σ(t)

∂

∂η

( Ṽ τg(τ)
s (t, η)

Ṽs(t, η)

)
− σ′(t)

σ(t)

∂

∂η

( Ṽ τg′(τ)
s (t, η)

Ṽs(t, η)

)
.

Therefore, if in addition, ∂
∂η

(
Ṽ
τg(τ)
s (t,η)

Ṽs(t,η)

)
6= 0, then (q+ i2πr)σ(t) = P0(t, η), where P0(t, η) is defined

by (28).

Back to (69) , we have

∂
∂t Ṽs(t, η)

Ṽs(t, η)
= p+ qt− σ′(t)

σ(t)
+ i2π(c+ rt) + P0(t, η)

Ṽ
τg(τ)
s (t, η)

Ṽs(t, η)
− σ′(t)

σ(t)

Ṽ
τg′(τ)
s (t, η)

Ṽs(t, η)
.

Hence,

φ′(t) = c+ rt = Re
{ ∂

∂t Ṽs(t, η)

i2πṼs(t, η)

}
− Re

{ Ṽ τg(τ)
s (t, η)

i2πṼs(t, η)
P0(t, η)

}
+
σ′(t)

σ(t)
Re
{ Ṽ τg′(τ)

s (t, η)

i2πṼs(t, η)

}
.

Thus for a signal x(t) given by (68), at (t, η) where ∂
∂η

(
Ṽ
τg(τ)
x (t,η)

Ṽx(t,η)

)
6= 0 and Ṽx(t, η) 6= 0, ωadp,2ndx (t, η)

defined by (27) is φ′(t) = c+ rt, the IF of x(t). This shows Theorem 2. �
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[8] L. Stanković, “A method for TF signal analysis,” IEEE Trans. Signal Proc., vol. 42, no.1, pp.

225–229, Jan. 1994.

27
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