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Abstract

In this letter, we propose a two-stage approach to estimate the carrier frequency offset (CFO) and

channel with one-bit analog-to-digital converters (ADCs). Firstly, a simple metric which is only a function

of the CFO is proposed, and the CFO is estimated via solving the one-dimensional optimization problem.

Secondly, the generalized approximate message passing (GAMP) algorithm combined with expectation

maximization (EM) method is utilized to estimate the channel. In order to provide a benchmark of our

proposed algorithm in terms of the CFO estimation, the corresponding Cramér-Rao bound (CRB) is

derived. Furthermore, numerical results demonstrate the effectiveness of the proposed approach when

applied to the general Gaussian channel and mmWave channel.

keywords: CFO, channel estimation, millimeter wave system, one-bit quantization

I. INTRODUCTION

To provide a high-speed data rate in celluar systems, the mmWave multiple input multiple output

(MIMO) system has been proposed as the key technology of the fifth generation (5G) cellular system

[1, 2]. Because of the larger bandwidths that accompany mmWave, the cost and power consumption

are huge due to high precision (e.g., 10-12 bits) analog-to-digital converters (ADCs) [3]. As a result, a

low precision (e.g., 1-4 bits) ADC is employed to relieve this ADC bottleneck [4, 5]. However, as low

precision quantization is severely nonlinear, traditional algorithms designed for high precision systems

can not be applied directly because of significant performance degradation. As a consequence, new signal

processing algorithms dealing with channel estimation and transmit precoding have been proposed, which

work well in systems with low precision ADCs [6–9]. For the channel estimation in mmWave systems, it

can be regarded as one-bit compressed sensing (CS) problems [10–14], as the mmWave MIMO channel is

approximately sparse in angle domain [15]. Therefore, many CS-based algorithms have been proposed to

estimate the mmWave MIMO channel. In [16, 17], a modified expectation maximization (EM) algorithm
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and approximate message passing (AMP) algorithms are utilized to solve the channel estimation problem

in mmWave MIMO systems.

In practice, the carrier frequencies between the local oscillators at the TX and the RX can be mis-

matched, which results in carrier frequency offset (CFO) impairing the phase of the channel measurements

in systems. One approach to dealing with the above problem is to correct the CFO before channel

estimation, which is impractical because the mmWave systems always work at low SNR prior to channel

estimation [19]. As a result, several works have studied the joint CFO and channel estimation [18–21].

In [18], a generalized AMP (GAMP) algorithm to jointly estimate the CFO and channel in mmWave

narrowband systems with one-bit ADCs is developed. It utilizes a lifting technique which increases the

problem’s dimension. In [19], an algorithm called PBiGAMP is proposed to jointly estimate CFO and

wideband channel, which has a much lower computational complexity.

In this letter, we propose a two-stage approach to estimate the CFO and channel with one-bit ADCs.

Firstly, we utilize Bussgang decomposition theorem which transforms the non-linear model into a linear

model [22], and the CFO is estimated via solving the one-dimensional optimization problem. Secondly,

by fixing the CFO with the estimated CFO, we apply the GAMP-EM algorithm [23, 24] to estimate the

channel. Besides, the CRB is also derived for evaluating the performance of our algorithm in terms of

CFO estimation. One appealing advantage of the proposed method is that both the CFO and channel

can be estimated accurately without increasing the problem’s dimension. Numerical results show the

effectiveness of the proposed two-stage approach, i.e., the estimation performance degradation in terms

of the CFO and channel of the proposed method is marginal, compared to the benchmarks such as the

CRB and the CFO-known (oracle) algorithm.

II. ALGORITHM

In this section, the problem model and algorithm are introduced. Consider a Nt ×Nr MIMO system

with one-bit ADCs and let ωe denote the CFO. For a training block T ∈ CNt×Np , the observation

Y ∈ CNr×Np obtained at ADCs is

Y = csgn(HTdiag(aNp(ωe)) + W), (1)

where H ∈ CNr×Nt is the channel matrix, csgn(·) is an element-wise quantization function given by

csgn(x) = sgn(Re{x})+jsgn(Im{x}) with sgn(·) being the signum function, aN (θ) is the Vandermonde

vector given by aN (θ) = [1, ejθ, ej2θ, . . . , ej(N−1)θ]T and W is the additive white Gaussian noise, i.e.,

Wij ∼ CN (0, 2σ2
w) with σ2

w being known. We aim to estimate the CFO ωe and channel H based on the

observation Y and the training block T.
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At the beginning, we reformulate model (1) to a real-valued form. Utilizing the property vec(ABC) =

(CT ⊗A)vec(B), it can be transformed to a vector form firstly as

yv = csgn(Fhv + wv), (2)

where yv = vec(Y), F = BT ⊗ INr , B = Tdiag(aNp(ωe)), hv = vec(H) and wv = vec(W). By

defining

y =

 yR
v

yI
v

 , h =

 hR
v

hI
v

 , (3a)

w =

 wR
v

wI
v

 , D =

 FR −FI

FI FR

 , (3b)

a real-valued equivalent model

y = sgn(Dh + w), (4)

is obtained, where w ∼ N (0,Cw) and Cw = σ2
wI.

A. CFO Estimation

Before performing the channel estimation, we estimate the CFO first. We assume that the prior

distribution of h follows h ∼ N (0,Ch) and we use the method proposed in [22] to linearize the

model as

y = Gh + e, (5)

where G is the linearization matrix and e is a residual error vector consisting of noise and linearization

artifacts. According to [22], G is calculated as

G = (
2

π
)1/2diag

(
(diag(Cz))

−1/2
)

D, (6)

where Cz = DChD
T +Cw. To estimate the CFO, we maximize the expected energy (taken with respect

to h) of the output of the matched filtering of the observation y, which can be expressed as

max
ωe

Eh[‖yTGh‖22]. (7)

Assuming Ch = σ2
hI and omitting the constant coefficient, (7) can be simplified as

max
ωe
‖GTy‖22. (8)
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Furthermore, for an independent and identically distributed (iid) QPSK training block T, the optimization

problem (8) can be simplified further. First, we rewrite D as

D =

 BT
R −BT

I

BT
I BT

R

⊗ INr . (9)

From equation (6), we extract the diagonal elements of Cz and using the property (A⊗B)(C⊗D) =

(AC)⊗ (BD), we obtain

DDT =

 BT
RBR + BT

I BI BT
RBI −BT

I BR

BT
I BR −BT

RBI BT
RBR + BT

I BI

⊗ INr .

Recall that

B = Tdiag(aNp(ωe)) = [t1, e
jωet2, . . . , e

j(Np−1)ωetNp ],

where ti denotes the ith column of T. The diagonal elements of Cz are

diag(Cz) = σ2
h

 ct

ct

⊗ 1Nr + diag(Cw), (10)

where

ct = [‖t1‖22, ‖e
jωet2‖

2
2, . . . , ‖e

j(Np−1)ωetNp‖
2

2
]T,

= [‖t1‖22, ‖t2‖22, . . . , ‖tNp‖
2
2
]T. (11)

For an iid QPSK training block T which takes values in {±1 ± j}, ‖ti‖22 is equal to 2Nt. Therefore,

diag(Cz) is simplified as diag(Cz) = (2σ2
hNt + σ2

w)1, and G is simplified as G = ( 2
π )1/2(2σ2

hNt +

σ2
w)−1/2D. As a result, the optimization problem (8) is further simplified as

max
ωe
‖DTy‖22. (12)

To solve the problem (8) or (12), we adopt two steps [25, 26]: Detection and Refinement.

Detection: The Detection step includes coarse detection and refined detection. Firstly, we solve the

optimization problem (8) or (12) and obtain a coarse estimate ω̂c of ωe by restricting it to a discrete

set denoted by {0, 2π
N1
, . . . , 2π(N1−1)

N1
}. Secondly, we implement a refined detection over the frequencies

around ω̂c. We solve the same problem again, but restrict ωe to the discrete set {ω̂c − (N2−1)2π
N1N2

, ω̂c −
(N2−2)2π
N1N2

, . . . , ω̂c + (N2−1)2π
N1N2

} this time, and finally update ω̂c as ω̂r. We found that N1 = 300 and

N2 = 10 work well for a large number of problems. Due to page limitations, we refer interested readers

to the supplementary materials for more details about the parameters N1 and N2.
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Refinement: Numerical results show that problem (8) or (12) is locally concave around the global

optimum. As a result, the estimate ω̂r given by the Detection step is used as an initial point and the

gradient descent algortihm is performed to refine the estimate ω̂r as ω̂e.

Furthermore, in order to evaluate the performance of the proposed approach for CFO estimation, the

CRB of CFO CRB(ωe) (20) is derived in Section III.

B. Channel Estimation

In this section, we transform the channel estimation problem to a general model

y = sgn(Ax + w + τ ), (13)

and then apply the GAMP-EM algorithm directly [24, 27], where the EM method recovers the nuisance

parameters of the prior distribution of x. In our channel estimation problem, we set τ = 0 and consider

two kinds of channel: The general Gaussian channel and the mmWave channel. More details are provided

below.

1) General Gaussian Channel: For the general Gaussian channel, the channel matrix H follows a

zero-mean Gaussian distribution, i.e., Hij ∼ CN (0, 2σ2
h) with σ2

h being unknown. We apply the GAMP-

EM algorithm directly on h. Therefore, the corresponding A and x in model (13) are D and h in the

model (4), respectively. For the denoising step in the GAMP algorithm, we denoise the noisy signal with

the prior of h being Gaussian.

2) mmWave Channel: A narrowband mmWave channel can be modeled by a ray-based model [18].

For a propagation environment having Nc clusters and Kn rays in the nth cluster, the channel matrix H

is described as

H =
1√
Nc

Nc∑
n=1

1√
Kn

Kn∑
m=1

γn,maNr(ωr,m,n)aH
Nt(ωt,m,n),

ωr,n,m =
2πd

λ
sin(θr,n,m), ωt,n,m =

2πd

λ
sin(θt,n,m).

Here, γn,m, θr,m,n and θt,m,n are the complex gain, angle-of-arrival and angle-of-departure of the mth

ray in the nth cluster, respectively. λ and d denote the carrier wavelength and antenna spacing.

For the mmWave MIMO channel, its beamspace representation of channel matrix H is

H = UNrCUH
Nt , (15)

where UNr ∈ CNr×Nr and UNt ∈ CNt×Nt are unitary Discrete Fourier Transform matrices. Since the

mmWave MIMO channel is approximately sparse in angle domain, C ∈ CNr×Nt in (15) is a sparse matrix.

We assume that Cij follows the Bernoulli-Gaussian distribution and apply the GAMP-EM algorithm on
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c instead of h, where c = [(cR
v )T, (cI

v)
T]T and cv = vec(C). In this case, we can obtain a model

yv = csgn(Fccv + wv) similar to model (2), where Fc = BT
c ⊗UNr and Bc = UH

Nt
Tdiag(aNp(ωe)).

Then following the similar steps through transforming model (2) to (4), a real-valued equivalent model

y = sgn(Dcc + w) is obtained. Therefore, for the GAMP-EM algorithm, the corresponding A and x in

model (13) are Dc and c, respectively.

III. CRAMÉR-RAO BOUND

In this part, the details about the calculation of the CRB of CFO are presented. First we start from the

problem model (4) and to be more concretely, the two parts FR and FI of matrix D are

FR = BT
R ⊗ INr =

(
diag(c̄)TT

R − diag(s̄)TT
I

)
⊗ INr ,

FI = BT
I ⊗ INr =

(
diag(s̄)TT

R + diag(c̄)TT
I

)
⊗ INr ,

where the ith element of s̄ and c̄ are s̄i = sin(i− 1)ωe and c̄i = cos(i− 1)ωe, for i = 1, 2, . . . , Np. Let

dT
i denote the ith row of D, the likelihood function Pr(y; h, ωe) is Pr(y; h, ωe) =

∏
i

Φ(yi
dT
i h
σw

) and the

corresponding log-likelihood function l(y; h, ωe) is given by

l(y; h, ωe) =
∑
i

logΦ(yi
dT
i h

σw
). (16)

By defining φi = 1
2πσ2

w
( 1

Φ(
dT
i

h

σw
)

+ 1

Φ(−dT
i

h

σw
)
)e
− (dT

i h)2

σ2w , we calculate

Ey[∇2
hl(y; h, ωe)] = −

∑
i

φidid
T
i , (17a)

Ey[∇2
ωe l(y; h, ωe)] = −

∑
i

φi(ḋ
T
i h)2, (17b)

Ey[∇2
ωehl(y; h, ωe)] = −

∑
i

φiḋ
T
i hdi, (17c)

where ḋT
i is the ith row of Ḋ and Ḋ is

Ḋ =
∂D

∂ωe
=

 ∂FR

∂ωe
−∂FI

∂ωe

∂FI

∂ωe
∂FR

∂ωe

 . (18)

Here,

∂FR

∂ωe
= diag(a)

(
−diag(s̄)TT

R − diag(c̄)TT
I

)
⊗ INr ,

∂FI

∂ωe
= diag(a)

(
diag(c̄)TT

R − diag(s̄)TT
I

)
⊗ INr ,

November 22, 2018 DRAFT
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where the ith element of a is ai = i− 1 for i = 1, 2, . . . , Np. Let z = [ωe,h
T]T, the Fisher Information

Matrix (FIM) is

J(z) = −Ey[∇2
zl(y; z)] = MTΛM, (19)

where

M = [Ḋh,D] =

 ∂FR

∂ωe
hR
v − ∂FI

∂ωe
hI
v FR −FI

∂FI

∂ωe
hR
v + ∂FR

∂ωe
hI
v FI FR

 ,
and Λ is a diagonal matrix with elements Λii = φi. The CRB is equal to J−1. For the CFO, utilizing a

well-known matrix inversion relation [28], its CRB is

CRB(ωe) = (Jωeωe − JωehJ−1
hhJhωe)

−1, (20)

where

Jωeωe = hTḊTΛḊh, Jωeh = hTḊTΛD,

Jhωe = DTΛḊh, Jhh = DTΛD.

IV. NUMERICAL SIMULATION

In this section, the performance of the proposed algorithm is evaluated by applying to both the general

Gaussian channel and mmWave channel, which is measured by the mean square error (MSE) of CFO

estimate ω̂e and the normalized MSE (NMSE) of channel estimate Ĥ(Ĉ). Meanwhile, the CRB of

CFO (20) is also plotted. In our simulations, the MSE of CFO estimate is denoted by MSE(ωe) =

E
[
(ωe − ω̂e)2

]
and the NMSE of channel estimate is denoted by NMSE(H) = E[‖H− Ĥ‖2F/‖H‖

2
F ]

for the Gaussian channel and NMSE(C) = E[‖C− Ĉ‖2F/‖C‖
2
F ] for the mmWave channel. An iid QPSK

training block T is used in our experiments and the system parameters are set as follows: Nr = 16, Nt =

16, σ2
h = 0.5. We choose ωe = 2π×4.15%, where the percentage we choose is to make ωe maximally off

the grids in Detection step. We set σ2
w such that SNR = 10log10

‖Dh‖2
2

2NrNpσ2
w

, where SNR = {0, 5, 10}dB.

All the results are averaged over 500 Monte Carlo (MC) trials.

A. General Gaussian Channel

In this experiment, the MSE of CFO and the NMSE of channel are compared with the corresponding

CRB and CFO-known algorithm, respectively. The results are presented in Fig. 1 and Fig. 2. In Fig. 1,

the MSE of CFO decreases as the length of training block Np increases or the SNR increases. And the

performance gap between the MSE and CRB is less than about 3dB. When the refinement step in the

CFO estimation is not applied, the algorithm’s performance is much worse. Fig. 2 presents the NMSE
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Fig. 1: The MSE and CRB of the CFO versus the length of training block Np with different SNRs for

the general Gaussian channel.

64 128 192 256 320 384 448 512
Np
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CFO-known, SNR=0dB
CFO-unknown, SNR=0dB
withoutCFO, SNR=0dB
CFO-known, SNR=5dB
CFO-unknown, SNR=5dB
withoutCFO, SNR=5dB
CFO-known, SNR=10dB
CFO-unknown, SNR=10dB
withoutCFO, SNR=10dB

Fig. 2: The NMSE of the channel versus the length of training block Np with different SNRs for the

general Gaussian channel.

of channel with unknown CFO, known CFO and without the CFO compensation (assuming CFO is zero

in the channel estimation) respectively. It can be seen that the NMSE of channel decreases when Np

or SNR increases. And the NMSE of channel with unknown CFO is close to that with known CFO.

Furthermore, when there is no CFO compensation, we can see that the channel can not be recovered

successfully.

B. mmWave Channel

For the mmWave channel, we set the parameters of channel as follows: Nc = 2, Kn = 15 and d = λ/2.

We generate θr,m,n and θt.m.n for the Laplacian distribution with an angle spread of 10 degrees [18].

Numerical results are presented in Fig. 3 and Fig. 4.

From Fig. 3 and Fig. 4, we can see that the performance of our proposed approach for mmWave

channel is similar to that for general Gaussian channel, which demonstrates that the proposed approach
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Np
64 128 192 256 320 384 448 512

M
S

E
(d

B
)

-90

-85

-80

-75

-70

-65

-60

-55

-50

CRB, SNR=0dB
MSE, SNR=0dB
MSE-NoRefine, SNR = 0dB
CRB, SNR=5dB
MSE, SNR=5dB
MSE-NoRefine, SNR = 5dB
CRB, SNR=10dB
MSE, SNR=10dB
MSE-NoRefine, SNR = 10dB

Fig. 3: The MSE and CRB of the CFO versus the length of training block Np with different SNRs for

the mmWave channel.
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CFO-known, SNR=10dB
CFO-unknown, SNR=10dB
withoutCFO, SNR=10dB

Fig. 4: The NMSE of the channel versus the length of training block Np with different SNRs for the

mmWave channel.

is effective for the mmWave channel.

For the mmWave channel, we also make a performance comparison with the approach in [18] but only

for the Np = 64 case. Because for the approach in [18], it’s not practical to run it for a larger Np. When

Np = 64 and SNR = 10dB, the MSE of the CFO of the approach in [18] is about −31dB while our

algorithm achieves −55dB. The poor performance of the approach in [18] can be attributed to the use

of a discrete grid for CFO in the lifted vector. Increasing the resolution of the DFT grid in [18] for a

better CFO estimate, however, significantly increases the complexity of the algorithm in [18].

Besides, the running time of the proposed approach in both the general Gaussian channel and mmWave

channel is shown in TABLE I. All results are obtained by an ordinary PC with an Intel Core i7 3.40

GHz CPU and 64.0 GB RAM. The value in parenthesis represents the running time of the algorithm for

mmWave channel. Simulations with the CFO changing is referred to the supplementary materials.
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TABLE I: The averaged running time (seconds) of the proposed approach.

Estimation\ Np 64 256 512

CFO est. 1.1(1.1) 4.5(4.5) 9.8(9.8)

Channel est. 0.1(0.3) 0.3(1.2) 0.6(2.2)

Total 1.2(1.3) 4.8(5.6) 10.4(12.0)

V. CONCLUSION

We have designed a two-stage approach to estimate CFO and channel with one-bit ADCs, and derived

the CRB of CFO. Numerical results demonstrate that the proposed approach works well for both the

general Gaussian channel and mmWave channel, and the gap between the MSE and CRB of CFO is less

than about 3dB. Compared to the CFO-known GAMP-EM algorithm, the performance degradation of

the proposed approach is negligible.
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VII. SUPPLEMENTARY MATERIAL

A. Parameters N1 and N2

In this subsection, the way to empirically choose the parameters N1 (the number of grids in coarse

detection) and N2 (the number of grids in refined detection) is presented. For the convenience, the

parameters of the numerical experiments in this material are set the same as that in our letter for the

general Gaussian channel and SNR is chosen to be 10dB. Let S(ω) = ‖DTy‖22, Fig. 5 plots the curves

of S(ω) with different Np. From Fig. 5, we can see that there is an obvious main lobe and it is locally

concave around the global optimum. Therefore, as long as N1 is large enough, we can detect a value

of ω on the main lobe which can make the gradient descent algorithm converge to the global optimum.

However, in order to reduce the computational complexity, we choose N1 reasonably which works well

for the Detection step.

Through a large number of experiments, we found that the width of the main lobe depends mainly on

Np. Fig. 6 presents the width of the main lobe with different Np. It can be seen that the width of the

main lobe decreases when Np increases and the smallest width of the main lobe is about 0.025. Thus,
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(c) Np = 512

Fig. 5: The curve of the objective function S(ω) with different Np. The red dash line represents the

true CFO ωe.

N1 should be at least larger than 2π
0.025 ≈ 251. However, we can see that there are many side lobes close

to the main lobe, and meanwhile the main lobe in figures may also contain invisible side lobes, which

may degrade the detection performance. Therefore, we design a two-step Detection: coarse detection and

refined detection, and choose N1 = 300 and N2 = 10 for the simulations.

B. Additional Numerical Simulation

The performance of the proposed algorithm with different values of CFO and fixed values of Np and

SNR is provided. We choose Np = 256 and SNR = 10dB and all other parameters are set the same

as that in the paper. The results are in Fig. 7, 8, 9 and 10. It can be seen that the proposed algorithm

performs well for all values of CFO for both the Gaussian channel and the mmWave channel. Besides,

with the CFO changing, both the MSE of the CFO estimation and the channel estimation are stable.
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Fig. 6: The width of the main lobe versus the length of training block Np.
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Fig. 7: The MSE of the CFO versus the CFO ωe with Np = 256 and SNR = 10dB for the general

Gaussian channel.
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Fig. 10: The NMSE of the channel versus the CFO ωe with Np = 256 and SNR = 10dB for the

general mmWave channel.
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Fig. 8: The NMSE of the channel versus the CFO ωe with Np = 256 and SNR = 10dB for the general

Gaussian channel.
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Fig. 9: The MSE of the CFO versus the CFO ωe with Np = 256 and SNR = 10dB for the general

mmWave channel.
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