
ar
X

iv
:1

90
5.

04
47

4v
1

 [
cs

.I
T

]
 1

1
M

ay
 2

01
9

1

Sparse Optimization Problem with s-difference

Regularization
Yuli Sun, Xiang Tan, Xiao Li, Lin Lei, Gangyao Kuang∗

College of Electronic science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract—In this paper, a s-difference type regularization for

sparse recovery problem is proposed, which is the difference

of the normal penalty function R (x) and its corresponding s-

truncated function R (xs). First, we show the equivalent condi-

tions between the ℓ0 constrained problem and the unconstrained

s-difference penalty regularized problem. Next, we choose the

forward-backward splitting (FBS) method to solve the non-

convex regularizes function and further derive some closed-form

solutions for the proximal mapping of the s-difference regular-

ization with some commonly used R (x), which makes the FBS

easy and fast. We also show that any cluster point of the sequence

generated by the proposed algorithm converges to a stationary

point. Numerical experiments demonstrate the efficiency of the

proposed s-difference regularization in comparison with some

other existing penalty functions.

Index Terms—Sparse constrained, Forward-Backward Split-

ting, proximal operator, difference of convex, truncated function.

I. INTRODUCTION

A. Background

In recent years, sparse optimization problems have drawn

lots of attention in many applications such as compressive

sensing, machine learning, image processing and medical

imaging. Signal and image processing problems are usually

expressed as

A (x) + n = b (1)

where A is the linear or non-linear operator, b is the observa-

tion data, and n represents the observation noise or error. Since

problem (1) is often ill-posed and the error n is unknown,

solving (1) is difficulty. To overcome this ill-posed problem,

we need to make some constraints to narrow the solution

space, such as the prior sparsity of the signals. Then the

problem can be formulated as

min
x

φ (x) + P (x) (2)

where the loss function φ (x) is the data fidelity term re-

lated to (1), for example, the least square (LS) loss func-

tion ‖A (x)− b‖22 or the least-absolute (LA) loss function

‖A (x)− b‖1; P (x) is the regularizes function to penalize

the sparsity of x. Intuitively, P (x) should be selected as the

ℓ0-norm ‖x‖0, represents the number of nonzero elements in

x. However, minimizing the ℓ0-norm is equivalent to finding

the sparsest solution, which is known to be NP-hard problem.

A favorite and popular approach is using the ℓ1-norm convex

approximation, i.e., ‖x‖1 to replace the ℓ0 [1]. This ℓ1 model

has been widely used in many different applications, such as

radar systems [2-3], communications [4], computed tomogra-

phy (CT) [5] and magnetic resonant imaging (MRI) [6]. It

has been proved that the signal x can be recovered by this

ℓ1 model under some assumption of the operator A, such as

the restricted isometry property (RIP) of A when the operator

is a sensing matrix [1]. However, the ℓ1-norm regularization

tends to underestimate high-amplitude components of x as it

penalizes the amplitude uniformly, unlike ℓ0-norm in which

all nonzero entries have equal contributions. This may lead

to reconstruction failures with the least measurements [7-8],

and brings undesirable blocky images [9-10]. It is quite well-

known that the when it promotes sparsity, the ℓ1-norm does

not provide a performance close to that of the ℓ0-norm, and

lots of theoretical and experimental results in CS and low-rank

matrix recovery suggest that better approximations of the ℓ0-

normand matrix rank give rise to better performances.

Recently, researchers began to investigate various non-

convex regularizes to replace the ℓ1-norm regularization and

gain some better reconstructions. In particular, the ℓp(quasi)-

norm with p ∈ (0, 1) [11-16], can be regarded as a inter-

polation between the ℓ0 and ℓ1, and a continuation strategy

to approximate the ℓ0 as p → 0. The optimization strategies

include half thresholding [14, 17-20] and iterative reweighting

[11-12, 15]. Other non-convex regularizations and algorithms

have also been designed to outperform ℓ1-norm regulariza-

tion and seek better reconstruction: capped ℓ1-norm [21-23],

transformed ℓ1-norm [24-26], sorted ℓ1-norm [27-28], the

difference of the ℓ1 and ℓ2-norms (ℓ1−2) [29-31], the log-

sum penalty (LSP) [8], smoothly clipped absolute deviation

(SCAD) [32-33], minimax-concave penalty (MCP) [34-36].

On the other hand, there are some approaches which do not

http://arxiv.org/abs/1905.04474v1

2

approximate the ℓ0-norm, such as the iterative hard thresh-

olding (IHT) algorithm [37-38], which operate directly on

the ℓ0 regularized cost function or the s-sparse constrained

optimization problem. Moreover, there are some acceleration

methods for the IHT: accelerated IHT (AIHT) [39], proximal

IHT (PIHT) [40], extrapolated proximal IHT (EPIHT) [41]

and accelerated proximal IHT [42]. Meanwhile, there are

some researchers transformed the ℓ0-norm problem into an

equivalent difference of two convex functions, and then using

the difference of convex algorithm (DCA) and the proximal

gradient technique to solve the subproblem [43-44].

To address these nonconvex regularization problems, many

iterative algorithms are investigated by researchers, such as

the DCA [45-48] (or Convex-ConCave Procedure (CCCP)

[49], or the Multi-Stage (MS) convex relaxation [22]), and its

accelerate versions: Boosted Difference of Convex function

Algorithms (BDCA) [50] and proximal Difference-of-Convex

Algorithm with extrapolation (pDCAe) [51], the alternating

direction method of multipliers (ADMM) [52], split Breg-

man iteration (SBI) [53], General Iterative Shrinkage and

Thresholding (GIST) [54], nonmonotone accelerated proximal

gradient (nmAPG) [55], which is an extension of the APG

[56].

B. Contributions

In many applications, the non-convex ℓ0-norm based regu-

larization has its advantages over the convex ℓ1-norm , such as

image restoration [41, 53, 57-58], bioluminescence [59], CT

[9-10], MRI reconstruction [60-61]. Thus, in this paper, we

are interested in the following ℓ0 constrained problem

min
x

φ (x) subject to ‖x‖0 ≤ s (3)

i.e. this s-sparse problem tries to find the solution minimiz-

ing φ (x) under the constraint that the number of non-zero

coefficients below a certain value, where s ∈ {1, 2, · · · , N}.

This paper can be viewed as a natural complement and

extension of Gotoh et al. framework [43]. First, we rewrite

the ℓ0 constrained problem (3) as difference of two functions,

one of which is the convex or nonconvex function R (x)

and the other is the corresponding truncated function R (xs).

Then, we consider the unconstrained minimization problem

by using this s-difference R (x)−R (xs) type regularizations.

Second, we propose fast approaches to deal with this non-

convex regularizes function, which is based on a proximal

operator corresponding to R (x)−R (xs). Moreover, we derive

some cheap closed-form solutions for the proximal mapping

of R (x) −R (xs) with some commonly used R (x), such as

‖x‖1, ‖x‖2, ‖x‖1 − a‖x‖2, LSP, MCP and so on. Third, we

prove the convergence performance of the proposed algorithm,

and show that any cluster point of the sequence generated by

the proposed algorithm converges to a stationary point. We

also show a link between the proposed algorithm with some

related regularizations and algorithms. Finally, we evaluate

the effectiveness of the proposed algorithm via numerical

experiments. The reconstruction results demonstrate that the

proposed difference penalty function with closed-form solu-

tions is more accurate than the ℓ1-norm and other non-convex

regularization based methods, and faster than the DCA based

algorithms.

C. Outline and notation

The rest of this paper is structured as follows. In section

2, we define the constrained sparse optimization. In section

3, we propose the reconstruction algorithm by using the

proximal operator with closed-form solutions. In section 4, we

provide some theorems to demonstrate the convergence of the

proposed algorithm. Section 5 presents the numerical results.

In the end, we provide our conclusion in section 6.

Here, we define our notation. For a vector x ∈ R
N , it

can be written as x = (x1, x2, · · · , xN), and its ℓp-norm is

defined as ‖x‖p = (
∑

n |xn|p)
1/p. Especially, the ℓ∞-norm of

x is defined as maxn |xn|. Given a matrix A ∈ R
M×N , the

transpose of A is denoted by AT , the maximum eigenvalue

of ATA is defined as ‖A‖22. Some of the arguments in

this paper use sub-vectors. The letters Γ, Λ denote sets of

indices that enumerate the elements in the vector x. By using

this sets as subscripts, xΓ represents the vector that setting

all elements of x to zero except those in the set Γ. The

iteration count is given in square bracket, e.g., x[k]. 〈·, ·〉
denotes the inner product, sign (·) represents the sign of a

quantity with sign (0) ∈ [−1, 1]. We also use the notation

R+ = {x ∈ R : x ≥ 0}, and if the function f is defined as

the composition f = h (g (x)), then we write f = h ◦ g.

Given a proper closed function h (x) : Rn → R∪{∞}, the

subgradient of h at x is given by

∂h (x) = {v ∈ R
n : h (u)− h (x)− 〈v, u− x〉 ≥ 0, ∀u ∈ R

n}
(4)

In addition, if h (x) is continuously differentiable, then the

subdifferential reduces to the gradient of h (x) denoted by

∇h (x).

II. PENALTY REPRESENTATION FOR s-SPARSE PROBLEM

Inspired by Gotoh et al. work of [43], in which they

expressed the ℓ0-norm constraint as a difference of convex

(DC) function:

‖x‖0 ≤ s ⇔ ‖x‖1 − ‖|x|‖s = 0 (5)

3

where s ∈ {1, 2, · · · , N} and ‖|x|‖s, which named top-(s, 1)

norm, denotes the sum of top-selements in absolute value. This

notation is also known as the largest-s norm (or called CVaR

norm in [62-63]). Precisely,

‖|x|‖s :=
∣
∣xπx(1)

∣
∣+

∣
∣xπx(2)

∣
∣ + · · ·+

∣
∣xπx(s)

∣
∣ (6)

where xπx(i) denotes the element whose absolute value is

the i-th largest among the N elements of vector x ∈
R

N , i.e.,
∣
∣xπx(1)

∣
∣ ≥

∣
∣xπx(2)

∣
∣ ≥ · · · ≥

∣
∣xπx(N)

∣
∣.

For convenience of description, we define the set Γs
x

=

{πx (1) , πx (2) , · · · , πx (s)}, then we have Γ1
x

⊆ Γ2
x

⊆
· · · ⊆ ΓN

x
. By using ·\· as the set difference, we have

ΓN
x
\Γs

x
= {πx (s+ 1) , πx (s+ 2) , · · · , πx (N)}.

In this work, we consider a more general s-difference

function R (x)−R (xs) instead of ‖x‖1 to replace the ℓ0-norm

constraint, where R (x) can be convex or nonconvex, separable

or non-separable, and xs is the best s term approximation to

x, that is, any s-sparse vectors that minimize ‖x− xs‖2. By

using the definition of xπx(i), we have

xs
i =

{

xi, if i ∈ Γs
x

0, if i ∈ ΓN
x
\Γs

x

(7)

Let P (x) = R (x)−R (xs), s ∈ {1, 2, · · · , N}, we defined a

class of penalty functions P,R : RN → R+ as follows (with-

out loss of generality, functions P (x) and R (x) mentioned

thought this paper all satisfy Property 1).

Property 1. The penalty functions P,R : RN → R+ satisfy

the following properties.

(a) R (x) = R (−x)

(b) ‖x‖0 ≤ s ⇔ P (x) = 0

(c) P (x) is a continuous function which can be written as

the difference of two convex (DC) functions, that is, P (x) =

P1 (x)−P2 (x), where P1 (x) and P2 (x) are convex functions.

Proposition 1. The penalty functions listed on Table 1 all

satisfy Property 1.

See appendix A for the Proof of Proposition 1.

Remark 1. For the separable R (x) =
N∑

i=1

r (xi), and r (x)

is continuous, symmetrical and strictly increasing on R+, if

r (x) is convex, then R (x) satisfies Property 1; if r (x) is

nonconvex, while it can be written as the difference of two

convex functions as r (x) = h(x) − g(x), then R (x) also

satisfies Property 1.

It is easy to see that the penalty function in Ref. [43] is a

special case of R (x)=‖x‖1.

With the Property 1(b), we consider the following uncon-

strained minimization problem associated with (3):

min
x∈RN

{F (x) = φ (x) + ρP (x)} (8)

where ρ > 0 is the penalty parameter. We make the following

assumptions on the above formulation thought the paper,

which are standard in image processing and many CS field.

Assumption 1. φ (x) is continuously differentiable with Lip-

schitz continuous gradient, i.e., there exists L > 0 such that

‖∇φ (x) −∇φ (y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ R
N (9)

Assumption 2. F (x) is bounded from below.

From (8), we can find that the difference between penalty

P (x) and other penalty function, such as ℓ1, ℓp, ℓ1−2 and

MCP, is that there is no punishment in model (8) when the

sparsity level of x is under s, since P (x) is equal to zero

as ‖x‖0 ≤ s. Meanwhile, the selection of the weighting

parameter ρ has importance influence on the performance of

the reconstruction. On the one hand, ρ should be big enough

to give a heavy cost for constraint violation: ‖x‖0 > s. On the

other hand, if ρ is too big, the reconstruction is mostly over

regularized. In light of this, we need the adjust the value of ρ

iteratively based on the convergence speed. The next Theorem

ensures that problem (8) is equivalent to the original s-sparse

constraint problem (3) as we take the limit of ρ, which can be

proved in a similar manner to Theorem 17.1 in [71].

Theorem 1. Let {ρt} be an increasing sequence with

limt→∞ρt = ∞ and suppose that xt is an optimal solution

of (8) with ρ = ρt. Then, any limit point x̄ of {xt} is also

optimal to (3).

See Appendix B for the proof.

In addition to Theorem 1, we have some stricter conclusions

for the parameter ρ under some assumptions of P (x) and

φ (x).

Proposition 2. If φ (x) is Lipschitz continuous with constant

β > 0, i.e., ‖φ (x)− φ (y)‖2 ≤ β‖x− y‖2, ∀x,y ∈ R
N ,

and x̄ρ is an optimal solution of (8) with some ρ. Suppose

that there exists a constant η > 0 such that R (x) −
R
(
x+ xs − xs+1

)
≥ η

∥
∥xs+1 − xs

∥
∥
2

for any x ∈ R
N . Then

if ρ > β/η, x̄ρ is also optimal to (3).

See Appendix C for the proof.

Remark 2. Suppose that φ (x) is β-Lipschitz continuous and

the regularization is P (x) = ‖x‖1 − ‖xs‖1. Then if ρ > β,

any optimal solution of (8) is also optimal to (3).

Remark 3. Suppose that φ (x) is β-Lipschitz continuous.

If we choose R (x) as R (x) = ‖x‖1 − a‖x‖2, 0 < a ≤ 1,

then any optimal solution of (8) is also optimal to (3) when

4

TABLE I

FUNCTIONS THAT SATISFIES PROPERTY 1

Function type R (x) P1 (x) P2 (x)

Convex,

Separable

‖x‖
1

‖x‖
1

‖xs‖
1

‖x‖2
2

‖x‖2
2

‖xs‖2
2

Convex,

non-Separable

‖x‖
2

‖x‖
2

‖xs‖
2

R (x) =

{

‖x‖2
2

/

(2θ), ‖x‖
2
≤ θ

‖x‖
2
− θ

/

2, ‖x‖
2
> θ

, θ > 0 R (x) R (xs)

Non-convex,

Separable

R (x) =
N
∑

i=1

ri (xi)

ri (xi) = log (1 + |xi|/θ) , θ > 0

‖x‖
1

/

θ +
(

‖xs‖
1

/

θ − R (xs)
)

‖xs‖
1

/

θ +
(

‖x‖
1

/

θ − R (x)
)

R (x) =
N
∑

i=1

ri (xi)

ri (xi) =

{

|xi| − x2

i

/

(2θ), |xi| ≤ θ

θ/2, |xi| > θ
, θ > 0

‖x‖
1
+

(

‖xs‖
1
−R (xs)

)

‖xs‖
1
+

(

‖x‖
1
−R (x)

)

Non-convex,

Non-separable

‖x‖
1
− a‖x‖

2
, 0 < a ≤ 1 ‖x‖

1
+ a‖xs‖

2
‖xs‖

1
+ a‖x‖

2

log
(

1 + ‖x‖
2

/

θ
)

, θ > 0 ‖x‖
2

/

θ +
(

‖xs‖
2

/

θ − R (xs)
)

‖xs‖
2

/

θ +
(

‖x‖
2

/

θ − R (x)
)

{

‖x‖
2
− ‖x‖2

2

/

(2θ), ‖x‖
2
≤ θ

θ/2, ‖x‖
2
> θ

, θ > 0 ‖x‖
2
+

(

‖xs‖
2
−R (xs)

)

‖xs‖
2
+

(

‖x‖
2
−R (x)

)

ρ > β

1−a/(2
√
s)

. This can be proved by using that

‖x‖2 −
∥
∥x+ xs − xs+1

∥
∥
2
=

∥
∥xs+1 − xs

∥
∥
2

2

‖x‖2 + ‖x+ xs − xs+1‖2

≤
∥
∥xs+1 − xs

∥
∥
2

2
√
s

(10)

If we choose R (x) = θ1‖x‖1 −
N∑

i=1

log (1 + |xi|/θ2), θ1 >

θ2 > 0, then the condition of ρ is that ρ > β
θ1−θ2

. Meanwhile,

we can obtain similar conclusions for the R (x) which are the

difference of ‖x‖1 and MCP, or SCAD functions.

The next proposition, which is similar to Theorem 3 in

[43], but with wider scope and stricter conclusion, shows

another exact penalty parameters ρ requirement for φ (x) with

Lipschitz continuous gradient L.

Proposition 3. If Assumption 1 is satisfied and x̄ρ is an

optimal solution of (8) with some ρ. Suppose that there

exists a constant C > 0 such that ‖x̄ρ‖2 ≤ C for any

ρ > 0, and there exists a constant η > 0 such that R (x) −
R
(
x+ xs − xs+1

)
≥ η

∥
∥xs+1 − xs

∥
∥
2

for any x ∈ R
N , Then

if ρ > 1
η

(

‖∇φ (0)‖2 +
(

1 + 1
2
√
s+1

)

LC
)

, x̄ρ is also optimal

to (3).

See Appendix D for the proof.

Remark 4. Suppose that φ (x) = 1
2 ‖Ax− b‖22 and

‖x̄ρ‖2 ≤ C. If we choose R (x) as R (x) = ‖x‖1,

R (x) = ‖x‖1 − a‖x‖2 (0 < a ≤ 1) and

R (x) = θ1‖x‖1 −
N∑

i=1

log (1 + |xi|/θ2) (θ1 > θ2 >

0), then any optimal solution of (8) is also optimal to

(3) when ρ >
∥
∥ATb

∥
∥
2
+

(

1 + 1
2
√
s+1

)

‖A‖22 C, ρ >

1

1−a/(2
√
s)

(∥
∥ATb

∥
∥
2
+
(

1 + 1
2
√
s+1

)

‖A‖22 C
)

and ρ >

1
θ1−θ2

(∥
∥ATb

∥
∥
2
+
(

1 + 1
2
√
s+1

)

‖A‖22 C
)

, respectively.

Remark 5. Similarly to Theorem 4 in [43] by replacing

penalty function ‖x‖1−‖|x|‖s with ordinary function R (x)−
R (xs), we have the following conclusions without proof. If

the conditions in Proposition 3 are satisfied, and suppose that

φ (x) = 1
2x

TQx + qTx, where Q = (qij) ∈ R
N×N is

symmetric and q = (qi) ∈ R
N , then x̄ρ is also optimal to

(3) if ρ > max
i

1
η

{

|qi|+
(

‖Qei‖2 +
|qii|

2
√
s+1

)

C
}

, where ei

denotes the unit vector in the i-th coordinate direction.

III. FORWARD-BACKWARD SPLITTING FOR THE

REGULARIZATION OF DIFFERENCE OF TWO FUNCTIONS

In this section, we use the FBS to solve the unconstrained

minimization (8). Moreover, we derive closed-form solutions

for the proximal mapping of some special regularization s-

difference P (x), and this makes FBS more efficient.

A. Forward-Backward Splitting and proximal operator

Each iteration of forward-backward splitting applies the

gradient descent of ρP (x) followed by a proximal operator.

That is

x[k+1] = proxβρP

(

x[k] − β∇φ
(

x[k]
))

(11)

where β > 0 is the step size, and the FBS is sometimes called

the proximal gradient (PG) algorithm. The proximal operator

is defined as

proxλP (y) = arg min
x∈RN

‖x− y‖22
2λ

+ P (x) (12)

with parameter λ > 0.

5

The equation (11) can be broken up into a forward gradient

step using the function φ (x), and a backward step using the

function ρP (x). The proximal operator plays a central role

in the analysis and solution of optimization problems. For

example, the soft shrinkage operator, which is a proximal

operator for ℓ1-norm regularizer, has been widely used in

CS and rendering many efficient ℓ1 algorithms. The proximal

operator also has been successfully used with some nonconvex

regularizers, such as ℓp, SCAD, LSP [64], and MCP [52, 65].

Usually, the closed-form solution of the proximal operator

needs some special properties on P (x), such as convexity or

separability (e.g., the ℓ1-norm, LSP, MCP, and other various

separable functions in [66]), Next, we will focus on the

solution of (12) with separable and non-separable s-difference

P (x).

B. Closed-form solution of the proximal operator

Denote E (x) as

E (x) =
‖x− y‖22

2λ
+ P (x) (13)

Let x∗ be the optimal solution of (12), i.e., x∗ = proxλP (y),

then we have the following Proposition.

Proposition 4. x∗ = 0 if and only if y = 0.

Proof: Necessary condition: note that E (x) ≥ 0 for any

x, and when y = 0, we have E (0) = 0. Thus if y = 0,

the optimal solution is x∗ = 0. Sufficient condition: assume

by contradiction that y 6= 0, then we select an arbitrary

non-zero dimension yj in y, and construct x̃ ∈ R
N as

x̃i =

{

0, i 6= j

yj , i = j
. Then we have

E (x∗) = E (0) =
1

2λ

N∑

i=1

y2i >
1

2λ

N∑

i=1,i6=j

y2i = E (x̃) (14)

This contradicts the optimality of x∗. Thus if x∗ = 0, y must

be equal to zero.

Proposition 5. For i ∈ {1, 2, · · · , N}, if yi > 0, then we have

x∗
i ≥ 0. If yi < 0, then we have x∗

i ≤ 0.

Proof: We prove it by establishing contradiction. If there

exits any x∗
i < 0 when yi > 0, then we select an arbitrary

one and we construct x̃ ∈ R
N as x̃j =

{

x∗
j , j 6= i

−x∗
j , j = i

. We

have

‖x̃− y‖22 =
∑

j 6=i

(x̃j − yj)
2
+ (x̃i − yi)

2

<
∑

j 6=i

(
x∗j − yj

)2
+ (x∗i − yi)

2
= ‖x∗ − y‖22

(15)

The inequality follows from that x∗
i has the opposite sign as yi

and yi > 0. Since we have not changed the absolute value of x̃i

and R (x) = R (−x), then we have P (x̃) = P (x∗). Combing

this and (15), we have E (x̃) < E (x∗). This contradicts the

optimality of x∗ and proves that x∗
i ≥ 0 when yi > 0. On the

other hand, we can prove that x∗
i ≤ 0 when yi < 0 by using

a similar method. This completes the proof.

Next, we focus on the closed-form solutions of proxλP (y)

with different types of R (x).

Proposition 6. If R (x) is separable, i.e., R (x) =
N∑

i=1

ri (xi)

and each ri is strictly increasing on R+, we have

x∗
i =

{

yi, if i ∈ Γs
y

(IN + λ∂R)−1(y)i, if i ∈ ΓN
y
\Γs

y

(16)

where IN denotes the identity operator, Γs
y

=

{πy (1) , πy (2) , · · · , πy (s)} and πy (j) is the

index of the j-th largest amplitude of y, i.e.,
∣
∣yπy(1)

∣
∣ ≥

∣
∣yπy(2)

∣
∣ ≥ · · · ≥

∣
∣yπy(N)

∣
∣.

See Appendix E for the proof.

Remark 6. Note that x∗
i = yi if i ∈

{πy (1) , πy (2) , · · · , πy (s)} in (16). Suppose

that there exits one or more components of yi,

i /∈ {πy (1) , πy (2) , · · · , πy (s)} having the same amplitude of

yπy(s), i.e.,
∣
∣yπy(s−m)

∣
∣ = · · · =

∣
∣yπy(s)

∣
∣ = · · · =

∣
∣yπy(s+j)

∣
∣,

m ≥ 0, j ≥ 1. Then there exits Cm+1
j+m+1 solutions of x∗ as

there are Cm+1
j+m+1 arrangements of yπy(s−m), · · · , yπy(s).

Remark 7. If R (x) = ‖x‖1, then the solution x∗ of (12) is

x∗
i =

{

yi, if i ∈ Γs
y

shrink (yi, λ) , if i ∈ ΓN
y
\Γs

y

(17)

where shrink (yi, λ) denotes the soft shrinkage operator given

by

shrink (yi, λ) = sign (yi)max {|yi| − λ, 0} (18)

Remark 8. If R (x) = ‖x‖22, then the solution x∗ of (12) is

x∗
i =

{

yi, if i ∈ Γs
y

yi/(2λ+ 1) , if i ∈ ΓN
y
\Γs

y

(19)

Remark 9. If R (x) is the MCP (A.3), that is ri (xi) ={

|xi| − x2
i

/
(2θ), |xi| ≤ θ

θ/2, |xi| > θ
(θ > 0),then the solution x∗ is:

under the condition of θ > λ, if i ∈ Γs
y

or |yi| > θ, then x∗
i =

yi; otherwise x∗
i = sign (yi)max {θ (|yi| − λ)/(θ − λ) , 0}.

When θ ≤ λ, if i ∈ Γs
y

or |yi| > θ, then x∗
i = yi;

otherwise x∗
i = 0. If R (x) is the LSP (A.2), that is

ri (xi) = log (1 + |xi|/θ) , θ > 0, then the solution x∗ is:

if i ∈ Γs
y

, then x∗
i = yi; otherwise x∗

i = sign (yi)wi,

and wi = arg min
xi∈Ω

{
1
2λ (xi − |yi|)2 +

∑

i log (1 + |xi|/θ)
}

,

6

where Ω is a set composed of 3 elements or 1 element. If

(|yi| − θ)
2 − 4 (λ− |yi| θ) ≥ 0, then

Ω = {0,max {ξ1, 0} , max {ξ2, 0}} (20)

where ξ1 = 1
2

(

(|yi| − θ) +

√

(|yi| − θ)
2 − 4 (λ− |yi| θ)

)

and ξ2 = 1
2

(

(|yi| − θ)−
√

(|yi| − θ)2 − 4 (λ− |yi| θ)
)

.

Otherwise, Ω = {0}.

Proposition 6 gives the solution of the (12) under the condi-

tions of R (x) with separable and strictly increasing properties.

In fact, there are some other commonly used separable and

non-convexR (x) also have the closed-form solution similar as

(16), such as R (x) = ‖x‖pp with p = 1/2, 2/3 [14], however,

these R (x) does not satisfy the Property 1(c), so they are not

within the scope of this article. Next, we consider two special

non-separable cases as the reference for other non-separable

regularizations.

Proposition 7. If R (x) = ‖x‖2, then the solution x∗ of (12)

is that: when i ∈ Γs
y

,

x∗
i =

(‖ys‖2 + λ)

(√

‖y − ys‖22 + (‖ys‖2 + λ)
2 − λ

)

‖ys‖2
√

‖y − ys‖22 + (‖ys‖2 + λ)
2

yi

(21)

when i ∈ ΓN
y
\Γs

y
,

x∗
i =

√

‖y − ys‖22 + (‖ys‖2 + λ)
2 − λ

√

‖y − ys‖22 + (‖ys‖2 + λ)
2

yi (22)

See Appendix F for the proof.

Proposition 8. If R (x) = ‖x‖1 − a‖x‖2, 0 < a ≤ 1, then

the solution x∗ of (12) is that:

1) When
∣
∣yπy(s+1)

∣
∣ > λ, for i ∈ Γs

y
,

x∗
i =

‖ys‖2 − aλ

‖ys‖2



1 +
aλ

√

‖z− zs‖22 + (‖ys‖2 − aλ)2



 yi

(23)

for i ∈ ΓN
y
\Γs

y
,

x∗
i =



1 +
aλ

√

‖z− zs‖22 + (‖ys‖2 − aλ)2



 zi (24)

where zi = yπy(1) for i ∈ Γs
y

, and zi = shrink (yi, λ) for

i ∈ ΓN
y
\Γs

y
.

2) When
∣
∣yπy(s+1)

∣
∣ = λ, if a = 1, s = 1,

∣
∣yπy(1)

∣
∣ = λ,

and suppose that there are k components of yi having the

same amplitude of λ, i.e.,
∣
∣yπy(s+1)

∣
∣ = · · · =

∣
∣yπy(s+k)

∣
∣ =

λ >
∣
∣yπy(s+k+1)

∣
∣. x∗ is an optimal solution of (12) if and

only if it satisfies ‖x∗‖2 = λ, x∗
i yi ≥ 0, and x∗

i = 0 when

i ∈ {πy (k + 2) , πy (k + 3) , · · · , πy (N)}. In this case, there

are infinite many solutions, equations (A.40) and (A.41) are

two solution examples. When
∣
∣yπy(s+1)

∣
∣ = λ, and any of these

conditions a = 1, s = 1,
∣
∣yπy(1)

∣
∣ = λ cannot be satisfied, the

solution x∗ is

x∗
i =

{

yi, i ∈ Γs
y

0, i ∈ ΓN
y
\Γs

y

(25)

3) When 0 ≤
∣
∣yπy(s+1)

∣
∣ < λ, the solution x∗ is the same

as (25).

We apply the similar proof framework in Ref. [29] for the

fast ℓ1−2 minimization. See Appendix G for the proof.

Remark 10. When a = 0, then R (x) = ‖x‖1 − a‖x‖2
reduces to R (x) = ‖x‖1, and the corresponding solution x∗

of (23, 24, 25) reduces to (17) as in Remark 7.

IV. CONVERGENCE ANALYSIS

The purpose of this section is to demonstrate that the se-

quence of
{
x[k]

}
obtained from the FBS for (8) is convergent.

Theorem 2. If Assumption 1 and 2 are satisfied and β < 1/L,

let
{
x[k]

}
be the sequence generated by the FBS for (8), the

following statements hold.

1) The sequence
{
x[k]

}
is bounded.

2) limk→∞
∥
∥x[k+1] − x[k]

∥
∥
2
= 0.

3) Any accumulation points of
{
x[k]

}
is a stationary point

of F (x).

Proof: 1) Rewrite (8) and consider the following inequal-

ity

F
(

x[k+1]
)

− F
(

x[k]
)

= φ
(

x[k+1]
)

+ ρP
(

x[k+1]
)

− φ
(

x[k]
)

− ρP
(

x[k]
)

≤
〈

∇φ
(

x[k]
)

,x[k+1] − x[k]
〉

+
L

2

∥
∥
∥x

[k+1] − x[k]
∥
∥
∥

2

2

+ ρP
(

x[k+1]
)

− ρP
(

x[k]
)

= ρP
(

x[k+1]
)

− ρP
(

x[k]
)

+
L

2

∥
∥
∥x

[k+1] − x[k]
∥
∥
∥

2

2

+

∥
∥x[k+1] −

(
x[k] − β∇φ

(
x[k]

))∥
∥
2

2

2β
−

∥
∥β∇φ

(
x[k]

)∥
∥
2

2

2β

−
∥
∥x[k+1] − x[k]

∥
∥
2

2

2β

= ρ
(

E
(

x[k+1]
)

− E
(

x[k]
))

+

(
L

2
− 1

2β

)∥
∥
∥x

[k+1] − x[k]
∥
∥
∥

2

2

≤
(
L

2
− 1

2β

)∥
∥
∥x

[k+1] − x[k]
∥
∥
∥

2

2

(26)

where the E (x) in the third equation is the expression (13)

with y replaced by x[k]−β∇φ
(
x[k]

)
and set λ = βρ. The first

7

inequality comes from Assumption 1, and the second inequal-

ity is based on the fact that x[k+1] is the optimal solution of

the E (x). When β < 1/L, we have F
(
x[k]

)
≤ F

(
x[0]

)
for

all k ≥ 0. Due to the level-boundedness of F (x) (Assumption

2), therefore the sequence
{
x[k]

}
is bounded.

2) Summing both sides of (26) from k = 0 to ∞, we can

obtain

(
1

2β
− L

2

)+∞∑

k=0

∥
∥
∥x

[k+1] − x[k]
∥
∥
∥

2

2
≤ F (0)−F

(

x[k+1]
)

< ∞

(27)

Since β < 1/L, we can deduce that

limk→∞
∥
∥x[k+1] − x[k]

∥
∥
2

= 0 from the above relation

obviously.

3) Since the sequence
{
x[k]

}
is bounded, there exists a

subsequence of
{
x[k]

}
, denoted as

{
x[kj]

}
, converging to an

accumulation point x∗. Considering that minimizer
{
x[kj+1]

}

is a critical point of (13) and P (x) = P1 (x) − P2 (x), we

have

0 ∈x[kj+1] − x[k] + β∇φ
(
x[k]

)

βρ

+ ∂P1

(

x[kj+1]
)

− ∂P2

(

x[kj+1]
) (28)

Let kj → ∞, by using
∥
∥x[kj+1] − x[kj]

∥
∥
2
→ 0 from the above

conclusion and considering the semi-continuity of ∇φ, ∂P1

and ∂P2, we have that 0 ∈ ∇φ (x∗)+ρ∂P1 (x
∗)−ρ∂P2 (x

∗).

Therefore, x∗ is a critical point of problem (8). This completes

the proof.

From the proof of Theorem 2, we have that

limk→∞
∥
∥x[k+1] − x[k]

∥
∥
2

= 0 is a necessary optimality

condition of the FBS. Therefore, we can use
∥
∥x[k+1] − x[k]

∥
∥
2

as a quantity to measure the convergence performance of the

sequence
{
x[k]

}
to a critical point x∗.

Theorem 3. If β < 1/L, let
{
x[k]

}
be the sequence generated

by the FBS for (8), then for every K ≥ 1, we have

min
0≤k≤K

∥
∥
∥x

[k+1] − x[k]
∥
∥
∥

2

2
≤ 2β

F (0)− F (x∗)

K (1− Lβ)
(29)

Proof: Summing the inequality (26) over k = 0, · · · ,K ,

we can obtain

(
1

2β
− L

2

) K∑

k=0

∥
∥
∥x

[k+1] − x[k]
∥
∥
∥

2

2
≤ F (0)− F

(

x[K+1]
)

(30)

When β < 1/L, we have
{
F
(
x[k]

)}
is monotonically de-

creasing, which means that F
(
x[K+1]

)
≥ F (x∗). Substitute

this into (30), we have

K min
0≤k≤K

∥
∥
∥x

[k+1] − x[k]
∥
∥
∥

2

2
≤ 2β

F (0)− F
(
x[K+1]

)

(1− Lβ)

≤ 2β
F (0)− F (x∗)

(1− Lβ)

(31)

This completes the proof.

In fact, we may have a stricter conclusion for the conver-

gence speed as F
(
x[k+1]

)
− F

(
x[k]

)
can be smaller than

(
L
2 − 1

2β

)∥
∥x[k+1] − x[k]

∥
∥
2

2
in (26).

Proposition 9. If R (x) is separable, i.e., R (x) =
N∑

i=1

ri (xi)

and each ri is strictly increasing on R+, then we have

F
(

x[k+1]
)

− F
(

x[k]
)

≤
(
L

2
− 1

2β

)∥
∥
∥x

[k+1] − x[k]
∥
∥
∥

2

2

+min

{

− 1

2β

∥
∥
∥x

[k+1] − x[k]
∥
∥
∥

2

2
+ ρ∆k, 0

}

(32)

where ∆k =
∑

i∈Λk+1

ri

(

x
[k]
i

)

− ∑

i∈Λk

ri

(

x
[k]
i

)

, Λk+1 =

ΓN
x[k+1]\Γs

x[k+1] , and Λk = ΓN
x[k]\Γs

x[k] .

See Appendix H for the proof.

From Proposition 9, we can find that F
(
x[k+1]

)
−

F
(
x[k]

)
≤

(
L
2 − 1

β

)∥
∥x[k+1] − x[k]

∥
∥
2

2
if Γs

x[k+1] is the same

as Γs
x[k] .

V. EXTENSIONS

In this section, we discuss some related algorithms for

solving (8), show a link between the DC function P (x) with

other regularization functions, and simply extend P (x) to

rank-constrained problem.

A. Related algorithms

Here, we discuss some related algorithms. When φ (x) is

convex, it is an intuitive idea that using the DCA to solve

the minimization (8). Since P (x) can be written as the DC

functions, i.e.,P (x) = P1 (x)−P2 (x), the objective function

can be naturally decomposed into

F (x) = φ (x)+ρP (x)= {φ (x) + ρP1 (x)}−ρP2 (x) (33)

The corresponding DCA solves the minimization problem as

x[k+1] = arg min
x∈RN

{

φ (x) + ρP1 (x)− ρP2

(

x[k]
)

−ρ
〈

w[k],x− x[k]
〉} (34)

where w[k] ∈ ∂P2

(
x[k]

)
. Although this problem is convex,

it does not necessarily have closed-form solution and the

computational cost is very expensive for large-scale problems.

On the other hand, since φ (x) is continuously differentiable

with L-Lipschitz continuous gradient, we can use the Sequen-

8

tial Convex Programming (SCP) [67] to solve problem (8) by

updating
{
x[k]

}
as

x[k+1] =arg min
x∈RN

{

φ
(

x[k]
)

+
〈

∇φ
(

x[k]
)

,x− x[k]
〉

+
L

2

∥
∥
∥x− x[k]

∥
∥
∥

2

2
+ ρP1 (x)− ρP2

(

x[k]
)

−ρ
〈

w[k],x− x[k]
〉}

(35)

Meanwhile, the SCP can be thought as a variant of DCA with

DC decomposition:

F (x) =
(

ρP1 (x) + L ‖x‖22
/

2
)

−
(

ρP2 (x) + L ‖x‖22
/

2− φ (x)
) (36)

The subproblem can be written as

x[k+1] =arg min
x∈RN

{ρP1 (x)

+
L

2

∥
∥
∥
∥
x−

(

x[k] − 1

L

(

∇φ
(

x[k]
)

− ρw[k]
))

∥
∥
∥
∥

2

2

}

(37)

Due to that the subproblem (37) can be solved by using the

proximal operator, Ref. [43] and [44] call this type DCA

as proximal DCA (PDCA). For some simple form P (x),

subproblem (37) also has closed-form solution. For example,

P (x) = ‖x‖1 − ‖xs‖1 and P (x) = ‖x‖22 − ‖xs‖22. In the

numerical experiment, we will compare the FBS with this

PDCA and show that the FBS is more efficient than PDCA in

this problem. Meanwhile, as P (x) is a DC function, the FBS

reduces to the GIST algorithm proposed in [54].

To improve the performance of the FBS, some acceleration

methods can be used in the proximal framework. Such as

the Nonmonotone Accelerated proximal gradient (nmAPG)

method [55], the extrapolation method in PDCA (pDCAe)

[51] and the backtracking line search initialized method with

Barzilai-Borwein (BB) rule [68] in GIST [54].

B. Comparing with other regularization

From the previous discussion, we have illustrated that the

DC function P (x) can replace the ℓ0-norm constraint. And

in Theorem 1 and Proposition 2, we have proved that the

unconstrained problem (8) is equal to the original sparsity

constrained problem (3) if we select proper parameter ρ. On

the other hand, in the minimization problem (8), P (x) can

also be considered as a regularizes function. Then, we can

investigate its performance from the aspect of sparsity metric.

Figure 1 shows the contours of various regularizers.

From Fig.1, we can find that the level curves of R (x) −
R (xs) approach the x and y axes as the values get small,

hence promoting sparsity. Inspire by Sidky et al. work of [69]

Fig. 1. Level curves of different metrics.

and Rahimi et al. work of [70], where they using toy examples

to illustrate the advantages of ℓp and ℓ1/ℓ2 , respectively, we

also use a similar example to show that with some special

data sets (A,b), the R (x)−R (xs) tends to select a sparser

solution.

Example 1 Let N = 6 and define

A :=











1 −1 0 0 0 0

0 1 −1 0 0 0

0 1 2 1 0 0

2 1 1 0 1 0

0.5 0.5 3 0 0 −1











, b :=











0

0

15

20

40











It is straightforward that any general solutions of Ax =

b have the form of x = (t, t, t, 15− 3t, 20− 4t, 4t− 40)T

for a scalar t ∈ R. The sparest solution occurs at t = 0 for

the sparsity of x being 3, and some local solutions include

t = 5 for sparsity being 4 and t = 10 for sparsity being

5. We plot the various regularize function with respect to t,

including ℓ1, ℓp (p = 1/2), ℓ1−2, ℓ1/ℓ2, MCP (θ = 15) of

(A.3) and the proposed R (x) − R (xs) with R (x) = ‖x‖1,

‖x‖2, ‖x‖1 − ‖x‖2, ‖x‖1/‖x‖2, MCP, and s = 3.

From Fig. 2, we can find that all these regularized functions

are not differentiable at the values of t = 0, 5, and 10, where

the corresponding sparsity of x are all small than 6. However,

only the ℓ1/ℓ2 and the s-difference R (x) − R (xs) can find

the sparsest vectorx at t = 0 as a global minimum, where the

other functions find t = 5 as the minimum and lead to the

sparsity of x being 4.

C. Extend to rank-constrained problem

Similar as in [43], the penalty function P (x) = R (x) −
R (xs) can also be extended to rank-constrained problem

9

-20 -10 0 10 20
0

200

400

600
(a) ℓ1

-20 -10 0 10 20
0

1000

2000

3000
(b) ℓ1/2

-20 -10 0 10 20
0

100

200

300
(c) ℓ1 − ℓ2

-20 -10 0 10 20
1.5

2

2.5
(d) ℓ1/ℓ2

-20 -10 0 10 20
20

30

40

50
(e) MCP (θ = 15)

-20 -10 0 10 20
0

20

40

60

80
(f) R (x) = ‖x‖1

-20 -10 0 10 20
0

2

4

6

8
(g) R (x) = ‖x‖2

-20 -10 0 10 20
0

20

40

60

80
(h) R (x) = ‖x‖1 − ‖x‖2

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8
(i) R (x) = ‖x‖1/‖x‖2

-20 -10 0 10 20
0

5

10

15

20

25
(j) R(x) = MCP (θ = 15)

Fig. 2. The objective functions of a toy example. For the top row, from the left to right, the five columns are functions of ‖x‖
1

, ‖x‖
0.5

, ‖x‖
1
− ‖x‖

2
,

‖x‖
1
/‖x‖

2
, MCP of (A.3) with θ = 15, respectively. While for the bottom row, from the left to right, the five columns are functions of R (x) − R (xs)

with R (x) = ‖x‖
1

, ‖x‖
2

, ‖x‖
1
− ‖x‖

2
, ‖x‖

1
/‖x‖

2
, MCP, respectively.

based on the connection between the ℓ0-norm on R
N and the

rank function for a matrix. The rank-constrained minimization

problem can be formulated as

min
w

φ (w) subject to rank (w) ≤ s,w ∈ R
M×N (38)

where s is a non-negative integer with s ≤ q = min {M,N}.

As the rank of a matrix is equal to the number of its nonzero

singular values, i.e., rank (w) = ‖σ (w)‖0, where σ (w)

represents the singular value vector of w and σi (w) is the

i-th largest term, then we can construct the penalty functions

P,R : R
q
+ → R+, P (σ (w)) = R (σ (w)) − R (σs (w))

that satisfies Property 1 (b) and (c), where σs
i (w) = σi (w)

for i ∈ {1, 2, · · · , s} and σs
i (w) = 0 for else. Replace the

rank constraint with the DC penalty function P (σ (w)) and

consider the unconstrained problem:

min
w

φ (w) + ρP (σ (w)) (39)

Then we can use the FBS, DCA or ADMM algorithms to

solve this rank-constrained problem.

VI. NUMERICAL EXPERIMENTS

In this section, simulations are performed to demonstrate

the proposed conclusions and evaluate the performance of

the s-difference regularization. We mainly apply four meth-

ods in comparison with the proposed algorithm: (1) the ℓ1-

norm regularization based ℓ1-ADMM [72], (2) the ℓp-norm

(p = 1/2) regularization based half thresholding [14], (3) the

ℓ0-norm regularization based accelerate IHT (AIHT) [39], (4)

the difference of the ℓ1 and ℓ2-norms (ℓ1−2) regularization

based ℓ1−2-DCA [31]. We choose the representative R (x)

as R (x) = ‖x‖1, ‖x‖2, ‖x‖1 − ‖x‖2 for comparing. All

experiments are performed in MATLAB 2015b running on

ASUS laptop with Intel (R) Core (TM) i7-8550U CPU, 8 GB

of RAM and 64-bit Windows 10 operating system.

We focus on the following least squares problem:

min
x∈RN

1

2
‖Ax− b‖22 + ρP (x) (40)

and conduct experiments on simulated vector signals.

We test two types of matrices A: the random Gaussian ma-

trix with i.i.d. standard Gaussian entries and being normalized

that each column has unit norm, and the random partial DCT

matrix which is formed by randomly select rows from the full

DCT matrix. For the original sparse vector x̄, we generate

it with random index set and draw non-zero elements with

standard normal distribution. The observation is b = Ax̄+n,

where n is zeros for the noiseless test, and Gaussian noise for

the contaminated measurements. The initial value for all the

methods is an approximated solution of the ℓ1 minimization

using ADMM after N iterations. The max iteration for all

these methods is 5N except for DCA, whose max internal

iteration is 5N and the max external iteration is 20. The

stopping condition is set to be
‖x[k]−x

[k−1]‖
2

max{‖x[k]‖
2
,1} < 10−5.

In the first study, we look at the success rates with 100

random instances under the noise-free condition, in which we

set the size of matrices A as 64 × 256. Here we consider

a recovery x∗ as successful if the relative error of recovery

(Rel.Err) satisfies ‖x∗ − x̄‖2/‖x̄‖2 ≤ 10−3. In addition, we

set sparsity parameter s to the ground truth struth for the

proposed s-difference P (x). Fig 3 plots the success rates

of the comparing methods for both the Gaussian matrix and

10

0 5 10 15 20 25 30 35 40

Sparsity S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

re
q

u
e

n
cy

 o
f

su
cc

e
ss

L1-ADMM

L1-L2-DCA

Half thresholding

s-difference (L1)

s-difference (L1-L2)

s-difference (L2)

0 5 10 15 20 25 30 35 40

Sparsity S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

q
u

e
n

cy
 o

f
su

cc
e

ss

L1-ADMM

L1-L2-DCA

Half thresholding

s-difference (L1)

s-difference (L1-L2)

s-difference (L2)

(a) Gaussian matrix

(b) partial DCT matrix

Fig. 3. Success rates versus sparsity for compared methods: (a) Gaussian

matrix, (b) partial DCT matrix.

the partial DCT matrix. From this, we can find that the s-

difference regularization with R (x) = ‖x‖1 has the best

performance for both Gaussian matrix and partial DCT matrix,

the R (x) = ‖x‖1 − ‖x‖2 is comparable to ℓ1−2-DCA,

followed by R (x) = ‖x‖2 and half thresholding, which

outperform the ℓ1-ADMM.

In the second study, we focus on the recovery quantity

of these methods under different sizes of matrix. For the

noiseless case , we set ρ = 10−1 for FBS and ρ = 10−6

for the ADMM and other types methods, set β = 10ρ,

and consider (M,N, struth) = (256i, 1024i, 48i) for i =

1, 2, · · · , 8. Here we also set the sparsity threshold parameter

to struth for the AIHT and s -difference P (x). For each

triple (M,N, struth), we generate 30 random realizations.

Table 2 and 3 list the mean and standard deviation of Rel.Err

for Gaussian matrix and partial DCT matrix, respectively.

We also test these methods in presence of Gaussian noise

as n = 0.01 ∗ randn (M, 1). We set ρ = 1 for FBS and

ρ = 10−3 for the ADMM and other types methods, and

consider (M,N, struth) = (256i, 1024i, 48i) for i = 1, 2, 3, 4.

The recovery performance is listed in Table 4 and 5 for

comparing. From Table 2 to 5, we can find that the s-difference

P (x) with the ground truth sparsity threshold parameter can

provide a quite competitive or slightly superior performance

when comparing with AIHT and other methods under the

noise-free conditions. However, under the condition of noise,

AIHT performance decreases rapidly, while the s -difference

P (x) still able to provide a relatively best result.

In the third study, we focus on the accuracy and efficiency

of the methods under fixed matrix A and the sparsity level

as (M,N, struth) = (256, 1024, 48). To illustrate the benefit

of the closed-form solutions of proposed s-difference regu-

larization, we selectively analysis the performance of DCA,

PDCA and FBS under the condition of the same regularization

P (x) = ‖x‖1 − ‖xs‖1. The DCA solves the minimization

problem (40) by using (34), that is

x[k+1] = argmin
x∈N

{
1

2
‖Ax− b‖22 + ρ‖x‖1 − ρ

〈

w[k],x
〉}

(41)

where w[k] ∈ ∂
∥
∥xs[k]

∥
∥
1
. This problem can be solved by

ADMM as

min
x,v∈RN

{
1

2
‖Ax− b‖22 + ρ‖v‖1 − ρ

〈

w[k],x
〉}

subject to x− v = 0

(42)

We denote this method as DCA-ADMM for short. The

PDCA solve the minimization problem (40) by using (37),

that is

x[k+1] = arg min
x∈RN

{ρ‖x‖1

+
L

2

∥
∥
∥
∥
x−

(

x[k] − 1

L

(

AT
(

Ax[k] − b
)

− ρw[k]
))

∥
∥
∥
∥

2

2

}

(43)

and it can be solved by using soft shrinkage operator (18).

We denote this method as PDCA for short. The FBS solve the

problem by using closed-form solution (17) in Remark 7.

Figure 4 shows the convergence performance of three meth-

ods under noise-free condition with partial DCT matrix, which

is measured by the Log-Rel.Err (defined as 10log10 (Rel.Err))

versus iteration numbers. Table 6 lists the mean of relative

error, iteration number and computational time (in seconds)

under the noise-free and Gaussian noise conditions as n =

0.01 ∗ randn (M, 1). From Figure 4 and Table 6, it is clear

11

0 50 100 150 200 250 300 350 400 450 500

Iteration number

-60

-50

-40

-30

-20

-10

0
Lo

g-
R

el
.E

rr

DCA-ADMM
PDCA
FBS

Fig. 4. Convergence performance of DCA-ADMM, PDCA and FBS for

solving the s-difference ‖x‖
1
− ‖xs‖

1
regularization problem.

that the FBS with closed-form method leads to less error and

converges faster than the DCA type methods.

From the definition of s-difference P (x), it is easy to

understand that the parameter s plays an important role in

the algorithm. Here we focus on the problem of how the

select the proper s with the fixed matrix A and struth

as (M,N, struth) = (256, 1024, 48). Figure 5 shows the

performance of s-difference P (x) = (‖x‖1 − ‖x‖2) −
(‖xs‖1 − ‖xs‖2) under different s from 1 to 1000. In

addition to use the FBS with closed-form solution as

Proposition 8, we also consider the approximate DCA-

ADMM using the similar solution of (42) but set w[k] ∈
∂
(∥
∥x[k]

∥
∥
2
+
∥
∥xs[k]

∥
∥
1
−
∥
∥xs[k]

∥
∥
2

)
. This method is not a true

DCA due to that the decomposition is not the convex function,

however, this DCA-ADMM still works well as shown in

Figure 5. From Figure 5, we can find that once the parameter

s is less than the true sparsity struth, the performance of

FBS with closed-form will drop sharply, however, the DCA-

ADMM almost unaffected. This is probably because that the

FBS solve the problem as the hard thresholding way when
∣
∣yπy(s+1)

∣
∣ is smaller than λ in Proposition 8, whereas the

DCA-ADMM make full use of the nonconvex P (x) and bring

better results than the ℓ1-norm methods. According to this

deduction, designing an adaptive penalty parameter for FBS

is quite necessary, which also is our future work. The good

performance of DCA-ADMM also shows the superiority of

this s-difference regularization from another angle.

From Figure 5, we also have a suggestion that if we

already have a preliminary range of judgements about spar-

sity based on prior knowledge, i.e., struth ∈ (smax, smin),

then we suggest that s decreases from the smax, but no

less than smin, or just set s be equal to smax when the

range of sparsity is not very large. Here, we also intro-

0 200 400 600 800 1000
 parameter s

-50

-40

-30

-20

-10

0

L
o

g
-R

e
l.E

rr

L1-ADMM

s-difference L1-L2 (DCA-ADMM)

s-difference L1-L2 (FBS)

0 200 400 600 800 1000
 parameter s

-60

-50

-40

-30

-20

-10

0

L
o

g
-R

e
l.E

rr

L1-ADMM

s-difference L1-L2 (DCA-ADMM)

s-difference L1-L2 (FBS)

(a) Gaussian matrix

(b) partial DCT matrix

Fig. 5. Recovery performance of DCA-ADMM and FBS for solving the s-

difference regularization problem with different parameter s : (a) Gaussian

matrix, (b) partial DCT matrix.

duce an adjustment strategy to estimate the parameter s

when we don’t know the prior sparsity range: set s[k+1] =

size

(

find

(
∣
∣x[k]

∣
∣ ≥ min

{∣
∣
∣
∣
x
[k−1]

πx(s[k−1])

∣
∣
∣
∣
, ε

}))

, where con-

stant ε > 0 is given. Some experiments show that this

adjustment strategy usually can find the approximate true

sparsity level struth, which means that it maybe can be used

to estimate the sparsity of the unknown signal.

VII. CONCLUSION

In this paper, we propose a new s-difference type penalty

function for the sparse optimization problem, which is the

difference of the normal convex or nonconvex penalty function

and its corresponding s-truncated function. To solve this

nonconvex regularization problem, we select the FBS method

based on the proximal operator, which have some cheap

closed-form solutions for commonly used R (x), such as

ℓ1, ℓ2, ℓ1−2 and so on. The convergence and effectiveness

of the proposed algorithm are proved and demonstrated by

the theoretical proof and numerical experiments, respectively.

12

TABLE II

MEAN AND STANDARD DEVIATION OF REL.ERR FOR DIFFERENT METHODS WITH GAUSSIAN MATRIX UNDER NOISELESS CONDITION

M N strue ℓ1-ADMM ℓ1−2-DCA
Half

thresholding
AIHT

s-difference

(ℓ1)

s-difference

(ℓ1−2)

s-difference

(ℓ2)

256 1024 48
1.098e-04

(1.774e-08)

2.603e-05

(3.222e-11)

2.495e-05

(1.587e-11)

1.370e-05

(6.481e-12)

1.368e-05

(6.382e-12)

1.332e-05

(6.129e-12)

1.346e-05

(6.233e-12)

512 2048 96
1.412e-04

(2.242e-08)

2.491e-05

(1.536e-11)

2.484e-05

(8.046e-11)

1.296e-05

(5.700e-12)

1.334e-05

(5.284e-12)

1.356e-05

(4.390e-11)

1.364e-05

(4.326e-11)

768 3072 144
1.166e-04

(2.099e-08)

2.652e-05

(6.496e-12)

2.586e-05

(4.274e-12)

1.335e-05

(2.423e-12)

1.323e-05

(2.383e-12)

1.301e-05

(2.312e-12)

1.308e-05

(2.340e-12)

1024 4096 192
1.522e-04

(3.135e-08)

2.552e-05

(7.715e-12)

2.495e-05

(3.871e-12)

1.243e-05

(1.403e-12)

1.284e-05

(1.469e-12)

1.261e-05

(1.403e-12)

1.267e-05

(1.418e-12)

1280 5120 240
1.239e-04

(1.503e-08)

2.682e-05

(9.676e-12)

2.523e-05

(1.890e-12)

1.278e-05

(7.650e-13)

1.261e-05

(7.359e-13)

1.241e-05

(7.275e-13)

1.247e-05

(7.341e-13)

1536 6144 288
1.038e-04

(1.404e-08)

2.586e-05

(8.843e-12)

2.543e-05

(2.426e-12)

1.330e-05

(1.589e-12)

1.327e-05

(1.581e-12)

1.293e-05

(1.509e-12)

1.298e-05

(1.520e-12)

1792 7168 336
1.518e-04

(1.650e-08)

2.647e-05

(9.289e-12)

2.525e-05

(2.889e-12)

1.271e-05

(1.313e-12)

1.298e-05

(1.470e-12)

1.275e-05

(1.394e-12)

1.280e-05

(1.405e-12)

2018 8192 384
1.665e-04

(1.744e-08)

2.602e-05

(7.737e-12)

2.550e-05

(2.028e-12)

1.325e-05

(1.623e-12)

1.318e-05

(1.601e-12)

1.287e-05

(1.482e-12)

1.291e-05

(1.493e-12)

TABLE III

MEAN AND STANDARD DEVIATION OF REL.ERR FOR DIFFERENT METHODS WITH PARTIAL DCT MATRIX UNDER NOISELESS CONDITION

M N strue ℓ1-ADMM ℓ1−2-DCA
Half

thresholding
AIHT

s-difference

(ℓ1)

s-difference

(ℓ1−2)

s-difference

(ℓ2)

256 1024 48
1.357e-04

(3.142e-08)

2.318e-05

(3.280e-11)

1.031e-05

(4.354e-12)

4.117e-06

(2.503e-13)

3.059e-06

(2.068e-13)

2.882e-06

(1.705e-13)

3.024e-06

(1.846e-13)

512 2048 96
6.404e-05

(5.610e-09)

2.503e-05

(2.257e-11)

1.127e-05

(5.751e-12)

4.226e-06

(1.482e-13)

3.117e-06

(1.296e-13)

2.975e-06

(1.060e-13)

3.081e-06

(1.119e-13)

768 3072 144
1.031e-04

(2.015e-08)

2.446e-05

(2.514e-11)

1.260e-05

(2.958e-12)

4.351e-06

(1.998e-13)

3.207e-06

(1.668e-13)

3.089e-06

(1.369e-13)

3.178e-06

(1.439e-13)

1024 4096 192
1.088e-04

(1.984e-08)

2.480e-05

(1.353e-11)

1.459e-05

(2.107e-12)

4.339e-06

(1.024e-13)

3.193e-06

(8.038e-14)

3.073e-06

(6.256e-14)

3.150e-06

(6.618e-14)

1280 5120 240
1.328e-04

(1.753e-08)

2.499e-05

(2.367e-11)

1.434e-05

(1.907e-12)

4.403e-06

(5.093e-13)

3.229e-06

(4.012e-13)

3.122e-06

(2.613e-13)

3.191e-06

(2.755e-13)

1536 6144 288
7.135e-05

(5.683e-09)

2.509e-05

(2.298e-11)

1.495e-05

(2.081e-12)

4.199e-06

(6.557e-14)

3.101e-06

(7.162e-14)

2.965e-06

(4.915e-14)

3.026e-06

(5.044e-14))

1792 7168 336
1.378e-04

(1.083e-08)

2.232e-05

(3.147e-11)

1.301e-05

(1.748e-12)

4.350e-06

(5.552e-14)

3.244e-06

(5.568e-14)

3.079e-06

(3.362e-14)

3.138e-06

(3.464e-14)

2018 8192 384
1.300e-04

(1.383e-08)

2.478e-05

(1.532e-11)

1.506e-05

(2.359e-12)

4.260e-06

(3.392e-14)

3.162e-06

(4.226e-14)

3.016e-06

(2.550e-14)

3.069e-06

(2.600e-14)

TABLE IV

MEAN AND STANDARD DEVIATION OF REL.ERR FOR DIFFERENT METHODS WITH GAUSSIAN MATRIX UNDER GAUSSIAN NOISE

M N strue ℓ1-ADMM ℓ1−2-DCA
Half

thresholding
AIHT

s-difference

(ℓ1)

s-difference

(ℓ1−2)

s-difference

(ℓ2)

256 1024 48
1.198e-01

(6.182e-04)

1.039e-01

(4.021e-04)

7.307e-02

(1.456e-04)

2.094e-01

(9.742e-04)

6.190e-02

(2.614e-04))

6.034e-02

(2.923e-04)

6.066e-02

(2.915e-04)

512 2048 96
1.167e-01

(1.065e-04)

1.050e-01

(8.154e-05)

8.861e-02

(9.510e-05)

2.139e-01

(5.217e-04)

6.174e-02

(2.542e-04)

5.929e-02

(1.054e-04)

5.906e-02

(1.021e-04)

768 3072 144
1.189e-01

(1.128e-04)

1.088e-01

(9.662e-05)

1.016e-01

(1.297e-04)

2.144e-01

(5.049e-04)

6.192e-02

(2.892e-04)

5.886e-02

(6.235e-05))

5.901e-02

(6.197e-05)

1024 4096 192
1.221e-01

(6.933e-05)

1.132e-01

(5.775e-05)

1.093e-01

(9.770e-05)

2.210e-01

(3.146e-04)

6.188e-02

(1.819e-04)

5.777e-02

(5.537e-05)

5.797e-02

(5.548e-05)

13

TABLE V

MEAN AND STANDARD DEVIATION OF REL.ERR FOR DIFFERENT METHODS WITH PARTIAL DCT MATRIX UNDER GAUSSIAN NOISE

M N strue ℓ1-ADMM ℓ1−2-DCA
Half

thresholding
AIHT

s-difference

(ℓ1)

s-difference

(ℓ1−2)

s-difference

(ℓ2)

256 1024 48
7.485e-02

(1.777e-04)

6.372e-02

(1.017e-04)

4.190e-02

(3.338e-05)

1.834e-01

(1.216e-03)

4.264e-02

(2.563e-04))

3.192e-02

(4.218e-05)

3.306e-02

(3.825e-05)

512 2048 96
7.503e-02

(4.682e-05)

6.744e-02

(4.305e-05)

5.313e-02

(3.419e-05)

1.791e-01

(2.688e-04)

4.211e-02

(1.904e-04)

3.180e-02

(3.433e-05)

3.170e-02

(3.092e-05)

768 3072 144
7.513e-02

(3.845e-05)

6.852e-02

(2.634e-05)

6.195e-02

(2.829e-05)

1.813e-01

(1.902e-04)

4.448e-02

(7.818e-05)

3.035e-02

(7.943e-06))

3.052e-02

(9.563e-06)

1024 4096 192
7.512e-02

(3.957e-05)

6.951e-02

(2.775e-05)

6.800e-02

(2.794e-05)

1.796e-01

(1.075e-04)

4.369e-02

(9.062e-05)

3.031e-02

(8.936e-06)

3.043e-02

(9.242e-06)

TABLE VI

MEAN OF RELATIVE ERROR, ITERATION NUMBER AND COMPUTATIONAL TIME (SEC.) UNDER THE NOISE-FREE AND GAUSSIAN NOISE CONDITIONS

Methods

Noiseless condition

Gaussian matrix

Noiseless condition

partial DCT matrix

Noisy condition

Gaussian matrix

Noisy condition

partial DCT matrix

Rel.Err Iter/Time Rel.Err Iter/Time Rel.Err Iter/Time Rel.Err Iter/Time

ℓ1-ADMM 1.098E-04 1.357E-04 1.198E-01 7.485E-02

‖x‖
1
− ‖xs‖

1
(DCA-ADMM) 2.298E-05 178/0.05 2.501E-05 170/0.05 7.182E-02 302/0.08 4.430E-02 511/0.12

‖x‖
1
− ‖xs‖

1
(PDCA) 3.735E-05 530/0.13 4.063E-05 460/0.12 1.179E-01 5120/1.46 1.005E-01 3559/1.08

‖x‖
1
− ‖xs‖

1
(FBS) 1.368E-05 126/0.04 3.059E-06 65/0.03 6.190E-02 195/0.06 4.264E-02 108/0.05

In addition, we observed that the DCA with s-difference

regularization gives better recovery results than the FBS using

close-form solutions when the parameter s is less than the true

sparsity, which motivate us to find an adaptive strategy for the

penalty and sparsity parameters in the future.

APPENDIX A

PROOF OF PROPOSITION 1

To prove the Proposition 1, we use the following Lemma:

Lemma 1. If R : R
N → R is convex, then for any s ∈

{1, 2, · · · , N}, R (xs) is also convex.

Proof: let v = diag {v1, v2, · · · , vN}, since R (x) is

convex, then R (vx) is convex. Then the R (xs) can be written

as a pointwise maximum of convex functions:

R (xs) = max
v

{R (vx) : vi ∈ {0, 1} , ‖v‖1 = s} (A.1)

Then we have that R (xs) is convex.

1) For the convex and separable R(x) = ‖x‖pp (p ≥ 1), such

as ‖x‖1 and ‖x‖22, and the convex and non-separable functions

R(x) = ‖x‖p, (p > 1), such as R(x) = ‖x‖2, it is obviously

that they fulfilling (a) and (b). Then by using Lemma 1, it

completes the Property 1(c).

2) For the non-convex and separable functions R (x) =
N∑

i=1

ri (xi), where ri (xi) are equations (A.2), (A.3) and (A.4)

corresponding to LSP, MCP and SCAD, respectively.

ri (xi) = log (1 + |xi|/θ) , θ > 0 (A.2)

ri (xi) =

{

|xi| − x2
i

/
(2θ), |xi| ≤ θ

θ/2, |xi| > θ
, θ > 0 (A.3)

ri (xi) =







|xi| , |xi| < 1
2θ|xi|−x2

i−1
2(θ−1) , 1 ≤ |xi| < θ

(θ + 1)/2, |xi| ≥ θ

, θ > 2 (A.4)

Property 1(a) and (b) is obvious. Then we need give the DC

formulations for P (x). Take the LSP for example, we have

that

‖xs‖1

θ −R (xs) =

max
v

{
N∑

i=1

|vixi|
θ − log

(

1 + |vixi|
θ

)

: vi ∈ {0, 1} , ‖v‖1 = s

}

(A.5)

which means that ‖xs‖1/θ −R (xs) is convex as |vixi|/θ −
log (1 + |vixi|/θ) is convex. Then we can rewrite P (x) as

P (x) = R (x) −R (xs)

= {‖x‖1/θ + (‖xs‖1/θ −R (xs))}
︸ ︷︷ ︸

P1(x)

− {‖xs‖1/θ + (‖x‖1/θ −R (x))}
︸ ︷︷ ︸

P2(x)

(A.6)

where P1 (x) and P2 (x) are two convex functions. For MCP

and SCAD, we can obtain similar formulations in the same

way.

14

3) For the non-convex and non-separable functions, when

R (x) = ‖x‖1 − a‖x‖2, 0 < a ≤ 1, we have R (x) =

R (−x). When ‖x‖0 ≤ s, it is easy to see that P (x) =

0. When P (x) = 0, we have ‖x‖0 ≤ s; otherwise

‖x‖0 > s, then ‖x‖22 ≤ ‖xs‖22 + (‖x‖1 − ‖xs‖1)
2

<

(‖xs‖2 + ‖x‖1 − ‖xs‖1)
2
, then we have ‖x‖2 − ‖xs‖2 <

‖x‖1 − ‖xs‖1, which means that P (x) = R (x) − R (xs) =

‖x‖1−‖xs‖1−a (‖x‖2 − ‖xs‖2) > 0, and this is contradiction

to P (x) = 0. Meanwhile, P (x) can be formulated as

P (x) = R (x)−R (xs)

= {‖x‖1 + a‖xs‖2}
︸ ︷︷ ︸

P1(x)

−{‖xs‖1 + a‖x‖2}
︸ ︷︷ ︸

P2(x)

(A.7)

when R (x) is the non-separable LSP, denoted as R (x) =

log (1 + ‖x‖2/θ) , θ > 0, Property 1(a) and (b) are obvious.

Note that ‖xs‖2/θ −R (xs) can be thought as a composition

function h ◦ g, where h (x) = |x|/θ − log (1 + |x|/θ) and

g (x) = ‖xs‖2, by using the above deduction, we have that

‖xs‖2/θ −R (xs) is convex. Then P (x) can be rewritten as

P (x) = R (x)−R (xs)

= {‖x‖2/θ + (‖xs‖2/θ −R (xs))}
︸ ︷︷ ︸

P1(x)

− {‖xs‖2/θ + (‖x‖2/θ −R (x))}
︸ ︷︷ ︸

P2(x)

(A.8)

For the non-separable type MCP and SCAD, we can obtain

similar formulations in the same way.

APPENDIX B

PROOF OF THEOREM 1

Proof: This theorem can be proved in a similar manner

to Theorem 17.1 in [71]. Let x̂ be an optimal solution of (3),

that is,

φ (x̂) ≤ φ (x) for all x with ‖x‖0 ≤ s (A.9)

Since xt minimizes (8) at ρ = ρt, we have that

φ (xt) + ρtP (xt) ≤ φ (x̂) + ρtP (x̂) = φ (x̂) (A.10)

By rearranging this expression, we have

R (xt)−R (xs
t) ≤

1

ρt
(φ (x̂)− φ (xt)) (A.11)

Suppose that x̄ is a limit point of {xt}, then there exits an

infinite subsequence T such that limt∈T xt = x̄. By taking the

limit as t → ∞, t ∈ T , on both side of (A.11)

0 ≤ R (x̄)−R (x̄s) ≤ lim
t∈T

1

ρt
(φ (x̂)− φ (xt)) = 0 (A.12)

Therefore, we have that R (x̄)−R (x̄s) = 0, which means that

x̄ is feasible to (3). Moreover, by taking the limit as t → ∞
for t ∈ T on (A.10), we have that

φ (x̄) ≤ φ (x̄) + lim
t∈T

ρtP (xt) ≤ φ (x̂) (A.13)

Since x̄ is feasible to (3) and x̂ is an optimal solution of (3),

then x̄ is also optimal to (3).

APPENDIX C

PROOF OF PROPOSITION 2

Proof: For simplicity, we use x̄ instead of x̄ρ for an opti-

mal solution of (8) with some ρ. First, we proof that ‖x̄‖0 ≤ s.

If ‖x̄‖0 > s, which means that
∥
∥x̄(s+1) − x̄s

∥
∥
2
> 0. We

construct a vector x̃ as x̃ = x̄ + x̄s − x̄(s+1), easily we have

that x̃s = x̄s. When ρ > β/η, we have

F (x̄)− F (x̃)

= φ (x̄) + ρ (R (x̄)−R (x̄s))− φ (x̃)− ρ (R (x̃)−R (x̃s))

= φ (x̄)− φ (x̃) + ρ (R (x̄)−R (x̃))

≥ −β‖x̄− x̃‖2 + ρη‖x̄− x̃‖2
= (ρη − β)

∥
∥
∥x̄

(s+1) − x̄s
∥
∥
∥
2
> 0

(A.14)

This contradicts the optimality of x̄. Then we have that ‖x̄‖0
satisfies the s-sparse constraint of (3). Let x̂ be an optimal

solution of (3), then we have

φ (x̄)− φ (x̂) = F (x̄)− ρP (x̄)− F (x̂) + ρP (x̂)

= F (x̄)− F (x̂) ≤ 0
(A.15)

The inequality comes from that x̄ is the optimal solution of

(8). This means that x̄ is also optimal to (3).

APPENDIX D

PROOF OF PROPOSITION 3

Proof: Similar to the previous proof of Proposition 2, we

use x̄ instead of x̄ρ for an optimal solution of (8) with some

ρ. Assume by contradiction that ‖x̄‖0 > s, which means that
∥
∥xs+1 − xs

∥
∥
2
> 0. By constructing x̃ = x̄+ x̄s − x̄(s+1), we

have

15

F (x̄)− F (x̃)

= φ (x̄) + ρ (R (x̄)−R (x̄s))− φ (x̃)− ρ (R (x̃)−R (x̃s))

= φ (x̄)− φ (x̃) + ρ (R (x̄)−R (x̃))

≥
〈

∇φ (x̄) , x̄(s+1) − x̄s
〉

− L

2

∥
∥
∥x̄

(s+1) − x̄s
∥
∥
∥

2

2

+ ρη
∥
∥
∥x̄

(s+1) − x̄s
∥
∥
∥
2

≥
∥
∥
∥x̄

(s+1) − x̄s
∥
∥
∥
2

(

ρη − ‖∇φ (x̄)‖2 −
LC

2
√
s+ 1

)

≥
∥
∥
∥x̄

(s+1) − x̄s
∥
∥
∥
2

(

ρη − ‖∇φ (0)‖2 −
(

1 +
1

2
√
s+ 1

)

LC

)

> 0
(A.16)

The first inequality using Assumption 1 that

φ (y) ≤ φ (x)+ 〈∇φ (x) ,y − x〉+ L

2
‖y − x‖22 , ∀x,y ∈ R

N

(A.17)

The third inequality follows from that

‖∇φ (x̄)‖2 ≤ ‖∇φ (0)‖2 + ‖∇φ (x̄)−∇φ (0)‖2
≤ ‖∇φ (0)‖2 + LC

(A.18)

(A.16)) contradicts the optimality of x̄, then we have that ‖x̄‖0
satisfies the s-sparse constraint of (3). Then we can prove

that x̄ is also optimal to (3) similar as the previous proof of

Proposition 2.

APPENDIX E

PROOF OF PROPOSITION 6

Proof: Suppose that x∗ is the optimal solution of (12).

First, we prove that if |yi| >
∣
∣yj

∣
∣.we have |x∗

i | ≥
∣
∣x∗

j

∣
∣;

otherwise |x∗
i | <

∣
∣x∗

j

∣
∣, then we construct x̃ ∈ R

N as

x̃∗
i = sign (yi)

∣
∣x∗

j

∣
∣ and x̃∗

j = sign (yj) |x∗
i |. Whether i, j ∈ Γs

y

or i, j /∈ Γs
y

or i ∈ Γs
y
, j /∈ Γs

y
, we always have that R (x̃) =

R (x∗) and R (x̃s) = R (x∗s). As ‖x̃− y‖22 < ‖x∗ − y‖22,

then we can obtain E (x̃) < E (x∗). However, this contradicts

the optimality of x∗.

Next, we prove that

∣
∣
∣x∗

πy(s+1)

∣
∣
∣ ≤

∣
∣yπy(s)

∣
∣. To prove this,

we need to prove that

∣
∣
∣x∗

πy(j)

∣
∣
∣ ≤

∣
∣yπy(s)

∣
∣ for all j ∈

{s+ 1, s+ 2, · · · , N}. We can do this one by one, i.e., we

look at x∗
πy(N) first. Easily, we have

∣
∣
∣x∗

πy(N)

∣
∣
∣ ≤

∣
∣yπy(s)

∣
∣;

otherwise we construct x̃πy(N) = sign
(
yπy(N)

) ∣
∣yπy(s)

∣
∣,

as ri is strictly increasing on R+ and symmetrical, thus

we have the contradiction E (x̃) < E (x∗), then we have∣
∣
∣x∗

πy(N)

∣
∣
∣ ≤

∣
∣yπy(s)

∣
∣. By using this deduction, we can prove

that

∣
∣
∣x∗

πy(N−1)

∣
∣
∣ ≤

∣
∣yπy(s)

∣
∣ in a similar way. At last, we have

∣
∣
∣x∗

πy(s+1)

∣
∣
∣ ≤

∣
∣yπy(s)

∣
∣.

Rewrite E (x) as

E (x) =
s∑

j=1

1

2λ

(
xπy(j) − yπy(j)

)2

+

N∑

j=s+1

(
1

2λ

(
xπy(j) − yπy(j)

)2
+ rπy(j)

(
xπy(j)

)
)

(A.19)

As

∣
∣
∣x∗

πy(s+1)

∣
∣
∣ ≤

∣
∣yπy(s)

∣
∣, we have that x∗

πy(j)
= yπy(j), j =

1, 2, · · · , s and x∗
πy(j)

=
(
1 + λ∂rπy(j)

)−1 (
yπy(j)

)
, j = s+

1, s+ 2, · · · , N . This completes the proof.

APPENDIX F

PROOF OF PROPOSITION 7

Proof: First, we show that when R (x) = ‖x‖2, we also

have if |yi| >
∣
∣yj

∣
∣.we have |x∗

i | ≥
∣
∣x∗

j

∣
∣. Otherwise, we can

always construct a x̃ ∈ R
N , which swap the absolute value

of x∗
i and x∗

j as the same way in the proof of Proposition 6,

then we can obtain a smaller objective value. As proved in

Proposition 4, x∗ = 0 if and only if y = 0. Then, we only

need to consider the case y 6= 0.

1) If
∣
∣yπy(s)

∣
∣ 6=

∣
∣yπy(s+1)

∣
∣, then we have

{πx (1) , πx (2) , · · · , πx (s)} = {πy (1) , πy (2) , · · · , πy (s)}
(A.20)

Easily, we have that if yπy(s+1) = 0, then x∗ = y and

E (x∗) = 0.

When yπy(s+1) 6= 0, the first-order optimality condition

optimality condition of minimizing E (x) is that






(

1 + λ
‖x‖2

− λ
‖xs‖2

)

xi = yi, i ∈ Γs
y

(

1 + λ
‖x‖2

)

xi = yi, i ∈ ΓN
y
\Γs

y

(A.21)

By using Proposition 5, we have that 1 + λ
‖x‖2

− λ
‖xs‖2

≥ 0

in (A.21). Using (A.21), we have






(

1 + λ
‖x‖2

)

‖xs‖2 = ‖ys‖2 + λ

‖x‖2 =
λ‖x−x

s‖2

‖y−ys‖2−‖x−xs‖2

(A.22)

Substitute one equation of (A.22) into another, we have

‖xs‖2 =
‖ys‖2 + λ

‖y − ys‖2
‖x− xs‖2 (A.23)

By using the equation ‖x‖2 =
√

‖xs‖22 + ‖x− xs‖22, we have

‖x‖2 =

√

‖y − ys‖22 + (‖ys‖2 + λ)2 − λ (A.24)

‖xs‖2 = (‖ys‖2 + λ)

√

‖y − ys‖22 + (‖ys‖2 + λ)
2 − λ

√

‖y − ys‖22 + (‖ys‖2 + λ)
2

(A.25)

16

‖x− xs‖2 = ‖y − ys‖2

√

‖y − ys‖22 + (‖ys‖2 + λ)
2 − λ

√

‖y − ys‖22 + (‖ys‖2 + λ)
2

(A.26)

Substitute these into (A.21), then we have

x∗
i =







(‖ys‖2+λ)
(

√

‖y−ys‖2
2+(‖ys‖2+λ)2−λ

)

‖ys‖2

√

‖y−ys‖2
2+(‖ys‖2+λ)2

yi, i ∈ Γs
y

√

‖y−ys‖2
2+(‖ys‖2+λ)

2−λ
√

‖y−ys‖2
2+(‖ys‖2+λ)2

yi, i ∈ ΓN
y
\Γs

y

(A.27)

2) If
∣
∣yπy(s)

∣
∣ =

∣
∣yπy(s+1)

∣
∣, then we have a similar conclu-

sion as Remark 6.

From the above deduction, we have the expression of x∗ in

(21) and (22) when R (x) = ‖x‖2. This completes the proof.

APPENDIX G

PROOF OF PROPOSITION 8

Proof: Similar to the previous proof of Proposition 6, we

have that

|x∗
i | ≥

∣
∣x∗

j

∣
∣ if |yi| > |yj| (A.28)

As proved in Proposition 4, x∗ = 0 if and only if

y = 0. Then, we just consider the condition of y 6= 0.

Firstly, we suppose that
∣
∣yπy(s)

∣
∣ 6=

∣
∣yπy(s+1)

∣
∣, then we have

{πx (1) , πx (2) , · · · , πx (s)} = {πy (1) , πy (2) , · · · , πy (s)}.

The first-order optimality condition of minimizing E (x) is

that
(

1− aλ

‖x‖2
+

aλ

‖xs‖2

)

xi = yi, i ∈ Γs
y

(A.29)

(

1− aλ

‖x‖2

)

xi = yi − λqi, i ∈ ΓN
y
\Γs

y
(A.30)

where q ∈ ∂‖x− xs‖1 is a subgradient.

1) First case, when
∣
∣yπy(s+1)

∣
∣ > λ. Easily we have

1 − aλ
‖x∗‖2

> 0 by using Proposition 5: x∗
i

{

≥ 0, if yi > 0

≤ 0, if yi < 0
.

When yπy(s+1) > λ, then yπy(s+1) − λq > 0, so we have

1− aλ
‖x∗‖2

> 0; when yπy(s+1) < −λ, then yπy(s+1)−λq < 0,

and we also have 1− aλ
‖x∗‖2

> 0.

For i ∈ ΓN
y
\Γs

y
, if |yi| ≤ λ, then x∗

i = 0. Otherwise, for

this i, if 0 < yi ≤ λ, then x∗
i > 0 based on Proposition 5. As

1− aλ
‖x∗‖2

> 0, the left-hand side (LHS) of (A.30) is positive,

while the right-hand side (RHS) of (A.30) nonpositive; if

−λ ≤ yi < 0, then x∗
i < 0 based on Proposition 5. The LHS

of (A.30) is negative, while the RHS of (A.30) is nonnegative;

if yi = 0, we have x∗
i = 0 based on (A.28).

For i ∈ ΓN
y
\Γs

y
, if any |yi| > λ, then we have x∗

i 6= 0 based

on (A.30). For this i, we construct a vector z ∈ R
N as

zi =

{

shrink (yi, λ) , i ∈ ΓN
y
\Γs

y

yπy(1), i ∈ Γs
y

(A.31)

For i ∈ ΓN
y
\Γs

y
, we have

(

1− aλ
‖x‖2

)

xi = zi, then we can

obtain
(

1− aλ

‖x‖2

)

‖x− xs‖2 = ‖z− zs‖2 (A.32)

For i ∈ Γs
y

, we have
(

1− aλ

‖x‖2
+

aλ

‖xs‖2

)

‖xs‖2 = ‖ys‖2 (A.33)

Substitute (A.32) into (A.33), we have

‖xs‖2 =
‖ys‖2 − aλ

‖z− zs‖2
‖x− xs‖2 (A.34)

By using the equation ‖x‖2 =
√

‖xs‖22 + ‖x− xs‖22, we have

‖x− xs‖2 = ‖z− zs‖2 +
aλ‖z− zs‖2

√

‖z− zs‖22 + (‖ys‖2 − aλ)
2

(A.35)

‖xs‖2 = (‖ys‖2 − aλ)



1 +
aλ

√

‖z− zs‖22 + (‖ys‖2 − aλ)
2





(A.36)

‖x‖2 = ‖z− zs‖2

√

1 +
(‖ys‖2 − aλ)

2

‖z− zs‖22
+aλ (A.37)

Substitute these into (A.29) and (A.30), then we have: for

i ∈ Γs
y

,

x∗
i =

‖ys‖2 − aλ

‖ys‖2



1 +
aλ

√

‖z− zs‖22 + (‖ys‖2 − aλ)
2



 yi

(A.38)

for i ∈ ΓN
y
\Γs

y
,

x∗
i =



1 +
aλ

√

‖z− zs‖22 + (‖ys‖2 − aλ)2



 zi (A.39)

2) If
∣
∣yπy(s+1)

∣
∣ = λ, for i ∈ ΓN

y
\Γs

y
, suppose that there

are k components of yi having the same amplitude of λ, i.e.,
∣
∣yπy(s+1)

∣
∣ = · · · =

∣
∣yπy(s+k)

∣
∣ = λ >

∣
∣yπy(s+k+1)

∣
∣.

For i ∈ {πy (s+ k + 1) , πy (s+ k + 2) , · · · , πy (N)}, we

have x∗
i = 0. Otherwise, for this i, if 0 < yi < λ,

then x∗
i > 0 based on Proposition 5. Easily, we have

yi − λqi < 0 and 1 − aλ
‖x∗‖2

< 0 from (A.30). Meanwhile,

as
∣
∣yπy(s+1)

∣
∣ = λ, we have

∣
∣
∣x∗

πy(s+1)

∣
∣
∣ ≥ |x∗

i | > 0, then

yπy(s+1)−λqπy(s+1) = 0, and this contradicts to the equation
(

1− aλ
‖x∗‖2

)

x∗
πy(s+1) = yπy(s+1) − λqπy(s+1) in (A.30). If

17

−λ < yi < 0, then x∗
i < 0 based on Proposition 5, we have

yi − λqi > 0 and 1 − aλ
‖x∗‖2

< 0 from (A.30). However, as

yπy(s+1)−λqπy(s+1) = 0, this also contradicts to the equation
(

1− aλ
‖x∗‖2

)

x∗
πy(s+1) = yπy(s+1) − λqπy(s+1). If yi = 0, we

have x∗
i = 0 based on (A.28). Then we obtain that x∗

i = 0 for

i ∈ {πy (s+ k + 1) , πy (s+ k + 2) , · · · , πy (N)}.

For i ∈ {πy (s+ 1) , πy (s+ 2) , · · · , πy (s+ k)}, if there

exits x∗
i 6= 0, for this i we have yi − λqi = 0, then we obtain

1 − aλ
‖x∗‖2

= 0 and ‖x∗‖2 = aλ. Substitute this into (A.29),

we have ‖ys‖2 = aλ. As
∣
∣yπy(s+1)

∣
∣ = λ, then we have that

there exits x∗
i 6= 0 if and only if the conditions of a = 1,

s = 1,
∣
∣yπy(1)

∣
∣ = λ and ‖x∗‖2 = λ are all satisfied. In

this case, there are infinite many solutions, and all these x∗

should satisfy ‖x∗‖2 = λ, x∗
i yi ≥ 0 and x∗

i = 0 when i ∈
{πy (k + 2) , πy (k + 3) , · · · , πy (N)}. For example,

x∗
i =

{

sign
(
yπy(1)

)
λ, i = πy (1)

0, i ∈ {πy (2) , πy (3) , · · · , πy (N)}
(A.40)

or

x∗
i =

{
sign(yπy(i))λ

(k+1) , i ∈ {πy (1) , πy (2) , · · · , πy (k + 1)}
0, i ∈ {πy (k + 2) , πy (k + 3) , · · · , πy (N)}

(A.41)

When any of these conditions a = 1, s = 1,
∣
∣yπy(1)

∣
∣ = λ cannot be satisfied, we have x∗

i = 0 for

i ∈ {πy (s+ 1) , πy (s+ 2) , · · · , πy (s+ k)}. Then we have

x∗ = x∗s. Substitute this into (A.29), we have x∗
i = yi for

i ∈ Γs
y

. Then the solution x∗ can be expressed as

x∗
i =

{

yi, i ∈ Γs
y

0, i ∈ ΓN
y
\Γs

y

(A.42)

3) If 0 <
∣
∣yπy(s+1)

∣
∣ < λ, for i ∈ ΓN

y
\Γs

y
, suppose that

there are k components of yi having the same amplitude with

yπy(s+1), i.e.,
∣
∣yπy(s+1)

∣
∣ = · · · =

∣
∣yπy(s+k)

∣
∣ >

∣
∣yπy(s+k+1)

∣
∣.

For i ∈ {πy (s+ k + 1) , πy (s+ k + 2) , · · · , πy (N)}, we

have x∗
i = 0. Otherwise, for this i, as

∣
∣yπy(s+1)

∣
∣ > |yi|,

we have

∣
∣
∣x∗

πy(s+1)

∣
∣
∣ ≥ |x∗

i | > 0 based on (A.28). Then

we obtain 1 − aλ
‖x∗‖2

< 0 from (A.30), and we have
(

1− aλ
‖x∗‖2

) ∣
∣
∣x∗

πy(s+1)

∣
∣
∣ ≤

(

1− aλ
‖x∗‖2

)

|x∗
i |, which means

that
∣
∣yπy(s+1) − λqπy(s+1)

∣
∣ ≥ |yi − λqi| through (A.30).

Since

∣
∣
∣x∗

πy(s+1)

∣
∣
∣ ≥ |x∗

i | 6= 0, then we can obtain qπy(s+1) =

sign(yπy(s+1)) based on Proposition 5. If yi 6= 0, then we have

qi = sign(yi) and obtain
∣
∣sign

(
yπy(s+1)

)∣
∣ ·
∣
∣
∣
∣yπy(s+1)

∣
∣− λ

∣
∣ ≥

|sign (yi)| · ||yi| − λ|, which means that λ −
∣
∣yπy(s+1)

∣
∣ ≥

λ − |yi|. However, this contradicts
∣
∣yπy(s+1)

∣
∣ > |yi|. If

yi = 0, we have
∣
∣yπy(s+1) − λqπy(s+1)

∣
∣ ≥ λ, then we

can obtain
∣
∣
∣
∣yπy(s+1)

∣
∣− λ

∣
∣ ≥ λ, which contradicts 0 <

∣
∣yπy(s+1)

∣
∣ < λ. Then, we obtain that x∗

i = 0 for i ∈
{πy (s+ k + 1) , πy (s+ k + 2) , · · · , πy (N)}.

For i ∈ {πy (s+ 1) , πy (s+ 2) , · · · , πy (s+ k)}, if there

exits x∗
i 6= 0, then we have 1 − aλ

‖x∗‖2
< 0 as the sign of

yi − λqi and x∗
i are opposite. For i ∈ Γs

y
, from (A.29), we

have

‖x∗s‖2 = (‖ys‖2 − aλ)

/(

1− aλ

‖x∗‖2

)

(A.43)

If ‖ys‖2 ≥ aλ, we have ‖x∗s‖2 ≤ 0, which contradicts x∗
i 6=

0. So, when ‖ys‖2 ≥ aλ, we have x∗
i = 0, and then the

solution x∗ is

x∗
i =

{

yi, i ∈ Γs
y

0, i ∈ ΓN
y
\Γs

y

(A.44)

If ‖ys‖2 < aλ, for i ∈
{πy (s+ 1) , πy (s+ 2) , · · · , πy (s+ k)}, suppose there

are c components of x∗
i 6= 0 and c ≤ k. From (A.30), we have

‖x∗ − x∗s‖2 =
√
c
(∣
∣yπ(s+1)

∣
∣− λ

)
/
(

1− aλ
‖x∗‖2

)

. Substitute

this into ‖x∗s‖2 = (‖ys‖2 − aλ)/
(

1− aλ
‖x‖2

)

from (A.29),

we have

‖x∗‖2 = aλ−
√

(‖ys‖2 − aλ)2 + c
(∣
∣yπ(s+1)

∣
∣− λ

)2

(A.45)

Reconsider the expression of E (x), and using the first-order

optimality condition, we have

E (x∗) =
‖x∗‖22 + ‖y‖22

2λ
−
〈

x∗,
y

λ

〉

+ ‖x∗‖1 − a‖x∗‖2 − ‖x∗s‖1 + a‖x∗s‖2

=
‖x∗‖22 + ‖y‖22

2λ
−
〈

x∗s,

(
1

λ
− a

‖x∗‖2
+

a

‖x∗s‖2

)

x∗s
〉

−
〈

x∗ − x∗s, q +

(
1

λ
− a

‖x∗‖2

)

(x∗ − x∗s)

〉

+ ‖x∗‖1 − a‖x∗‖2 − ‖x∗s‖1 + a‖x∗s‖2

=
‖x∗‖22 + ‖y‖22

2λ
− ‖x∗s‖22

λ
+

a ‖x∗s‖22
‖x∗‖2

− a‖x∗s‖2

− ‖x∗ − x∗s‖1 −
‖x∗ − x∗s‖22

λ
+

a ‖x∗ − x∗s‖22
‖x∗‖2

+ ‖x∗‖1 − a‖x∗‖2 − ‖x∗s‖1 + a‖x∗s‖2

= −‖x∗‖22
2λ

+
‖y‖22
2λ

(A.46)

Then we have E (x∗) < E (0), and we need to find the x∗

with the largest norm among all x∗ that satisfying (A.29) and

(A.30). From this, we have that c should be zero to make the

largest ‖x∗‖ in (A.45). So, when ‖ys‖2 < aλ, we have the

solution x∗ the same as (A.44).

4) If yπ(s+1) = 0, for i ∈ ΓN
y
\Γs

y
, we have x∗

i = 0.

Otherwise, we can construct a vector x̃ ∈ R
N , which is equal

18

to x∗ except setting these corresponding x̃i to be zero. Then

we can obtain a smaller objective value, which contradicts the

optimality of x∗. For i ∈ Γs
y

, we have x∗
i = yi. Then the

solution x∗ can be expressed as (A.44).

Once again, if there exits one or more components of yi,

i /∈ Γs
y

having the same amplitude of yπy(s), then we have a

similar conclusion as Remark 6. This completes the proof.

APPENDIX H

PROOF OF PROPOSITION 9

Proof: Let x[k+1] be the optimal solution of (13) with

y = x[k] − β∇φ
(
x[k]

)
, then we have

E
(

x[k+1]
)

− E
(

x[k]
)

=

∥
∥x[k+1] − y

∥
∥
2

2

2λ
+R

(

x[k+1]
)

−R
(

x[k+1]s
)

−
∥
∥x[k] − y

∥
∥
2

2

2λ
−R

(

x[k]
)

+R
(

x[k]s
)

= −
∥
∥x[k+1] − x[k]

∥
∥
2

2

2λ
+

〈
x[k+1] − x[k],x[k+1] − y

〉

λ

+R
(

x[k+1]
)

−R
(

x[k+1]s
)

−R
(

x[k]
)

+R
(

x[k]s
)

= −
∥
∥x[k+1] − x[k]

∥
∥
2

2

2λ
+

∑

i∈Λk+1

(

x
[k]
i − x

[k+1]
i

)(

∂ri

(

x
[k+1]
i

))

+
∑

i∈Λk+1

ri

(

x
[k+1]
i

)

−
∑

i∈Λk

ri

(

x
[k]
i

)

≤ −
∥
∥x[k+1] − x[k]

∥
∥
2

2

2λ
+

∑

i∈Λk+1

ri

(

x
[k]
i

)

−
∑

i∈Λk

ri

(

x
[k]
i

)

(A.47)

The third equation comes from Proposition 6, and the last

inequality is based on the property of subgradient. Then we

have

E
(

x[k+1]
)

− E
(

x[k]
)

≤ min

{

−
∥
∥x[k+1] − x[k]

∥
∥
2

2

2λ
+∆k, 0

}

(A.48)

where ∆k =
∑

i∈Λk+1

ri

(

x
[k]
i

)

−
∑

i∈Λk

ri

(

x
[k]
i

)

, Λk+1 =

ΓN
x[k+1]\Γs

x[k+1] , and Λk = ΓN
x[k]\Γs

x[k] . Substitute this into

(26) then we have (32). This completes the proof.

ACKNOWLEDGMENT

This work is partially supported by the National Natural

Science Foundation of China (61701508).

REFERENCES

[1] E.J. Cands, J. Romberg, T. Tao. Robust uncertainty

principles: Exact signal reconstruction from highly incom-

plete frequency information. IEEE Trans. Inf. Theory, 52(2):

489509, 2006.

[2] Patel V M, Easley G R, Healy Jr D M, et al. Compressed

synthetic aperture radar[J]. IEEE Journal of selected topics in

signal processing, 2010, 4(2): 244-254.

[3] Yang J, Thompson J, Huang X, et al. Random-frequency

SAR imaging based on compressed sensing[J]. IEEE Transac-

tions on Geoscience and Remote Sensing, 2013, 51(2): 983-

994.

[4] Berger C R, Wang Z, Huang J, et al. Application of

compressive sensing to sparse channel estimation[J]. IEEE

Communications Magazine, 2010, 48(11): 164-174.

[5] Chen Z, Jin X, Li L, et al. A limited-angle CT recon-

struction method based on anisotropic TV minimization[J].

Physics in Medicine Biology, 2013, 58(7): 2119.

[6] Lustig, Michael, David Donoho, and John M. Pauly.

”Sparse MRI: The application of compressed sensing for rapid

MR imaging.” Magnetic Resonance in Medicine: An Official

Journal of the International Society for Magnetic Resonance

in Medicine 58.6 (2007): 1182-1195.

[7] Chartrand R, Staneva V. Restricted isometry proper-

ties and nonconvex compressive sensing[J]. Inverse Problems,

2008, 24(3): 035020.

[8] Candes E J, Wakin M B, Boyd S P. Enhancing sparsity

by reweighted 1 minimization[J]. Journal of Fourier analysis

and applications, 2008, 14(5-6): 877-905.

[9] Sun Y, Tao J. Few views image reconstruction using

alternating direction method vianorm minimization[J]. Inter-

national Journal of Imaging Systems and Technology, 2014,

24(3): 215-223.

[10] Yu-Li S, Jin-Xu T. Image reconstruction from few

views by 0-norm optimization[J]. Chinese Physics B, 2014,

23(7): 078703.

[11] Chartrand R. Exact reconstruction of sparse signals via

nonconvex minimization[J]. IEEE Signal Processing Letters,

2007, 14(10): 707-710.

[12] Chartrand R, Yin W. Iteratively reweighted algorithms

for compressive sensing[C]//2008 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing. IEEE, 2008:

3869-3872.

[13] Krishnan D, Fergus R. Fast image deconvolution using

hyper-Laplacian priors[C]//Advances in neural information

processing systems. 2009: 1033-1041.

[14] Xu Z, Chang X, Xu F, et al. L1/2 regularization: A

thresholding representation theory and a fast solver[J]. IEEE

Transactions on neural networks and learning systems, 2012,

23(7): 1013-1027.

[15] Lai M J, Xu Y, Yin W. Improved iteratively reweighted

least squares for unconstrained smoothed ℓq minimization[J].

SIAM Journal on Numerical Analysis, 2013, 51(2): 927-957.

19

[16] Pant J K, Lu W S, Antoniou A. New Improved

Algorithms for Compressive Sensing Based on ℓp Norm[J].

IEEE Transactions on Circuits and Systems II: Express Briefs,

2014, 61(3): 198-202.

[17] Woodworth J, Chartrand R. Compressed sensing recov-

ery via nonconvex shrinkage penalties[J]. Inverse Problems,

2016, 32(7): 075004.

[18] Wu L, Sun Z, Li D H. A BarzilaiBorwein-Like Iterative

Half Thresholding Algorithm for the L1/2 Regularized Prob-

lem[J]. Journal of Scientific Computing, 2016, 67(2): 581-601.

[19] Fengmin X, Shanhe W. A hybrid simulated anneal-

ing thresholding algorithm for compressed sensing[J]. Signal

Processing, 2013, 93(6): 1577-1585.

[20] Miao C, Yu H. A General-Thresholding Solution for

lp(0 < p < 1) Regularized CT Reconstruction[J]. IEEE

Transactions on Image Processing, 2015, 24(12): 5455-5468.

[21] Zhang T. Analysis of multi-stage convex relaxation

for sparse regularization[J]. Journal of Machine Learning

Research, 2010, 11(Mar): 1081-1107.

[22] Zhang T. Multi-stage convex relaxation for feature

selection[J]. Bernoulli, 2013, 19(5B): 2277-2293.

[23] Lou Y, Yin P, Xin J. Point Source Super-resolution

Via Non-convex L1 Based Methods[J]. Journal of Scientific

Computing, 2016, 68(3): 1082-1100.

[24] Z Zhang S, Xin J. Minimization of transformed L1

penalty: theory, difference of convex function algorithm, and

robust application in compressed sensing[J]. Mathematical

Programming, 2018, 169(1): 307-336.

[25] Dinh T, Xin J. Convergence of a Relaxed Vari-

able Splitting Method for Learning Sparse Neural Networks

via ℓ1, ℓ0, and transformed-ℓ1 Penalties[J]. arXiv preprint

arXiv:1812.05719, 2018.

[26] Lv J, Fan Y. A unified approach to model selection and

sparse recovery using regularized least squares[J]. The Annals

of Statistics, 2009, 37(6A): 3498-3528.

[27]Bogdan M, Berg E V D, Su W, et al. Statistical

estimation and testing via the sorted L1 norm[J]. Statistics,

2013.

[28] Zeng X, Figueiredo M A T. Decreasing Weighted

Sorted ℓ1 Regularization[J]. IEEE Signal Processing Letters,

2014, 21(10): 1240-1244.

[29] Lou Y, Yan M. Fast L1L2 minimization via a proximal

operator[J]. Journal of Scientific Computing, 2018, 74(2): 767-

785.

[30]Lou, Y., Yin, P., He, Q., Xin, J.: Computing sparse rep-

resentation in a highly coherent dictionary based on difference

of l1 and l2. J. Sci. Comput. 64(1), 178196 (2015)

[31] Yin P, Lou Y, He Q, et al. Minimization of L1-

2 for compressed sensing[J]. SIAM Journal on Scientific

Computing, 2015, 37(1): A536-A563.

[32] Fan J, Li R. Variable selection via nonconcave pe-

nalized likelihood and its oracle properties[J]. Journal of the

American statistical Association, 2001, 96(456): 1348-1360.

[33] Mehranian A, Rad H S, Rahmim A, et al. Smoothly

clipped absolute deviation (SCAD) regularization for com-

pressed sensing MRI using an augmented Lagrangian

scheme[J]. Magnetic resonance imaging, 2013, 31(8): 1399-

1411.

[34] Zhang C H. Nearly unbiased variable selection under

minimax concave penalty[J]. The Annals of statistics, 2010,

38(2): 894-942.

[35] Selesnick I. Sparse regularization via convex analy-

sis[J]. IEEE Transactions on Signal Processing, 2017, 65(17):

4481-4494.

[36] Sun Y, Chen H, Tao J. Sparse signal recovery via

minimax-concave penalty and ℓ1-norm loss function[J]. IET

Signal Processing, 2018, 12(9): 1091-1098.

[37] Blumensath T, Davies M E. Iterative thresholding for

sparse approximations: The Journal of Fourier Analysis and

Applications, 14, 629654[J]. 2008.

[38] Blumensath T, Davies M E. Iterative hard thresholding

for compressed sensing[J]. Applied and computational har-

monic analysis, 2009, 27(3): 265-274.

[39] Blumensath T. Accelerated iterative hard threshold-

ing[J]. Signal Processing, 2012, 92(3): 752-756.

[40] Lu Z. Iterative hard thresholding methods for ℓ0

regularized convex cone programming[J]. Mathematical Pro-

gramming, 2014, 147(1-2): 125-154.

[41] Bao C, Dong B, Hou L, et al. Image restoration by

minimizing zero norm of wavelet frame coefficients[J]. Inverse

problems, 2016, 32(11): 115004.

[42] Zhang X, Zhang X. An accelerated proximal itera-

tive hard thresholding method for ℓ0 minimization[J]. arXiv

preprint arXiv:1709.01668, 2017..

[43] Gotoh J, Takeda A, Tono K. DC formulations and

algorithms for sparse optimization problems[J]. Mathematical

Programming, 2018: 1-36.

[44] Tono K, Takeda A, Gotoh J. Efficient DC algo-

rithm for constrained sparse optimization[J]. arXiv preprint

arXiv:1701.08498, 2017.

[45] Tao P D, An L T H. Convex analysis approach to

dc programming: Theory, algorithms and applications[J]. Acta

mathematica vietnamica, 1997, 22(1): 289-355.

[46] Ahn M, Pang J S, Xin J. Difference-of-convex learn-

ing: directional stationarity, optimality, and sparsity[J]. SIAM

http://arxiv.org/abs/1812.05719
http://arxiv.org/abs/1709.01668
http://arxiv.org/abs/1701.08498

20

Journal on Optimization, 2017, 27(3): 1637-1665.

[47] Yin P , Xin J . Iterative ℓ1 minimization for non-convex

compressed sensing[J]. Journal of Computational Mathematics

2017, 35(4):439-451.

[48] Liu T, Pong T K, Takeda A. A successive difference-of-

convex approximation method for a class of nonconvex nons-

mooth optimization problems[J]. Mathematical Programming,

2017: 1-29.

[49] Yuille A L, Rangarajan A. The concave-convex proce-

dure[J]. Neural computation, 2003, 15(4): 915-936.

[50] Artacho F J A, Fleming R M T, Vuong P T. Accelerat-

ing the DC algorithm for smooth functions[J]. Mathematical

Programming, 2018, 169(1): 95-118.

[51] Wen B, Chen X, Pong T K. A proximal difference-

of-convex algorithm with extrapolation[J]. Computational op-

timization and applications, 2018, 69(2): 297-324.

[52] Wen F, Pei L, Yang Y, et al. Efficient and robust

recovery of sparse signal and image using generalized non-

convex regularization[J]. IEEE Transactions on Computational

Imaging, 2017, 3(4): 566-579.

[53] Zhang J, Zhao C, Zhao D, et al. Image compressive

sensing recovery using adaptively learned sparsifying basis via

L0 minimization[J]. Signal Processing, 2014, 103: 114-126.

[54] Gong P, Zhang C, Lu Z, et al. A general iterative

shrinkage and thresholding algorithm for non-convex regu-

larized optimization problems[C]//International Conference on

Machine Learning. 2013: 37-45.

[55] Li H, Lin Z. Accelerated proximal gradient methods for

nonconvex programming[C]//Advances in neural information

processing systems. 2015: 379-387.

[56] Beck A, Teboulle M. A fast iterative shrinkage-

thresholding algorithm for linear inverse problems[J]. SIAM

journal on imaging sciences, 2009, 2(1): 183-202.

[57] Dong B, Zhang Y. An efficient algorithm for 0

minimization in wavelet frame based image restoration[J].

Journal of Scientific Computing, 2013, 54(2-3): 350-368.

[58] Zhang Y, Dong B, Lu Z. Minimization for wavelet

frame based image restoration[J]. Mathematics of Computa-

tion, 2013, 82(282): 995-1015.

[59] Zhang X, Lu Y, Chan T. A novel sparsity reconstruction

method from Poisson data for 3D bioluminescence tomogra-

phy[J]. Journal of scientific computing, 2012, 50(3): 519-535.

[60] Trzasko J, Manduca A, Borisch E. Sparse MRI re-

construction via multiscale L0-continuation[C]//2007 IEEE/SP

14th Workshop on Statistical Signal Processing. IEEE, 2007:

176-180.

[61] Trzasko J, Manduca A. Highly Undersampled Mag-

netic Resonance Image Reconstruction via Homotopic ℓ0-

Minimization[J]. IEEE Transactions on Medical imaging,

2009, 28(1): 106-121.

[62] Pavlikov K, Uryasev S. CVaR norm and applications in

optimization[J]. Optimization Letters, 2014, 8(7): 1999-2020.

[63] Gotoh J, Uryasev S. Two pairs of families of poly-

hedral norms versus ℓp-norms: proximity and applications in

optimization[J]. Mathematical Programming, 2016, 156(1-2):

391-431.

[64] Sun Y, Chen H, Tao J, et al. Computed tomography

image reconstruction from few views via Log-norm total

variation minimization[J]. Digital Signal Processing, Volume

88, Pages 172-181, May 2019.

[65] Wen F, Liu P, Liu Y, et al. Robust Sparse Recovery in

Impulsive Noise via ℓp-ℓ1 Optimization[J]. IEEE Transactions

on Signal Processing, 2017, 65(1): 105-118.

[66] Combettes P L, Pesquet J C. Proximal splitting methods

in signal processing[M]//Fixed-point algorithms for inverse

problems in science and engineering. Springer, New York, NY,

2011: 185-212.

[67] Lu Z. Sequential convex programming methods for a

class of structured nonlinear programming[J]. arXiv preprint

arXiv:1210.3039, 2012.

[68] Barzilai J, Borwein J M. Two-point step size gradient

methods[J]. IMA journal of numerical analysis, 1988, 8(1):

141-148.

[69] Sidky E Y, Chartrand R, Pan X. Image reconstruction

from few views by non-convex optimization[C]//2007 IEEE

Nuclear Science Symposium Conference Record. IEEE, 2007,

5: 3526-3530.

[70] Rahimi Y, Wang C, Dong H, et al. A Scale Invari-

ant Approach for Sparse Signal Recovery[J]. arXiv preprint

arXiv:1812.08852, 2018.

[71]. Nocedal, Jorge, Wright, Stephen J.: Numerical Opti-

mization 2nd. Springer, Berlin (2006)

[72] Boyd S, Parikh N, Chu E, et al. Distributed optimiza-

tion and statistical learning via the alternating direction method

of multipliers[J]. Foundations and Trends in Machine learning,

2011, 3(1): 1-122.

http://arxiv.org/abs/1210.3039
http://arxiv.org/abs/1812.08852

	I Introduction
	I-A Background
	I-B Contributions
	I-C Outline and notation

	II Penalty representation for s-sparse problem
	III Forward-Backward Splitting for the regularization of difference of two functions
	III-A Forward-Backward Splitting and proximal operator
	III-B Closed-form solution of the proximal operator

	IV Convergence analysis
	V Extensions
	V-A Related algorithms
	V-B Comparing with other regularization
	V-C Extend to rank-constrained problem

	VI Numerical experiments
	VII Conclusion
	Appendix A: Proof of Proposition 1
	Appendix B: Proof of Theorem 1
	Appendix C: Proof of Proposition 2
	Appendix D: Proof of Proposition 3
	Appendix E: Proof of Proposition 6
	Appendix F: Proof of Proposition 7
	Appendix G: Proof of Proposition 8
	Appendix H: Proof of Proposition 9

