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Abstract

In this paper, we consider the problem of detecting a multichannel signal in in-

terference and noise when signal mismatch happens. We first propose two selec-

tive detectors, since their strong selectivity is preferred in some situations. How-

ever, these two detectors would not be suitable candidates if a robust detector is

needed. To overcome this shortcoming, we then devise a tunable detector, which

is parametrized by a non-negative scaling factor, referred to as the tunable pa-

rameter. By adjusting the tunable parameter, the proposed detector can smoothly

change its capability in rejecting or robustly detecting a mismatch signal. More-

over, one selective detector and the tunable detector with an appropriate tunable

parameter can provide nearly the same detection performance as existing detec-

tors in the absence of signal mismatch. We obtain analytical expressions for the

probabilities of detection (PDs) and probabilities of false alarm (PFAs) of the three

proposed detectors, which are verified by Monte Carlo simulations.
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signal mismatch, subspace signal.

1. Introduction

Detection of a multichannel signal is a basic problem in signal processing.

Many well-known detectors were proposed in the literature, such as Kelly’s gen-

eralized likelihood ratio test (KGLRT) [1], adaptive matched filter (AMF) [2],

adaptive coherent estimator (ACE) [3], and their subspace generalizations [4–7],

etc. The above detectors were designed without taking into account the interfer-

ence, which usually exists and can significantly degrade the detection performance

of a detector. In [8], it is assumed that there exists interference which lies in a

subspace, linearly independent of the signal subspace. This kind of interference

is often referred to as subspace interference. Several detectors were proposed in

[8] in subspace interference based on the GLRT criterion. Recently, many other

related detectors were proposed for the case of subspace interference, such as the

ones in [9] and the references therein.

It is worth pointing out that in the above references, the signal is assumed

to have an exactly known steering vector or completely lie in a given subspace.

However, in practice there are many factors (e.g., not perfectly calibrated array,

pointing error, and multi-path effects [10, 11]) leading to signal mismatch, for

which the actual signal steering vector may not be aligned with the nominal one

or not completely lie in the presumed signal subspace. Seldom work was done for

the signal detection in the presence of interference when signal mismatch happens.

A related work is [12], which analysed the statistical performance of the GLRT-

based detector in [8] in the presence of signal mismatch. However, to the best of

our knowledge, no detector is specifically designed for the detection problem in

interference when signal mismatch arises.
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In this paper, we propose two selective (less tolerant to signal mismatch)2

detectors for multichannel signal detection in the presence of interference when

signal mismatch occurs. Both selective detectors have improved detection per-

formance in rejecting mismatched signals. However, when a robust detector is

needed, neither of these two detectors is a good choice. To overcome this draw-

back, we then design a tunable detector, which is parametrized by a non-negative

scaling factor, called the tunable parameter. By adjusting the tunable parame-

ter, the proposed tunable detector can flexibly control the directivity property (the

capability of selectivity or robustness to mismatched signal). In particular, the

tunable detector with a small tunable parameter can be much more robust to mis-

matched signals than existing detectors, while it, with a moderately large tunable

parameter, can be more selective even than the two proposed selective detectors.

We derive analytical expressions for the probabilities of detection (PDs) and prob-

abilities of false alarm (PFAs) of the three detectors, confirmed by Monte Carlo

simulations.

The rest of the paper is organized as follows. Section 2 formulates the detec-

tion problem to be solved. Section 3 gives the proposed detectors, whose statis-

tical properties are investigated in Section 4. Section 5 illustrates the numerical

example. Finally, Section 6 concludes the paper.

2In some practical applications, a selective detector would be preferred rather than a robust

detector, because signal mismatch may be caused by sidelobe targets or jamming signal. More

in-depth analysis can be found in [13].
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2. Problem formulation and related detectors

For an N × 1 test data vector x,3 under signal-absent hypothesis, it consists

of noise n and interference j. In contrast, under signal-present hypothesis, x con-

tains noise n, interference j, and useful signal s. The interference j and signal

s are assumed to lie in known linearly independent subspaces but with unknown

coordinates. Precisely, j and s can be expressed as j = Jφ and s = Hθ, respec-

tively. The N ×p full-column-rank matrix H spans the signal subspace, while the

N×q full-column-rank matrix J spans the interference subspace. The q×1 vector

φ and p× 1 vector θ denote the interference and signal coordinates, respectively.

Note that p + q ≤ N , due to the assumption of linear independence of the inter-

ference subspace and signal subspace. The noise n is Gaussian distributed, with a

zero mean and a covariance matrix R, which is usually unknown in practice. To

estimate R, it is assumed that there are L noise-only independent and identically

distributed (IID) training data, denoted as xl, l = 1, 2, · · · , L, sharing the same

covariance matrix with the test data. Thus, the binary hypothesis test to be solved

is summarized as






H0 : x = Jφ+ n, xl = nl, l = 1, 2, · · · , L,

H1 : x = Hθ + Jφ+ n, xl = nl, l = 1, 2, · · · , L,
(1)

3Scalars are denoted by lightfaced lowercase letters, vectors by boldfaced lowercase letters,

and matrices by boldfaced uppercase letters, respectively. min{a, b} chooses the minimum value

between real numbers a and b. |h| denotes the modulus of the complex number h. Pr[·] is the

probability of an event. A
H stands for the conjugate transpose of the matrix A. < A > stands

for the subspace spanned by the columns of A. The symbol “∼” denotes “be distributed as”.

CFM,N(ξ) and CBM,N(δ2) denote a complex noncentral F-distribution with M and N degrees of

freedom (DOFs) and a complex noncentral Beta-distribution with M and N DOFs, respectively,

and ξ and δ2 are the corresponding noncentrality parameters. When ξ = δ2 = 0, the two statistical

distributions become central ones and written as CFM,N and CBM,N , respectively. Finally, IN is

the N ×N identity matrix and 0p×q is the p× q null matrix.
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where nl is the noise in the lth training data vector xl.

For the detection problem in (1), the GLRT and two-step GLRT (2S–GLRT)

are [8]

tGLRT–I =
x̃HP

P⊥

J̃
H̃
x̃

1 + x̃HP⊥
J̃
x̃− x̃HP

P⊥

J̃
H̃
x̃

(2)

and

t2S–GLRT–I = x̃HP
P⊥

J̃
H̃
x̃, (3)

respectively, where

x̃ = S−1/2x, J̃ = S−1/2J, H̃ = S−1/2H, (4)

P⊥
J̃
= IN −P

J̃
, P

J̃
= J̃(J̃H J̃)−1J̃H , (5)

P
P⊥

J̃
H̃
= P⊥

J̃
H̃(H̃HP⊥

J̃
H̃)−1H̃HP⊥

J̃
, (6)

and S =
∑L

l=1 xlx
H
l is L times the sample covariance matrix (SCM). For conve-

nience, the detectors in (2) and (3) are referred to as the GLRT with interference

rejection (GLRT–I) and 2S–GLRT with interference rejection (2S–GLRT–I), re-

spectively.

To the best of our knowledge, no detector is specifically designed for the de-

tection problem in (1) when signal mismatch happens.

3. Proposed detectors

In this section we first propose two selective detectors for mismatched sig-

nals, and then propose a tunable detector, which can smoothly adjust its detection

performance for mismatched signals.

It is observed that (2) and (3) have similar forms as the subspace-based GLRT

(SGLRT) [4, 5] and subspace-based AMF (SAMF) [14], respectively4. The SGLRT

4This would be more obvious if we introduce the quantities z̃ = P
⊥

J̃
x̃ and Ã = P

⊥

J̃
H̃ and

substituting them into (2) and (3).
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and SAMF were designed without taking the possibility of signal mismatch, and

they have poor detection performance in terms of rejecting mismatched signals.

Two well-known selective detectors for mismatched signals in the absence of in-

terference are the adaptive beamformer orthogonal rejection test (ABORT) [13]

and whitened ABORT (W–ABORT) [15]. According to the detection statistics of

the ABORT and W–ABORT, we can analogously design the following two selec-

tive detectors in the presence of interference

tABORT–I =
1 + x̃HP

P⊥

J̃
H̃
x̃

1 + x̃HP⊥
J̃
x̃− x̃HP

P⊥

J̃
H̃
x̃

(7)

and

tW–ABORT–I =
1 + x̃HP⊥

J̃
x̃

(1 + x̃HP⊥
J̃
x̃− x̃HP

P⊥

J̃
H̃
x̃)2

, (8)

which, for convenience, are referred to as the ABORT with interference rejection

(ABORT–I) and W–ABORT with interference rejection (W–ABORT–I), respec-

tively.

It is expected that the proposed ABORT–I and W–ABORT–I can provide better

performance in terms of rejecting mismatched signals. In fact, this is indeed the

case, as shown in Section 4 below. However, they suffer from performance loss if

a robust detector is needed. To cope with this problem, we introduce the following

tunable detector

tT–W–ABORT–I =
1 + x̃HP⊥

J̃
x̃

(1 + x̃HP⊥
J̃
x̃− x̃HP

P⊥

J̃
H̃
x̃)κ

, (9)

which is named as the tunable W–ABORT–I (T–W–ABORT–I). The non-negative

factor κ is taken as the tunable parameter.

Roughly speaking, the numerator of (9) collects the total energy of the quasi-

whitened test data x̃ after interference suppression5. In contrast, the denominator

5Quasi-whitening is done by multiplying the test data x withS−
1

2 , and interference suppression

is owing to multiplying the quasi-whitened test data x̃ with the orthogonal projection matrix P
⊥

J̃
.
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of (9) gathers the energy of the quasi-whitened test data x̃ projected onto the sub-

space orthogonal to the signal-plus-interference6. Hence, by adjusting the tunable

parameter κ, one can control the directivity property of the T–W–ABORT–I for

mismatched signals. Increasing κ will make the T–W–ABORT–I more and more

selective, while decreasing κ will make the T–W–ABORT–I more and more ro-

bust.

In particular, the T–W–ABORT–I with κ = 0 is most robust to signal mis-

match, and in this case the T–W–ABORT–I reduces

tW–ABORT–I,κ=0 = x̃HP⊥
J̃
x̃, (10)

where the constant is ignored. Equation (10) as be recast as

t′W–ABORT–I,κ=0 = z̃H z̃, (11)

which has the same form as the adaptive energy detector (AED) in [16]. In (11),

z̃ = P⊥
J̃
x̃. When κ = 2, the T–W–ABORT–I reduces to the W–ABORT–I. When

κ = 1, the T–W–ABORT–I reduces to

tW–ABORT–I,κ=1 =
1 + x̃HP⊥

J̃
x̃

1 + x̃HP⊥
J̃
x̃− x̃HP

P⊥

J̃
H̃
x̃
, (12)

which is equivalent to the GLRT–I, since tW–ABORT–I,κ=1 = 1/(1 − tGLRT–I) can

serve as a monotonically increasing function of tGLRT–I.

4. Statistical performance of the proposed detectors in the presence of signal

mismatch

When signal mismatch happens, the actual signal, denoted as s0, will not be-

long to the nominal signal subspace < H >. To facilitate the derivations of the

6This is more evident if we rewrite x̃H
P

⊥

J̃
x̃− x̃

H
P

P⊥

J̃
H̃
x̃ as x̃H

P
⊥

B̃
x̃, where B̃ = [J̃, H̃].
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statistical properties of the proposed detector, a loss factor is introduced

β = (1 + x̃HP⊥
J̃
x̃− x̃HP

P⊥

J̃
H̃
x̃)−1. (13)

Using (2) and (13), we can rewrite (7), (8), and (9) as

tABORT–I = tGLRT–I + β, (14)

tW–ABORT–I = (1 + tGLRT–I)β, (15)

and

tT–W–ABORT–I = βκ−1(1 + tGLRT–I), (16)

respectively.

Using (14)-(16), we can readily obtain the expressions for the conditional PDs

and PFAs of the three proposed detectors, conditioned on β. Precisely, the condi-

tional PDs of the ABORT–I, W–ABORT–I, and T–W–ABORT–I can be expressed

as

PDABORT–I|β = Pr[tGLRT–I + β > ηa;H1] = 1−P1(ηa − β), (17)

PDW–ABORT–I|β = Pr[(1 + tGLRT–I)β > ηw;H1] = 1− P1

(

ηw

β
− 1

)

, (18)

and

PDT–W–ABORT–I|β = Pr[βκ−1(1 + tGLRT–I) > ηt;H1] = 1− P1(ηtβ
1−κ − 1),

(19)

respectively, where ηa, ηw, and ηt are the detection thresholds for the ABORT–I,

W–ABORT–I, and T–W–ABORT–I, respectively, P1(η) is the cumulative distribu-

tion function (CDF) of tGLRT–I in (2) under hypothesis H1 conditioned on β, given

by

P1(η) = Pr[tGLRT–I ≤ η|β;H1]. (20)
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Cautions must be taken when averaging the conditional PDs over β. In (17)-

(19), to ensure that the CDF is meaningful, the following constraints are needed:

β ≤ ηa, β ≤ ηw, and

β1−κ > η−1
t , (21)

respectively. Consequently, together with the fact 0 < β < 1, the expressions for

the PDs of the ABORT–I and W–ABORT–I can be calculated as

PDABORT–I =

∫ min(1,ηa)

0

[1− P1(ηa − β)]f1(β)dβ, (22)

and

PDW–ABORT–I =

∫ min(1,ηw)

0

[

1− P1

(

ηw

β
− 1

)]

f1(β)dβ, (23)

respectively. In (22) and (23), f1(β) is the probability density function (PDF) of

β defined in (13) under hypothesis H1. The calculations of the PD of the T–W–

ABORT–I are divided into the following four cases:

i) 0 ≤ κ ≤ 1 and ηt ≤ 1

PDT–W–ABORT–I = 1, (24)

ii) 0 ≤ κ ≤ 1 and ηt > 1

PDT–W–ABORT–I =

∫ 1

η
−1/(1−κ)
t

[1− P1(ηtβ
1−κ − 1)]f1(β)dβ (25)

iii) κ > 1 and ηt ≤ 1

PDT–W–ABORT–I =

∫ η
−1/(1−κ)
t

0

[1−P1(ηtβ
1−κ − 1)]f1(β)dβ, (26)

iv) κ > 1 and ηt > 1

PDT–W–ABORT–I =

∫ 1

0

[1− P1(ηtβ
1−κ − 1)]f1(β)dβ. (27)
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In the presence of signal mismatch, tGLRT–I in (2), with a fixed β under hypoth-

esis H1, is distributed as [12]

tGLRT–I|[β,H1] ∼ CFp,L−N+q+1(ρeffβ), (28)

where

ρeff = s̄H0 P
⊥
J̄
H̄(H̄HP⊥

J̄
H̄)−1H̄HP⊥

J̄
s̄0 (29)

is referred to as the effective signal-to-noise ratio (eSNR). In (29), s̄0 = R−1/2s0,

J̄ = R−1/2J, H̄ = R−1/2H, P⊥
J̄

= IN − PJ̄, and PJ̄ = J̄(J̄H J̄)−1J̄H . The

statistical distribution of tGLRT–I in (2) under hypothesis H0 is [12]

tGLRT–I ∼ CFp,L−N+q+1, (30)

Moreover, in the presence of signal mismatch, β in (13) under hypotheses H1 and

H0 is distributed as [12]

β|H1 ∼ CBL−N+p+q+1,N−p−q(δ
2) (31)

and

β|H0 ∼ CBL−N+p+q+1,N−p−q, (32)

respectively, where

δ2 = s̄H0 P
⊥
J̄
P⊥

P⊥

J̄
H̄
P⊥

J̄
s̄0. (33)

with P⊥
P⊥

J̄
H̄
= IN −PP⊥

J̄
H̄ and PP⊥

J̄
H̄ = P⊥

J̄
H̄(H̄HP⊥

J̄
H̄)−1H̄HP⊥

J̄
.

According to (A2-29) in [17], the CDF in (20) can be calculated as

P1(η) =

L−N+q
∑

k=0

C
k+p
L−N+p+q

ηk+p

(1 + η)L−N+p+q
IGk+1

(

ρeffβ

1 + η

)

, (34)

where Cm
n = n!

m!(n−m)!
is the binominal coefficient and IGk+1(a) = e−a

∑k
m=0

am

m!

is the incomplete Gamma function. Moreover, according to (A2-23) in [17], the
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PDF of β in (13) under hypothesis H1 is

f1(β) = f0(β)e
−δ2β

L−N+p+q+1
∑

k=0

Ck
L−N+p+q+1

(N − p− q − 1)!

(N − p− q + k − 1)!
δ2k(1− β)k,

(35)

where

f0(β) =
βL−N+p+q(1− β)N−p−q−1

B(L−N + p+ q + 1, N − p− q)
. (36)

is the PDF of β under hypothesis H0. In (36), B(m,n) = (m−1)!(n−1)!
(m+n−1)!

is the Beta

function. Taking (34) and (35) into (22)–(27), we can obtain the final expression

for the PDs of the ABORT–I, W–ABORT–I, and T–W–ABORT–I.

Setting ρeff = 0 in (34) results in the CDF of tGLRT–I under hypothesis H0, i.e.,

P0(η) = C
p
L−N+p+q

ηp

(1 + η)L−N+p+q
. (37)

The PFAs of the ABORT–I, W–ABORT–I, and T–W–ABORT–I can be obtained

by replacing P1(·) and f1(β) by P0(·) and f0(β), respectively, in (22)–(27).

Some remarks on the influence of signal mismatch on the detection perfor-

mance of the detectors are given below. The eSNR in (29) can be recast as [12]

ρeff = ρSNR sin
2 ψ cos2 ϑ, (38)

where

ρSNR = s̄H0 s̄0 (39)

is the conventional SNR for multichannel signal detection in the absence of inter-

ference,

sin2 ψ =
s̄H0 P

⊥
J̄
s̄0

s̄H0 s̄0
, (40)

and

cos2 ϑ =
s̄H0 PP⊥

J̄
H̄s̄0

s̄H0 P
⊥
J̄
s̄0

. (41)
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The quantity cos2 ϑ in (41) serves as the metric of signal mismatch in the presence

of interference. If signal mismatch does not occur, there exists a p × 1 vector θ0

such that s0 = Hθ0. Using this result, we can verify that cos2 ϑ = 1.

For comparison purposes, a well-known metric of signal mismatch in the ab-

sence of interference is listed below [18]

cos2 φ =
s̄H0 PH̄s̄0

s̄H0 s̄0
. (42)

Some preliminary analysis is summarized in the following proposition.

Proposition 1. i). cos2 φ = 1 results in cos2 ϑ = 1, but not vice versa. ii)

cos2 φ = 0 does not necessarily lead to cos2 ϑ = 0, and vice versa.

Proof. See the appendix A. �

Before proceeding, we would like to point out that the three proposed detectors

can successfully suppress the interference, since the power of the interference does

not impact the PDs and PFAs. The interference affects the detection performance

through sin2 ψ and the DOFs of the statistical distributions. More analysis of the

influence of interference on the detection performance can be found in [12].

5. Numerical examples

In this section, we evaluate the detection performance of the proposed ABORT–

I, W–ABORT–I, and T–W–ABORT–I for the case of no signal mismatch and the

case of signal mismatch. Both theoretical and Monte Carlo simulation results are

provided. The noise is modelled as exponentially correlated random vector with

one-lag correlation coefficient. Hence, the (i, j)th element of R is R(i, j) = ǫ|i−j|,

i, j = 1, 2, · · · , N , and ǫ is chosen to be 0.9. The interference-to-noise ratio (INR)

is defined as

INR = φHJHR−1Jφ. (43)

To reduce the running time of Monte Carlo simulations, the PFA is chosen as

PFA = 10−3. 105 Monte Carlo simulations are used to generate a detection

12



threshold, while 104 Monte Carlo simulations are carried out to generate a PD.

Moreover, the following parameters are adopted throughout this section: N = 12,

L = 2N , p = 1, q = 2, and INR = 10 dB.

Fig. 1 shows the PDs of the proposed detectors under different SNRs, com-

pared with the existing GLRT–I and 2S–GLRT–I. In the legend, “TH” indicates

theoretical results, while “MC” stands for Monte Carlo simulation results. It is

seen that the theoretical results match the Monte Carlo simulation results pretty

well. For the chosen parameters, the ABORT–I, T–W–ABORT–I with κ = 0.8,

GLRT–I, and 2S–GLRT–I roughly have the same PDs. The W–ABORT–I and

T–W–ABORT–I with κ = 2.5 suffer from certain performance loss for matched

signals, compared with the other detectors. However, the W–ABORT–I and T–

W–ABORT–I with κ = 2.5 exhibit satisfied detection performance in terms of

rejecting mismatch signals, as shown in Fig. 3 below.

Fig. 2 plots the PDs of the detectors under different sin2 ψ. The tunable pa-

rameter for the T–W–ABORT-I is κ = 0.8. The PD curve of the W–ABORT–I

is not given, since it suffers from certain detection performance loss, compared

with the other detectors. The results show that all the PDs of the detectors in-

crease when sin2 ψ increases. This is because the increase of sin2 ψ results in the

increase of the eSNR, defined in (29), which leads to the improvement in the PD.

Fig. 3 displays the PDs of the T–W–ABORT–I with different tunable parame-

ters κ. It is shown that when there is no signal mismatch, i.e., cos2 ϑ = 1.0, the PD

of the T–W–ABORT–I first increases and then decreases as the tunable parameter

κ increases. In contrast, when signal mismatch occurs, i.e., cos2 ϑ = 0.3, the PD

of the T–W–ABORT–I decreases directly as the tunable parameter κ increases.

This is due to the fact that the selectivity of the T–W–ABORT–I increases as the

increase of the tunable parameter. Specifically, in the range of 0.6 ≤ κ ≤ 1.0, the

T–W–ABORT–I can provide roughly the same PD as the GLRT–I (a special case

13



of the T–W–ABORT–I with ≤ κ = 1.0) in the case of no signal mismatch.

Fig. 4 depicts the contours of the PDs of the detectors under different de-

grees of signal mismatch and different SNRs. This type of figure is usually called

mesa plot. The solid lines denote theoretical results, which are consistent with the

Monte Carlo results indicated by the dotted lines. It is shown that the ABORT–I

and W–ABORT-I have better detection performance than the GLRT–I and 2S–

GLRT–I in terms of mismatched signal rejection. Taking the ABORT–I for ex-

ample. When cos2 ϑ < 0.5, it cannot provide a PD greater than 0.5, no matter

how high the SNR is. In other words, the ABORT–I and W–ABORT-I do not take

a largely mismatched signal as a desired target. Moreover, the T–W–ABORT–I

is very flexible in controlling the detection performance for mismatched signals.

With a large tunable parameter, i.e., κ = 2.5, the T–W–ABORT–I possesses the

best selectivity property. On the other hand, the T–W–ABORT–I, with a small tun-

able parameter, is very robust to signal mismatch. For the chosen parameters, the

T–W–ABORT–I with κ = 0.8 roughly has the same robustness as the 2S–GLRT–

I. In fact, the T–W–ABORT–I with a smaller tunable parameter can become much

more robust than the 2S–GLRT–I.

Gathering the results in Figs. 1, 2, and 4, we can conclude that: 1) The

ABORT–I has slightly better selectivity property than the GLRT–I. However, the

former suffers from slightly performance loss compared with the later in the case

of no signal mismatch. 2) The T–W–ABORT–I, with a proper tunable parameter

less than unity, can provide better robustness than the GLRT–I and 2S–GLRT–

I. The T–W–ABORT–I, with the same tunable parameter, suffers from a slightly

performance loss for matched signals, compared with the GLRT–I. 3) The W–

ABORT–I and T–W–ABORT–I with a proper tunable parameter greater than two

are much more selective than the other detectors. However, these two detectors

suffer from non-negligible loss in the case of no signal mismatch.
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6. Conclusions

In this paper, we considered the problem of detecting a multichannel signal in

the presence of interference when signal mismatch happens. Two selective detec-

tors, namely, the ABORT–I and W–ABORT–I, and a tunable detector, namely, T–

W–ABORT–I were proposed, and the corresponding analytical expressions for the

PDs and PFAs were given. Numerical examples show that the ABORT–I and W–

ABORT–I exhibit better detection performance in terms of rejecting mismatched

signals, and the T–W–ABORT–I has the flexibility in governing the detection per-

formance for mismatched signals. The T–W–ABORT–I, with a large tunable pa-

rameter, is very selective, while it becomes robust with a moderately small tunable

parameter. In addition, in the case of no signal mismatch, the ABORT–I and T–

W–ABORT–I with a suitable tunable parameter, say, 0.6 ≤ κ ≤ 1.0, can provide

nearly the same detection performance as the GLRT–I.

Appendix A. Proof of Proposition 1

i) If cos2 φ = 1, then there exists a p×1 vector θ0 such that s̄0 = H̄θ0. Taking

this result into (41) yields that cos2 ϑ = 1.

On the other hand, if cos2 ϑ = 1, then we have

PP⊥

J̄
H̄s̄0 = P⊥

J̄
s̄0, (A.1)

which can be recast as

PP⊥

J̄
H̄P

⊥
J̄
s̄0 = P⊥

J̄
s̄0. (A.2)

It follows that P⊥
J̄
s̄0 lies in the subspace < P⊥

J̄
H̄ >. Hence, there exists a p × 1

vector θ1 such that

P⊥
J̄
H̄θ1 = P⊥

J̄
s̄0. (A.3)
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Using the matrix J̄, we can obtain an N × (N − q) semi-unitary matrix J̄
⊥

such

that

P⊥
J̄
= J̄

⊥
J̄H

⊥
, (A.4)

J̄H
⊥
J̄

⊥
= IN−q, and

J̄H
⊥
J̄ = 0(N−q)×q. (A.5)

Then (A.3) can be rewritten as

J̄
⊥
J̄H

⊥
H̄θ1 = J̄

⊥
J̄H

⊥
s̄0. (A.6)

According to (A.5), (A.6) can be rewritten as

J̄
⊥
J̄H

⊥
(H̄θ1 + J̄φ1) = J̄

⊥
J̄H

⊥
s̄0, (A.7)

where φ1 is an arbitrary q × 1 vector. It follows from (A.7) that if the whitened

signal component s̄0 can be expressed as

s0 = H̄θ1 + J̄φ1, (A.8)

then cos2 ϑ = 1. It is known from (A.8) that s̄0 may not completely lie in < H̄ >

when cos2 ϑ = 1. In this case, we have cos2 φ < 1.

ii) If cos2 φ = 0, then H̄H s̄0 = 0p×1, or equivalently,

H̄H
//
s̄0 = 0p×1, (A.9)

where H̄
//
= H̄(H̄HH̄)−

1
2 . Using H̄

//
we can construct an N×N unitary matrix

U = [H̄
//
, H̄

⊥
], which can be taken as a basic matrix of the N × N complex

space CN×N . Hence, there exists an N × 1 vector θ such that

s̄0 = Uθ. (A.10)

We can partition θ as θ = [θT
//
, θT

⊥
]T , where the dimensions of θ

//
and θ

⊥
are

p× 1 and (N − p)× 1, respectively. According to the definitions of U and θ, we

have

s̄0 = H̄
//
θ

//
+ H̄

⊥
θ

⊥
. (A.11)
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Pre-multiplying (A.11) with H̄H
//

yields that

θ
//

= 0p×1. (A.12)

Substituting (A.12) into (A.11) leads to

s̄0 = H̄
⊥
θ

⊥
. (A.13)

Substituting (A.4) and (A.13) into (41) leads to

cos2 ϑ =
θH

⊥
H̄H

⊥
J̄

⊥
J̄H

⊥
H̄

//
(H̄H

//
J̄

⊥
J̄H

⊥
H̄

//
)−1H̄H

//
J̄

⊥
J̄H

⊥
H̄

⊥
θ

⊥

θH
⊥
H̄H

⊥
J̄

⊥
J̄H

⊥
H̄

⊥
θ

⊥

, (A.14)

which is generally not equal to zero. For example, a specific form of J̄
⊥

, for

a given nominal signal matrix H, is J̄
⊥

= [H̄
//
, H̄

⊥,1], where H̄
⊥,1 is the first

N − p− q columns of H̄
⊥

.

If cos2 ϑ = 0, then

H̄HP⊥
J̄
s̄0 = 0p×1. (A.15)

In a manner similar to the derivations of (A.10)-(A.13), s̄0 can be expressed as

s̄0 = V̄θ2, (A.16)

where V̄ is anN×(N−p) matrix such that the augmented matrix [P⊥
J̄
H̄(H̄HP⊥

J̄
H̄)−

1
2 , V̄]

is an N ×N unitary matrix, and θ2 is an (N − p)× 1 vector. Substituting (A.16)

into (42) results in

cos2 φ =
θH2 V̄

HPH̄V̄θ2

θH2 V̄HV̄θ2
. (A.17)

Another form of (A.17) is given below. It is known from (A.15) that

H̄H s̄0 = H̄HPJ̄s̄0. (A.18)

Substituting (A.18) into (42), after some algebra, leads to

cos2 φ =
s̄H0 PJ̄PH̄PJ̄s̄0

s̄H0 s̄0
. (A.19)

From (A.17) and (A.19), we know that cos2 φ is not generally equal to zero.
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Appendix B. The method to generate J, j, sin2 ψ, and cos2 ϑ with specific

values for Monte Carlo simulations

There are three main steps to generate J, sin2 ψ, and cos2 ϑ with specific val-

ues: 1) Generate an arbitraryN×q matrix J. 2) Generate the actual signal steering

vector s0 satisfying a specific value of sin2 ψ. Precisely, s0 is generated by select-

ing a properly scalar 0 ≤ r ≤ 1 such that s0 = R
1
2 s̄0 and s̄0 = rj̄0 + (1 − r)̄j1

satisfying a specific sin2 ψ, with j̄0 being an arbitrary column of J̄ and j̄1 being

the last column of A. A is the matrix containing the left singular-vectors of J̄.

3) Generate the nominal signal matrix H satisfying specific value of cos2 ϑ. Pre-

cisely, H can be generated by choosing an appropriate scalar 0 ≤ α ≤ 1 such

that H = R
1
2 H̄ and H̄ = αH̄0 + (1 − α)H̄1 satisfies a specific cos2 ϑ, with

H̄0 = [s̄0, H̄r] and H̄1 = W1. H̄r is an arbitrary N × (p− 1) matrix, and W1 is

the last p columns of W, with W containing the left singular-vectors of P⊥
J̄
s̄0.

Moreover, for a given INR defined in (43), we can generate the interfer-

ence j as j = cJφn, where φn is an arbitrary q × 1 column vector and c =
√

φH
n J

HR−1Jφn.
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Fig.1. PD versus SNR in the absence of signal mismatch. cos2 ϑ = 1 and

sin2ψ = 0.8.
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Fig. 2. PD versus sin2ψ in the absence of signal mismatch. cos2 ϑ = 1 and

SNR = 17 dB.
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Fig. 4. Contours of PDs vs SNR and cos2ϑ. sin2ψ = 0.8. The solid lines with

symbols denote theoretical results, while the dotted lines stand for the Monte

Carlo results.
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